Helix-Hopes on S-Helix Matrices

Souzana Vougioukli, Thomas Vougiouklis ${ }^{\dagger}$
${ }^{\ddagger}$ doi:10.23755/rm.v33i0.385

Abstract

A hyperproduct on non-square ordinary matrices can be defined by using the so called helix-hyperoperations. The main characteristic of the helixhyperoperation is that all entries of the matrices are used. Such operations cannot be defined in the classical theory. Several classes of non-square matrices have results of the helix-product with small cardinality. We study the helix-hyperstructures on the representations and we extend our study up to H_{v}-Lie theory by using ordinary fields. We introduce and study the class of S-helix matrices.

Keywords: hyperstructures; H_{v}-structures; h/v-structures; hope; helix-hopes. 2010 AMS subject classifications: 20N20, 16Y99.

[^0]
1 Introduction

Our object is the largest class of hyperstructures, the H_{v}-structures, introduced in 1990 [10], satisfying the weak axioms where the non-empty intersection replaces the equality.

Definition 1.1. In a set H equipped with a hyperoperation (abbreviate by hope)

$$
\cdot: H \times H \rightarrow P(H)-\{\emptyset\}:(x, y) \rightarrow x \cdot y \subset H
$$

we abbreviate by
WASS the weak associativity: $(x y) z \cap x(y z) \neq \varnothing, \forall x, y, z \in H$ and by
COW the weak commutativity: $x y \cap y x \neq \varnothing, \forall x, y \in H$.
The hyperstructure (H, \cdot) is called H_{v}-semigroup if it is WASS and is called $\mathbf{H}_{\mathbf{v}}-\mathbf{g r o u p}$ if it is reproductive H_{v}-semigroup: $x H=H x=H, \forall x \in H$.
$(R,+, \cdot)$ is called $\mathbf{H}_{\mathbf{v}}-\mathbf{r i n g}$ if $(+)$ and (\cdot) are WASS, the reproduction axiom is valid for $(+)$ and (\cdot) is weak distributive with respect to $(+)$:

$$
x(y+z) \cap(x y+x z) \neq \varnothing,(x+y) z \cap(x z+y z) \neq \varnothing, \forall x, y, z \in R
$$

For more definitions, results and applications on H_{v}-structures, see [1], [2], [11], [12], [13], [17]. An interesting class is the following [8]: An H_{v}-structure is very thin, if and only if, all hopes are operations except one, with all hyperproducts singletons except only one, which is a subset of cardinality more than one. Therefore, in a very thin H_{v}-structure in a set H there exists a hope (\cdot) and a pair $(a, b) \in H^{2}$ for which $a b=A$, with $\operatorname{card} A>1$, and all the other products, with respect to any other hopes, are singletons.

The fundamental relations β^{*} and γ^{*} are defined, in H_{v}-groups and H_{v}-rings, respectively, as the smallest equivalences so that the quotient would be group and ring, respectively [8], [9], [11], [12], [13], [17]. The main theorem is the following:
Theorem 1.1. Let (H, \cdot) be an H_{v}-group and let us denote by U the set of all finite products of elements of H. We define the relation β in H as follows: $x \beta y$ iff $\{x, y\} \subset u$ where $u \in U$. Then the fundamental relation β^{*} is the transitive closure of the relation β.

An element is called single if its fundamental class is a singleton.
Motivation: The quotient of a group with respect to any partition is an $H_{v^{-}}$ group.
Definition 1.2. Let $(H, \cdot),(H, \otimes)$ be H_{v}-semigroups defined on the same $H .(\cdot)$ is smaller than (\otimes), and (\otimes) greater than (\cdot), iff there exists automorphism

$$
f \in \operatorname{Aut}(H, \otimes) \text { such that } x y \subset f(x \otimes y), \forall x, y \in H
$$

Then (H, \otimes) contains (H, \cdot) and write $\cdot \leq \otimes$. If (H, \cdot) is structure, then it is basic and (H, \otimes) is an H_{b}-structure.

The Little Theorem [11]. Greater hopes of the ones which are WASS or COW, are also WASS and COW, respectively.

Fundamental relations are used for general definitions of hyperstructures. Thus, to define the general H_{v}-field one uses the fundamental relation γ^{*} :

Definition 1.3. [10] The H_{v}-ring $(R,+, \cdot)$ is called $\mathbf{H}_{\mathbf{v}}$-field if the quotient R / γ^{*} is a field.

This definition introduces a new class of which is the following [15]:
Definition 1.4. The H_{v}-semigroup (H, \cdot) is called $\boldsymbol{h} / \mathbf{v}$-group if H / β^{*} is a group.
The class of h / v-groups is more general than the H_{v}-groups since in h / v-groups the reproductivity is not valid. The \mathbf{h} / \mathbf{v}-fields and the other related hyperstructures are defined in a similar way.

An H_{v}-group is called cyclic [8], if there is an element, called generator, which the powers have union the underline set, the minimal power with this property is the period of the generator.

Definition 1.5. [11], [14], [18]. Let $(R,+, \cdot)$ be an H_{v}-ring, $(M,+)$ be COW H_{v}-group and there exists an external hope $\cdot: R \times M \rightarrow P(M):(a, x) \rightarrow a x$, such that, $\forall a, b \in R$ and $\forall x, y \in M$ we have

$$
a(x+y) \cap(a x+a y) \neq \varnothing,(a+b) x \cap(a x+b x) \neq \varnothing,(a b) x \cap a(b x) \neq \varnothing
$$

then M is called an $\mathbf{H}_{\mathbf{v}}$-module over R. In the case of an H_{v}-field F instead of an H_{v}-ring R, then the $\mathbf{H}_{\mathbf{v}}$-vector space is defined.

Definition 1.6. [16] Let $(L,+)$ be H_{v}-vector space on $(F,+, \cdot), \phi: F \rightarrow F / \gamma^{*}$, the canonical map and $\omega_{F}=\{x \in F: \phi(x)=0\}$, where 0 is the zero of the fundamental field F / γ^{*}. Similarly, let ω_{L} be the core of the canonical map $\phi^{\prime}: L \rightarrow L / \epsilon^{*}$ and denote again 0 the zero of L / ϵ^{*}. Consider the bracket (commutator) hope:

$$
[,]: L \times L \rightarrow P(L):(x, y) \rightarrow[x, y]
$$

then L is an $\mathbf{H}_{\mathbf{v}}$-Lie algebra over F if the following axioms are satisfied:
(L1) The bracket hope is bilinear, i.e.

$$
\begin{aligned}
& {\left[\lambda_{1} x_{1}+\lambda_{2} x_{2}, y\right] \cap\left(\lambda_{1}\left[x_{1}, y\right]+\lambda_{2}\left[x_{2}, y\right]\right) \neq \varnothing} \\
& {\left[x, \lambda_{1} y_{1}+\lambda_{2} y_{2}\right] \cap\left(\lambda_{1}\left[x, y_{1}\right]+\lambda_{2}\left[x, y_{2}\right]\right) \neq \varnothing} \\
& \forall x, x_{1}, x_{2}, y, y_{1}, y_{2} \in L, \lambda_{1}, \lambda_{2} \in F
\end{aligned}
$$

Souzana Vougioukli and Thomas Vougiouklis

(L2) $[x, x] \cap \omega_{L} \neq \varnothing, \quad \forall x \in L$
(L3) $([x,[y, z]]+[y,[z, x]]+[z,[x, y]]) \cap \omega_{L} \neq \varnothing, \quad \forall x, y, z \in L$
A well known and large class of hopes is given as follows [8], [9], [11]:
Definition 1.7. Let (G, \cdot) be a groupoid, then for every subset $P \subset G, P \neq \varnothing$, we define the following hopes, called \boldsymbol{P}-hopes: $\forall x, y \in G$

$$
\begin{aligned}
& \underline{P}: x \underline{P} y=(x P) y \cup x(P y), \\
& \underline{P}_{r}: x \underline{P}_{r} y=(x y) P \cup x(y P), \\
& \underline{P}_{l}: x \underline{P}_{l} y=(P x) y \cup P(x y) .
\end{aligned}
$$

The $(G, \underline{P}),\left(G, \underline{P}_{r}\right),\left(G, \underline{P}_{l}\right)$ are called \boldsymbol{P}-hyperstructures.
The usual case is for semigroup (G, \cdot), then $x \underline{P} y=(x P) y \cup x(P y)=x P y$, and (G, \underline{P}) is a semihypergroup.

A new important application of H_{v}-structures in Nuclear Physics is in the Santilli's isotheory. In this theory a generalization of P-hopes is used, [4], [5], [22], which is defined as follows: Let (G,) be an abelian group and P a subset of G with more than one elements. We define the hyperoperation \times_{P} as follows:

$$
x \times_{p} y= \begin{cases}x \cdot P \cdot y=\{x \cdot h \cdot y \mid h \in P\} & \text { if } x \neq e \text { and } c \neq e \\ x \cdot y & \text { if } x=e \text { or } y=e\end{cases}
$$

we call this hope P_{e}-hope. The hyperstructure $\left(G, \times_{p}\right)$ is an abelian H_{v}-group.

2 Small hypernumbers and H_{v}-matrix representations

Several constructions of H_{v}-fields are uses in representation theory and applications in applied sciences. We present some of them in the finite small case [18].

Construction 2.1. On the ring $\left(\mathbf{Z}_{4},+, \cdot\right)$ we will define all the multiplicative h / v fields which have non-degenerate fundamental field and, moreover they are,
(a) very thin minimal,
(b) COW (non-commutative),
(c) they have the elements 0 and 1, scalars.

Then, we have only the following isomorphic cases $2 \otimes 3=\{0,2\}$ or $3 \otimes 2=$ $\{0,2\}$.

Fundamental classes: $[0]=\{0,2\},[1]=\{1,3\}$ and we have $\left(\mathbf{Z}_{4},+, \otimes\right) / \gamma^{*} \cong$ ($\left.\mathbf{Z}_{2},+, \cdot\right)$.

Thus it is isomorphic to $\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2},+\right)$. In this H_{v}-group there is only one unit and every element has a unique double inverse.

Construction 2.2. On the ring $\left(\mathbf{Z}_{6},+, \cdot\right)$ we define, up to isomorphism, all multiplicative $h / v-$-fields which have non-degenerate fundamental field and, moreover they are:
(a) very thin minimal, i.e. only one product has exactly two elements
(b) COW (non-commutative)
(c) they have the elements 0 and 1, scalars

Then we have the following cases, by giving the only one hyperproduct,
(I) $2 \otimes 3=\{0,3\}$ or $2 \otimes 4=\{2,5\}$ or $2 \otimes 5=\{1,4\}$
$3 \otimes 4=\{0,3\}$ or $3 \otimes 5=\{0,3\}$ or $4 \otimes 5=\{2,5\}$
In all 6 cases the fundamental classes are $[0]=\{0,3\},[1]=\{1,4\},[2]=$ $\{2,5\}$ and we have $\left(\mathbf{Z}_{6},+, \otimes\right) / \gamma^{*} \cong\left(\mathbf{Z}_{3},+, \cdot\right)$.
(II) $2 \otimes 3=\{0,2\}$ or $2 \otimes 3=\{0,4\}$ or $2 \otimes 4=\{0,2\}$ or $2 \otimes 4=\{2,4\}$ or
$2 \otimes 5=\{0,4\}$ or $2 \otimes 5=\{2,4\}$ or $3 \otimes 4=\{0,2\}$ or $3 \otimes 4=\{0,4\}$ or $3 \otimes 5=\{1,3\}$ or $3 \otimes 5=\{3,5\}$ or $4 \otimes 5=\{0,2\}$ or $4 \otimes 5=\{2,4\}$ In all 12 cases the fundamental classes are $[0]=\{0,2,4\},[1]=\{1,3,5\}$ and we have $\left(\mathbf{Z}_{6},+, \otimes\right) / \gamma^{*} \cong\left(\mathbf{Z}_{2},+, \cdot\right)$.
H_{v}-structures are used in Representation Theory of H_{v}-groups which can be achieved by generalized permutations or by H_{v}-matrices [11], [14], [18].

Definition 2.1. $\mathbf{H}_{\mathbf{v}}$-matrix is a matrix with entries of an H_{v}-ring or H_{v}-field. The hyperproduct of two H_{v}-matrices $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$, of type $m \times n$ and $n \times r$ respectively, is defined in the usual manner and it is a set of $m \times r H_{v}$-matrices. The sum of products of elements of the H_{v}-ring is considered to be the n-ary circle hope on the hypersum. The hyperproduct of H_{v}-matrices is not necessarily WASS.

The problem of the H_{v}-matrix representations is the following:
Definition 2.2. Let (H, \cdot) be H_{v}-group (or h / v-group). Find an H_{v}-ring $(R,+, \cdot)$, a set $M_{R}=\left\{\left(a_{i j}\right) \mid a_{i j} \in R\right\}$ and a map $T: H \rightarrow M_{R}: h \mapsto T(h)$ such that

$$
T\left(h_{1} h_{2}\right) \cap T\left(h_{1}\right) T\left(h_{2}\right) \neq \varnothing, \forall h_{1}, h_{2} \in H
$$

T is H_{v}-matrix (or h/v-matrix) representation. If $T\left(h_{1} h_{2}\right) \subset T\left(h_{1}\right)\left(h_{2}\right)$ is called inclusion. If $T\left(h_{1} h_{2}\right)=T\left(h_{1}\right)\left(h_{2}\right)=\left\{T(h) \mid h \in h_{1} h_{2}\right\}, \forall h_{1}, h_{2} \in H$, then T is good and then an induced representation T^{*} for the hypergroup algebra is obtained. If T is one to one and good then it is faithful.

The main theorem on representations is [11]:
Theorem 2.1. A necessary condition to have an inclusion representation T of an $H_{v^{-}}$group (H, \cdot) by $n \times n, H_{v}$-matrices over the H_{v}-ring $(R,+, \cdot)$ is the following:

For all classes $\beta^{*}(x), x \in H$ must exist elements $a_{i j} \in H, i, j \in\{1, \ldots, n\}$ such that

$$
T\left(\beta^{*}(a)\right) \subset\left\{A=\left(a_{i j}^{\prime}\right) \mid a_{i j} \in \gamma^{*}\left(a_{i j}\right), i, j \in\{1, \ldots, n\}\right\}
$$

Inclusion $T: H \rightarrow M_{R}: a \mapsto T(a)=\left(a_{i j}\right)$ induces homomorphic representation T^{*} of H / β^{*} on R / γ^{*} by setting $T^{*}\left(\beta^{*}(a)\right)=\left[\gamma^{*}\left(a_{i j}\right)\right], \forall \beta^{*}(a) \in H / \beta^{*}$, where $\gamma^{*}\left(a_{i j}\right) \in R / \gamma^{*}$ is the ij entry of the matrix $T^{*}\left(\beta^{*}(a)\right) . T^{*}$ is called fundamental induced of T.

In representations, several new classes are used:
Definition 2.3. Let $M=M_{m \times n}$ be the module of $m \times n$ matrices over R and $P=\left\{P_{i}: i \in I\right\} \subseteq M$. We define a P-hope \underline{P} on M as follows

$$
\underline{P}: M \times M \rightarrow P(M):(A, B) \rightarrow A \underline{P} B=\left\{A P_{i}^{t} B: i \in I\right\} \subseteq M
$$

where P^{t} denotes the transpose of P.
The hope \underline{P} is bilinear map, is strong associative and the inclusion distributive:

$$
A \underline{P}(B+C) \subseteq A \underline{P} B+A \underline{P} C, \forall A, B, C \in M
$$

Definition 2.4. Let $M=M_{m \times n}$ the $m \times n$ matrices over R and let us take sets

$$
S=\left\{s_{k}: k \in K\right\} \subseteq R, Q=\left\{Q_{j}: j \in J\right\} \subseteq M, P=\left\{P_{i}: i \in I\right\} \subseteq M
$$

Define three hopes as follows

$$
\begin{gathered}
\underline{S}: R \times M \rightarrow P(M):(r, A) \rightarrow r \underline{S} A=\left\{\left(r s_{k}\right) A: k \in K\right\} \subseteq M \\
\underline{Q}_{+}: M \times M \rightarrow P(M):(A, B) \rightarrow A \underline{Q}_{+} B=\left\{A+Q_{j}+B: j \in J\right\} \subseteq M \\
\underline{P}: M \times M \rightarrow P(M):(A, B) \rightarrow A \underline{P} B=\left\{A P_{i}^{t} B: i \in I\right\} \subseteq M
\end{gathered}
$$

Then $\left(M, \underline{S}, \underline{Q}_{+}, \underline{P}\right)$ is hyperalgebra on R called general matrix P-hyperalgebra.

3 Helix-hopes

Recall some definitions from [3], [4], [6], [7], [19], [20], [21]:
Definition 3.1. Let $A=\left(a_{i j}\right) \in M_{m \times n}$ be $m \times n$ matrix and $s, t \in N$ be naturals such that $1 \leq s \leq m, 1 \leq t \leq n$. We define the map cst from $M_{m \times n}$ to $M_{s \times t}$ by corresponding to the matrix A, the matrix Acst $=\left(a_{i j}\right)$ where $1 \leq i \leq s$, $1 \leq j \leq t$. We call this map cut-projection of type st. Thus Acst $=\left(a_{i j}\right)$ is matrix obtained from A by cutting the lines, with index greater than s, and columns, with index greater than t.

We use cut-projections on all types of matrices to define sums and products.
Definition 3.2. Let $A=\left(a_{i j}\right) \in M_{m \times n}$ be an $m \times n$ matrix and $s, t \in N$, such that $1 \leq s \leq m, 1 \leq t \leq n$. We define the mod-like map st from $M_{m \times n}$ to $M_{s \times t}$ by corresponding to A the matrix Ast $=\left(\underline{a}_{i j}\right)$ which has as entries the sets

$$
a_{i j}=\left\{a_{i+\kappa s, j+\lambda t} \mid 1 \leq i \leq s, 1 \leq j \leq t \text { and } \kappa, \lambda \in N, i+\kappa s \leq m, j+\lambda t \leq n\right\} .
$$

Thus, we have the map

$$
\underline{s t}: M_{m \times n} \rightarrow M_{s \times t}: A \rightarrow A \underline{A s t}=\left(\underline{a}_{i j}\right) .
$$

We call this multivalued map helix-projection of type st. Ast is a set of $s \times t$ matrices $X=\left(x_{i j}\right)$ such that $x_{i j} \in \underline{a}_{i j}, \forall i, j$. Obviously $\operatorname{Amn}=A$.

Let $A=\left(a_{i j}\right) \in M_{m \times n}$ be a matrix and $s, t \in N$ such that $1 \leq s \leq m$, $1 \leq t \leq n$. Then it is clear that we can apply the helix-projection first on the rows and then on the columns, the result is the same if we apply the helix-projection on both, rows and columns. Therefore we have

$$
(A \underline{s n}) \underline{s t}=(A \underline{m} t) \underline{s t}=A \underline{s t} .
$$

Let $A=\left(a_{i j}\right) \in M_{m \times n}$ be matrix and $s, t \in N$ such that $1 \leq s \leq m, 1 \leq t \leq n$. Then if Ast is not a set but one single matrix then we call A cut-helix matrix of type $s \times t$. In other words the matrix A is a helix matrix of type $s \times t$, if Acst $=$ Ast.

Definition 3.3. a. Let $A=\left(a_{i j}\right) \in M_{m \times n}, B=\left(b_{i j}\right) \in M_{u \times v}$, be matrices and $s=\min (m, u), t=\min (n, u)$. We define a hope, called helix-addition or helix-sum, as follows:

$$
\begin{aligned}
& \oplus: M_{m \times n} \times M_{u \times v} \rightarrow P\left(M_{s \times t}\right):(A, B) \rightarrow \\
& A \oplus B=A \underline{s t}+B \underline{s t}=\left(\underline{a}_{i j}\right)+\left(\underline{b}_{i j}\right) \subset M_{s \times t},
\end{aligned}
$$

where

$$
\left(\underline{a}_{i j}\right)+\left(\underline{b}_{i j}\right)=\left\{\left(c_{i j}=\left(a_{i j}+b_{i j}\right) \mid a_{i j} \in \underline{a}_{i j} \text { and } b_{i j} \in \underline{b}_{i j}\right\}\right.
$$

b. Let $A=\left(a_{i j}\right) \in M_{m \times n}$ and $B=\left(b_{i j}\right) \in M_{u \times v,}$, be matrices and $s=\min (m, u)$. We define a hope, called helix-multiplication or helix-product, as follows:

$$
\begin{aligned}
& \otimes: M_{m \times n} \times M_{u \times v} \rightarrow P\left(M_{m \times v}\right):(A, B) \rightarrow \\
& A \otimes B=A \underline{m s} \cdot B \underline{s v}=\left(\underline{a}_{i j}\right) \cdot\left(\underline{b}_{i j}\right) \subset M_{m \times v},
\end{aligned}
$$

where

$$
\left(\underline{a}_{i j}\right) \cdot\left(\underline{b}_{i j}\right)=\left\{\left(c_{i j}=\left(\sum a_{i t} b_{t j}\right) \mid a_{i j} \in \underline{a}_{i j} \text { and } b_{i j} \in \underline{b}_{i j}\right\}\right.
$$

The helix-sum is an external hope and the commutativity is valid. For the helix-product we remark that we have $A \otimes B=A \underline{m s} \cdot B \underline{s v}$ so we have either $A \underline{m s}=A$ or $B \underline{s v}=B$, that means that the helix-projection was applied only in one matrix and only in the rows or in the columns. If the appropriate matrices in the helix-sum and in the helix-product are cut-helix, then the result is singleton.

Remark. In $M_{m \times n}$ the addition is ordinary operation, thus we are interested only in the 'product'. From the fact that the helix-product on non square matrices is defined, the definition of the Lie-bracket is immediate, therefore the helix-Lie Algebra is defined [22], as well. This algebra is an H_{v}-Lie Algebra where the fundamental relation ϵ^{*} gives, by a quotient, a Lie algebra, from which a classification is obtained.

In the following we restrict ourselves on the matrices $M_{m \times n}$ where $m<n$. We have analogous results if $m>n$ and for $m=n$ we have the classical theory.

Notation. For given $\kappa \in \mathbb{N}-\{0\}$, we denote by $\underline{\kappa}$ the remainder resulting from its division by m if the remainder is non zero, and $\underline{\kappa}=m$ if the remainder is zero. Thus a matrix $A=\left(a_{\kappa \lambda}\right) \in M_{m \times n}, m<n$ is a cut-helix matrix if we have $a_{\kappa \lambda}=a_{\kappa \underline{\lambda}}, \forall \kappa \lambda \in \mathbb{N}-\{0\}$.

Moreover let us denote by $I_{c}=\left(c_{\kappa \lambda}\right)$ the cut-helix unit matrix which the cut matrix is the unit matrix I_{m}. Therefore, since $I_{m}=\left(\delta_{\kappa \lambda}\right)$, where $\delta_{\kappa \lambda}$ is the Kronecker's delta, we obtain that, $\forall \kappa, \lambda$, we have $c_{\kappa \lambda}=\delta_{\kappa \lambda}$.
Proposition 3.1. For $m<n$ in $\left(M_{m \times n}, \otimes\right)$ the cut-helix unit matrix $I_{c}=\left(c_{\kappa \lambda}\right)$, where $c_{\kappa \lambda}=\delta_{\kappa \underline{\lambda}}$, is a left scalar unit and a right unit. It is the only one left scalar unit.

Proof. Let $A, B \in M_{m \times n}$ then in the helix-multiplication, since $m<n$, we take helix projection of the matrix A , therefore, the result $A \otimes B$ is singleton if the matrix A is a cut-helix matrix of type $m \times m$. Moreover, in order to have $A \otimes B=A \underline{m m} \cdot B=B$, the matrix $A \underline{m m}$ must be the unit matrix. Consequently, $I_{c}=\left(c_{\kappa} \lambda\right)$, where $c_{\kappa \lambda}=\delta_{\kappa \lambda}, \forall \kappa, \lambda \in \mathbb{N}-\{0\}$, is necessarily the left scalar unit.

Let $A=\left(a_{u v}\right) \in M_{m \times n}$ and consider the hyperproduct $A \otimes I_{c}$. In the entry $\kappa \lambda$ of this hyperproduct there are sets, for all $1 \leq \kappa \leq m, 1 \leq \lambda \leq n$, of the form

$$
\sum \underline{a}_{\kappa s} c_{s \lambda}=\sum \underline{a}_{\kappa s} \delta_{s \underline{\lambda}}=\underline{a}_{\kappa \underline{\lambda}} \ni a_{\kappa \lambda} .
$$

Therefore $A \otimes I_{c} \ni A, \forall A \in M_{m \times n}$.

4 The S-helix matrices

Definition 4.1. Let $A=\left(a_{i j}\right) \in M_{m \times n}$ be matrix and $s, t \in N$ such that $1 \leq s \leq$ $m, 1 \leq t \leq n$. Then if Ast is a set of upper triangular matrices with the same diagonal, then we call A an S-helix matrix of type $\mathbf{s} \times \mathbf{t}$. Therefore, in an S-helix matrix A of type $s \times t$, the Ast has on the diagonal entries which are not sets but elements.

In the following, we restrict our study on the case of $A=\left(a_{i j}\right) \in M_{m \times n}$ with $m<n$.

Remark. According to the cut-helix notation, we have,

$$
a_{\kappa \lambda}=a_{\kappa \underline{\lambda}}=0, \text { for all } \kappa>\lambda \text { and } a_{\kappa \lambda}=a_{\kappa \underline{\lambda}}, \text { for } \kappa=\underline{\lambda} .
$$

Proposition 4.1. The set of S-helix matrices $A=\left(a_{i j}\right) \in M_{m \times n}$ with $m<n$, is closed under the helix product. Moreover, it has a unit the cut-helix unit matrix I_{c}, which is left scalar.

Proof. It is clear that the helix product of two S-helix matrices, $X=$ $\left(x_{i j}\right), Y=\left(a_{i j}\right) \in M_{m \times n}, X \otimes Y$, contain matrices $Z=\left(z_{i j}\right)$, which are upper diagonals. Moreover, for every $z_{i i}$, the entry ii is singleton since it is product of only $z_{(i+k m),(i+k m)}=z_{i i}$, entries.

The unit is, from Proposition 3.1, the matrix $I_{c}=I_{m \times n}$, where we have $I_{m \times n}=I_{m m}=I_{m}$.

An example of hyper-matrix representation, seven dimensional, with helixhope is the following:
Example 4.1. Consider the special case of the matrices of the type 3×5 on the field of real or complex. Then we have

$$
\begin{gathered}
X=\left(\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & x_{11} & x_{15} \\
0 & x_{22} & x_{23} & 0 & x_{22} \\
0 & 0 & x_{33} & 0 & 0
\end{array}\right) \text { and } Y=\left(\begin{array}{ccccc}
y_{11} & y_{12} & y_{13} & y_{11} & y_{15} \\
0 & y_{22} & y_{23} & 0 & y_{22} \\
0 & 0 & y_{33} & 0 & 0
\end{array}\right) \\
X \otimes Y=\left(\begin{array}{cccc}
x_{11} & \left\{x_{12}, x_{15}\right\} & x_{13} \\
0 & x_{22} & x_{23} \\
0 & 0 & x_{33}
\end{array}\right) \cdot\left(\begin{array}{cccc}
y_{11} & y_{12} & y_{13} & y_{11} \\
0 & y_{15} \\
0 & 0 & y_{23} & 0 \\
y_{22} \\
0 & y_{33} & 0 & 0
\end{array}\right)= \\
\left(\begin{array}{ccccc}
x_{11} y_{11} & x_{11} y_{12}+\left\{x_{12}, x_{15}\right\} y_{22} & x_{11} y_{13}+\left\{x_{12}, x_{15}\right\} y_{23}+x_{13} y_{33} & x_{11} y_{11} & x_{11} y_{15}+\left\{x_{12}, x_{15}\right\} y_{22} \\
0 & x_{22} y_{22} & x_{22} y_{23}+x_{23} y_{33} & 0 & x_{22} y_{22} \\
0 & 0 & x_{33} y_{33} & 0 & 0
\end{array}\right)
\end{gathered}
$$

Therefore the helix product is a set with cardinality up to 8 .
The unit of this type is $I_{c}=\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right)$

Definition 4.2. We call a matrix $A=\left(a_{i j}\right) \in M_{m \times n}$ an $\mathbf{S}_{\mathbf{0}}$-helix matrix if it is an S-helix matrix where the condition $a_{11} a_{22} \ldots a_{m m} \neq 0$, is valid. Therefore, an S_{0}-helix matrix has no zero elements on the diagonal and the set S_{0} is a subset of the set S of all S-helix matrices. We notice that this set is closed under the helix product not in addition. Therefore it is interesting only when the product is used not the addition.

Proposition 4.2. The set of S_{0}-helix matrices $A=\left(a_{i j}\right) \in M_{m \times n}$ with $m<n$, is closed under the helix product, it has a unit the cut-helix unit matrix I_{c}, which is left scalar and S_{0}-helix matrices X have inverses X^{-1}, i.e. $I_{c} \in X \otimes X^{-1} \cap$ $X^{-1} \otimes X$.

Proof. First it is clear that on the helix product of two S_{0}-helix matrices, the diagonal has not any zero since there is no zero on each of them. Therefore, the helix product is closed. The entries in the diagonal are inverses in the H_{v}-field. In the rest entries we have to collect equations from those which correspond to each element of the entry-set.

Example 4.2. Consider the special case of the above Example 4.1, of the matrices of the type 3×5. Suppose we want to find the inverse matrix $Y=X^{-1}$, of the matrix X. Then we have $I_{c} \in X \otimes Y \cap Y \otimes X$. Therefore, we obtain

$$
\begin{gathered}
x_{11} y_{11}=x_{22} y_{22}=x_{33} y_{33}=1 \\
x_{11} y_{12}+\left\{x_{12}, x_{15}\right\} y_{22} \ni 0, x_{11} y_{13}+\left\{x_{12}, x_{15}\right\} y_{23}+x_{13} y_{33} \ni 0, \\
x_{11} y_{15}+\left\{x_{12}, x_{15}\right\} y_{22} \ni 0, x_{23} y_{22}+x_{33} y_{23} \ni 0,
\end{gathered}
$$

Therefore a solution is

$$
\begin{gathered}
y_{11}=\frac{1}{x_{11}}, y_{22}=\frac{1}{x_{22}}, y_{33}=\frac{1}{x_{33}} \\
y_{23}=\frac{-x_{23}}{x_{22} x_{33}}, y_{12}=\frac{-x_{12}}{x_{11} x_{22}}, y_{15}=\frac{-x_{15}}{x_{11} x_{22}}, \text { and } \\
y_{13}=\frac{-x_{13}}{x_{11} x_{33}}+\frac{x_{23} x_{12}}{x_{11} x_{22} x_{33}} \text { or } y_{13}=\frac{-x_{13}}{x_{11} x_{33}}+\frac{x_{23} x_{14}}{x_{11} x_{22} x_{33}}
\end{gathered}
$$

Thus, a left and right inverse matrix of X is

$$
X^{-1}=\left(\begin{array}{ccccc}
\frac{1}{x_{11}} & \frac{-x_{12}}{x_{11} x_{22}} & \frac{-x_{13}}{x_{11} x_{33}}+\frac{x_{23} x_{12}}{x_{12} x_{22} x_{33}} & \frac{1}{x_{11}} & \frac{-x_{15}}{x_{11}} \\
0 & \frac{1}{x_{22}} & \frac{-x_{23}}{x_{22} x_{33}} & 0 & \frac{1}{x_{22}} \\
0 & 0 & x_{33} & 0 & 0
\end{array}\right)
$$

An interesting research field is the finite case on small finite H_{v}-fields. Important cases appear taking the generating sets by any S_{0}-helix matrix.

Example 4.3. On the type 3×5 of matrices using the Construction 2.1, on $\left(\mathbf{Z}_{4},+, \cdot\right)$ we take the small H_{v}-field $\left(\mathbf{Z}_{4},+, \otimes\right)$, where only $2 \otimes 3=\{0,2\}$ and fundamental classes $\{0,2\},\{1,3\}$. We consider the set of all S_{0}-helix matrices and we take the S_{0}-helix matrix:

$$
X=\left(\begin{array}{lllll}
1 & 2 & 2 & 1 & 0 \\
0 & 3 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Then the powers of X are:

$$
\begin{gathered}
X^{2}=\left(\begin{array}{ccccc}
1 & \{0,2\} & \{0,2\} & 1 & \{0,2\} \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \\
X^{3}=\left(\begin{array}{ccccc}
1 & \{0,2\} & \{0,2\} & 1 & \{0,2\} \\
0 & 3 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \text {, and so on }
\end{gathered}
$$

We obtain that the generating set is the following

$$
\left(\begin{array}{ccccc}
1 & \{0,2\} & \{0,2\} & 1 & \{0,2\} \\
0 & \{1,3\} & \{0,1\} & 0 & \{1,3\} \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

where in the 22 and 25 entries appears simultaneously 1 or 3.

References

[1] P. Corsini and V. Leoreanu, Application of Hyperstructure Theory, Klower Academic Publishers, 2003.
[2] B. Davvaz and V. Leoreanu, Hyperring Theory and Applications Int. Acad. Press, 2007
[3] B. Davvaz, S. Vougioukli and T Vougiouklis, On the multiplicative H_{v}-rings derived from helix hyperoperations, Util. Math., 84, (2011), 53-63.
[4] A. Dramalidis and T. Vougiouklis, Lie-Santilli Admissibility on non-square matrices with the helix hope, Clifford Algebras Appl. CACAA, V. 4, N. 4, (2015), 353-360.
[5] R.M. Santilli and T. Vougiouklis, Isotopies, Genotopies, Hyperstructures and their Appl., Proc. New Frontiers Hyperstructures Related Alg., Hadronic, (1996), 1-48.
[6] S. Vougioukli, H_{v}-vector spaces from helix hyperoperations, Intern. J. Math. and Analysis, (New Series), V.1, N.2, (2009), 109-120.
[7] S. Vougioukli and T Vougiouklis, Helix-hopes on Finite H_{v}-fields, Algebras Groups and Geometries (AGG), V.33, N.4, (2016), 491-506.
[8] T. Vougiouklis, Representations of hypergroups by hypermatrices, Rivista Mat. Pura Appl., N 2, (1987), 7-19.
[9] T. Vougiouklis, Groups in hypergroups, Annals Discrete Math. 37, (1988), 459-468.
[10] T. Vougiouklis, (1991). The fundamental relation in hyperrings. The general hyperfield, $4^{\text {th }}$ AHA, Xanthi 1990, World Scientific, (1991), 203-211.
[11] T. Vougiouklis, Hyperstructures and their Representations, Monographs in Math., Hadronic, 1994.
[12] T. Vougiouklis, Some remarks on hyperstructures, Contemporary Math., Amer. Math. Society, 184, (1995), 427-431.
[13] T. Vougiouklis, Enlarging H_{v}-structures, Algebras and Combinatorics, ICAC'97, Hong Kong, Springer-Verlag, (1999), 455-463.
[14] T. Vougiouklis, On H_{v}-rings and H_{v}-representations, Discrete Math., Elsevier, 208/209, (1999), 615-620.
[15] T. Vougiouklis, The h / v-structures, J. Discrete Math. Sciences and Cryptography, V.6, N.2-3, (2003), 235-243.
[16] T. Vougiouklis, The Lie-hyperalgebras and their fundamental relations, Southeast Asian Bull. Math., V. 37(4), (2013), 601-614.
[17] T. Vougiouklis, From H_{v}-rings to H_{v}-fields, Int. J. Algebraic Hyperstr. and Appl. Vol.1, No.1, (2014), 1-13.
[18] T. Vougiouklis, Hypermatrix representations of finite $H_{v^{-}}$groups, European J. Combinatorics, V. 44 B, (2015), 307-315.
[19] T. Vougiouklis and S. Vougioukli, The helix hyperoperations, Italian J. Pure Appl. Math., 18, (2005), 197-206.
[20] T. Vougiouklis and S. Vougioukli, Hyper-representations by non square matrices. Helix-hopes, American J. Modern Physics, 4(5), (2015), 52-58.
[21] T. Vougiouklis and S. Vougioukli, Helix-Hopes on Finite Hyperfields, Ratio Mathematica, V.31, (2016), 65-78.
[22] T. Vougiouklis and S. Vougioukli, Hyper Lie-Santilli Admissibility, Algebras Groups and Geometries (AGG), V.33, N.4, (2016), 427-442.

[^0]: *17 Oikonomou str, Exarheia, 10683 Athens, Greece; elsouvou@ gmail.com
 ${ }^{\dagger}$ Democritus University of Thrace, School of Education, 68100 Alexandroupolis, Greece; tvougiou@eled.duth.gr
 ${ }^{\ddagger}$ ©Souzana Vougioukli and Thomas Vougiouklis. Received: 31-10-2017. Accepted: 26-122017. Published: 31-12-2017.

