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Abstract  

Some important concepts about algebraic hyperstructures, especially 

from a geometric point of view, are recalled. Many applications of the Hv 

structures, introduced by Vougiouklis in 1990, to the de Finetti 

subjective probability theory are considered. We show how the wealth of 

probabilistic meanings of Hv-structures confirms the importance of the 

theoretical results obtained by Vougiouklis. Such results can be very 

meaningful also in many application fields, such as decision theory, 

highly dependent on subjective probability.  
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1 Introduction  

The theory of the algebraic hyperstructures was born with the paper 

(Marty, 1934) at the VIII Congress of Scandinavian Mathematicians and it was 

developed in the last 40 years. 

In the book "Prolegomena of hypergroup theory" (Corsini, 1993) all the 

fundamental results on the algebraic hyperstructures, until 1992, have been 

presented. A complete bibliography is given in the appendix. A review of the 

results until 2003 is in (Corsini, Leoreanu, 2003).  

Perhaps the most important motivation for the study of algebraic 

hyperstructures comes from the basic text "Join Geometries" by Prenowitz and 

Jantosciak (1979), which in addition to giving an original and general 

approach to the study of Geometry, introduces an interdisciplinary vision of 

Geometry and Algebra, showing how the Euclidean Spaces can be drawn as 

Join Spaces, i.e. commutative hypergroups that satisfy an axiom called 

"incidence property". Moreover, various other geometries, such as the 

Projective Geometries (Beutelspacher, Rosembaum, 1998), are also Join 

Spaces. 

Considering, for example, the Affine Geometries, it is seen that associative 

property is not satisfied in many important geometric spaces. This and other 

important geometric and algebraic issues have led to the study of weak 

associative hyperstructures. The theory of such hyperstructures, called Hv-

structures, was carried out by Thomas Vougiouklis, who introduced the 

concept of Hv-structures in the work “The fundamental relation in hyperrings. 

The general hyperfield” (1991),. presented at the 4th AHA Conference, 

Xanthi, Greece, 1990. Subsequently Vougiouklis found many fundamental 

results on the Hv-structures in numerous works (e.g. Vougiouklis, 1991, 1992, 

1994a, 1994b; Spartalis, Vougiouklis, 1994). A collection of all the results on 

the subject until 1994 is in the important book “Hyperstructures and their 

representations” (Vougiouklis, 1994c).  

Subsequent insights into Hv-structures were made by Vougiouklis in many 

subsequent works (1996a, 1996b, 1996c, 1997, 1999a, 1999b, 2003a, 2003b, 

2008, 2014), also in collaboration with other authors (Dramalidis, 

Vougiouklis, 2009, 2012; Vougiouklis et al., 1997; Nikolaidou, Vougiouklis, 

2012). 

From the Hv-structures of Vougiouklis, the idea in the Chieti-Pescara 

research group was conceived to interpret some important structures of 

subjective probability as algebraic structures. Some paper on this topic are 

(Doria, Maturo, 1995, 1996; Maturo, 1997a, 1997b, 1997c, 2000a, 2000b, 

2001a, 2001b, 2003c, 2008, 2010).  

The study of applications of hyperstructures to the treatment of uncertainty 

and decision-making problems in Architecture and Social Sciences begins with 
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a series of lectures held at the Faculty of Architecture in Pescara by Giuseppe 

Tallini in 1993, on hyperstructures seen from a geometric point of view, and 

was developed at various AHA conferences (Algebraic Hyperstructures and 

Applications) as well as various seminars and conferences with Piergiulio 

Corsini from 1994 to 2014. 

For example, in December 1994 and October 1995, two conferences on 

"Hyperstructures and their Applications in Cryptography, Geometry and 

Uncertainty Treatment" were organized by Corsini, Eugeni and Maturo, 

respectively in Chieti and Pescara, with which it was initiated the systematic 

study of the applications of hyperstructures to the treatment of uncertainty and 

Architecture.  

In (Corsini, 1994), it is proved that the fuzzy sets are particular 

hypergroups. This fact leads us to examine properties of fuzzy partitions from 

a point of view of the theory of hypergroups. In particular, crisp and fuzzy 

partitions given by a clustering could be well represented by hypergroups. 

Some results on this topic and applications in Architecture are in the papers of 

Ferri and Maturo (1997, 1998, 1999a, 1999b, 2001a, 2001b). Applications of 

hyperstructures in Architecture are also in (Antampoufis et al., 2011; Maturo, 

Tofan, 2001). Moreover, the results on fuzzy regression by Fabrizio Maturo, 

Sarka Hoskova-Mayerova (2016) can be translate as results on 

hyperstructures.  

A new research trend concerns the applications of hypergroupoid to Social 

Sciences. Vougiouklis, in some of his papers (e.g. 2009, 2011), propose 

hyperstructures as models in social sciences; Hoskova-Mayerova and Maturo 

analyze social relations and social group behaviors with fuzzy sets and Hv-

structures (2013, 2014), and introduce some generalization of the Moreno 

indices. 

 

2  Fundamental Definitions on Hyperstructures 

Let us recall some of the main definitions on the hyperstructures that will 

be applied in this paper to represent concepts of Logic and Subjective 

Probability.  

For further details on hyperstructure theory, see, for example, (Corsini, 

1993; Corsini, Leoreanu, 2003; Vougiouklis, 1994c). 

Definition 2.1 Let H be a non-empty set and let *(H) be the family of 

non-empty subsets of H. A hyperoperation on H is a function  HH  

*(H), such that to every ordered pair (a, b) of elements of H associates a 

non-empty subset of H, noted ab. The pair (H, ) is called hypergroupoid 

with support H and hyperoperation .  



Antonio Maturo and Fabrizio Maturo 

8 

 

If A and B are non-empty subsets of H, we put AB = {ab: aA, 

bB}. Moreover, a, bH, we put, aB = {a}B and Ab = A{b}. 

Definition 2.2 A hypergroupoid (H, ) is said to be: 

• a semihypergroup, if a, y, cH, a(bc) = (ab)c    (associativity);  

• a quasihypergroup, if aH, aH = H = Ha            (riproducibility);  

• a hypergroup if it is both a semihypergroup and a quasihypergroup;  

• commutative, if a, bH, ab = ba; 

• idempotent, if aH, aa={a}.    

• weak associative, if a, b, cH, a(bc)  (ab)c  ; 

• weak commutative, if a, bH, ab  ba ≠. 

The weak associative hypergroupoid, called also Hv-semigroup by 

Vougiouklis (1991), appear to be particularly significant in the Theory of 

Subjective Probability, and all results found by Vougiouklis in later papers 

(e.g.1992, 1994a, 1994b), should have important logic and probabilistic 

meanings. Vougiouklis (1991) introduced also the notation “Hv-group” for the 

weak associative quasihypergroups. 

A Hv-semigroup is said to be left directed if a, b, cH, a(bc)  

(ab)c, and right directed if a(bc)  (ab)c. 

Let (H, ) a hypergroupoid. Using a geometric language, a singleton {a}, 

aH, is said to be a block of order 1 (briefly 1-block) generated by a. Every 

hyperproduct ab, a, bH, is a block of order 2 (2-block), called block 

generated by (a, b). For every a1, a2, a3 H, the hyperproducts a1  (a2  a3) 

and (a1  a2)  a3 are the 3-blocks generated by (a1, a2, a3). For recurrence, for 

every a1, a2, …, anH, n > 2, the blocks generated by (a1, a2, …, an) are the 

hyperproducts AB, with A block of order s < n, generated by (a1, …, as), and 

B block of order n-s generated by (as+1, …, an). In general, for every n > 1, a 

block of order n (or n-block) is a hyperproduct AB, with A block of order s < 

n, B block of order n - s.  

For every nN, let n be the set of all the blocks of order n, and let 0 = 

{n, nN}. Then for every nN0, a geometric space (H, n) is associated to 

the hypergroupoid (H, ). A polygonal with length m of (H, n) is a n-tuple 

(A1, A2, …, Am) of blocks of n such that Ai  Ai+1 ≠ . Let n be the set of 

all the polygonals of (H, n). 

The relation n and n* are defined as: 

a, bH, a n b   An: {a, b} A, 

a, bH, a n* b   Pn: {a, b} P. 

n is reflexive and symmetric, n* is the transitive closure of n. For n = 0 

we have the classical relations  and * considered in many papers, e.g. 

(Freni,1991; Corsini, 1993; Gutan, 1997; Vougiouklis 1999b), 
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A more restrictive condition than the weak associativity is the “strong 

weak associativity”, called also feeble associativity.  

Definition 2.3 A hypergroupoid (H, ) is said to be feeble associative if, 

for every a1, a2, …, anH, the intersection of all the blocks generated by (a1, 

a2, …, an) is not empty. 

If (H, ) is a commutative quasihypergroup, the -division is defined in H, 

as the hyperoperation /  HH  *(H) that to every pair (a, b) HH 

associates the nonempty set {xH: abx}.  

Definition 2.4 A commutative hypergroup (H, ) is said to be a join space 

if the following “incidence property” hold: 

 

a, b, c, d H, a / b  c / d ≠  ad  bc ≠ .                             (2.1) 

 

A join space (H, ) is: 

• open, if, a, b H, a ≠ b, a  b  {a, b} = ; 

• closed, if, a, b H, {a, b}  a  b; 

• -idempotent, if, aH, a  a = {a}; 

• / -idempotent, if, aH, a / a = {a}. 

A join space (H, ) is said to be a join geometry if it is -idempotent 

and / -idempotent. We have the following theorem. 

Theorem 2.1 Let H = Rn and  the hyperoperation that to every (a, 

b)HH associates the open segment with extremes a and b if a ≠ b, and a  a 

= {a}. (H, ) is a join geometry, called Euclidean join geometry. 

Let (H, ) be a join geometry. We can note that it is open. Using a 

notation like that of Euclidean join geometry, in this paper the elements of H 

are called points and a block ab, with a ≠ b, is called (open) “-segment” 

with extremes a and b or simply “segment” if only the hyperoperation  is 

considered in the context.  

The concept of join space leads to a unified vision of Algebra and 

Geometry, that can be very useful from the point of view of advanced 

didactics (Di Gennaro, Maturo, 2002). Also, as some of our papers show, join 

geometries have important applications in subjective probability. Moreover, 

we can introduce general uncertainty measures in join geometries such that in 

the Euclidean join geometries reduce to the de Finetti coherent probability 

(Maturo, 2003a, 2003b, 2006, 2008; Maturo et al., 2010). 
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3  Subjective Probability and Hyperstructures 

Let us recall the concept of coherent probabilty and its geometric 

representation with the notation given in (Maturo, 2006).  

The coherence of an assessment of probabilities p = (p1, p2, …, pn) on a 

n-tuple E = (E1, E2, …, En) of events is defined by an hypothetical bet with a 

n-tuple of wins S = (S1, S2, …, Sn) (de Finetti, 1970; Coletti, Scozzafava, 

2002; Maturo 2006).  

For every i {1, 2, …, n} an individual A, called the better, pays the 

stake piSi to an individual B, called the bank, and, if the event Ei occurs, A 

receives from B the win Si. If Si < 0 the verse of the bet on Ei is inverted, i. e. 

B pays the stake and A pays the win. 

The total random gain GA of A is given by the formula: 

GA, p, S = (|E1| – p1) S1 + (|E2| – p2) S2 + … + (|En| – pn) Sn.               (3.1)    

where |Ei| = 1 if the event Ei is verified and |Ei| = 0 if the event Ei is not 

verified. 

The atoms associated with the set of events E = {E1, E2, …, En} are the 

intersections A1A2…An, where Ai{Ei, -Ei}, different from the 

impossible event . Let At(E) be the set of the atoms. Then GA(p, S) can be 

interpret as the function: 

GA, p, S: a = A1A2…An  At(E)  (|E1| – p1) S1 + (|E2| – p2) S2 + 

… + (|En| – pn) Sn.                                                                                         (3.2) 

Definition 3.1 The probability assessment p = (p1, p2, …, pn) on the n-

tuple E = (E1, E2, …, En) of events is said to be coherent if, for every S = (S1, 

S2, …, Sn)  Rn, there are a, bAt(E) such that GA, p, S(a)  0 and GA, p, S(b)  

0.   

We note that the previous definition implies a hyperoperation. Let  be 

an algebra of events containing the set E. Then  also contains At(E) and we 

can define the hyperoperation  on : 

                       : (A, B) At(A, B).                                      (3.3)                                                                                              

The above considerations show that it may be important, in a 

probabilistic context, to know the properties of the algebraic hyperstructure (, 

), introduced in (Doria, Maturo, 2006), and called hypergroupoid of atoms.  

The coatoms associated with E are the nonimpossible complementary 

events of the atoms. Let Co(E) be the set of coatoms, and k be the number of 

atoms. For k = 1, At(E) = {}, where  is the certain event and Co(E) is 

empty. For k = 2, At(E) = Co(E) and for k >2 the sets At(E) and Co(E) are 

disjoint and with the some number of elements. 

For every A, B, C  , we have (we write X Y to denote X  Y): 

(AB)C = ({X C, X (-C), XAt(A, B)}  {Y C, Y (-C), YCo(A, 

B)})-{}, 
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A(BC) = ({A Z, (-A) Z, ZAt(B, C)}  {A T, (-A) T, TCo(B, 

C)}-{}, 

At{A, B, C} = {X C, X (-C), XAt(A, B)}-{} = {A Z, (-A) Z, 

ZAt(B, C)}-{}. 

Then: 

At{A, B, C}  (AB)C  A(BC).   

Therefore, the following theorem applies: 

Theorem 3.1 Let  be an algebra of events, and  the hyperoperation 

defined by (3.3). Then (, ) is a commutative Hv-semigroup. 

The algebra associated with the set of events E = {E1, E2, …, En}, 

denoted with Alg(E) is the set containing the impossible event  and all the 

unions of the elements of At(E), i.e. XAlg(E) iff Y(At(E)) such that X 

is the union of the elements of Y. If |At(E)|=s, then |Alg(E)| = 2s. 

Let  be an algebra of events. We can introduce the following 

hyperoperation on : 

                          : (A, B) Alg(A, B)                                   (3.4)                                                             

The hyperoperation  is commutative, and, since {A, B}  Alg(A, B), 

(, ) is a quasihypergroup. Moreover At(A, B)  Alg(A, B) and so  is an 

extension of the operation  and we have: 

At{A, B, C}  (A  B)  C  A  (B  C). 

Theorem 3.2 Let  be an algebra of events, and  the hyperoperation 

defined by (3.4). Then (, ) is a commutative Hv-group. 

Suppose A, B, C are logically independent events, then |At(A, B| = 4, 

|Alg(A, B| = 24 = 16, |At(A, B, C)| = 8, Alg(A, B, C)| = 28 = 256. Moreover 

Alg(A, B) contains ,  and other 7 elements with their complements. If X is 

one of these elements, then X  C contains , , C, -C and other 12 elements.  

Then (A  B)  C has 712+4= 88 elements and 168 elements are in 

Alg(A, B, C) but not in (A  B)  C. So, in general, we can write: 

At{A, B, C}  Co{A, B, C}  (A  B)  C, A  (B  C)  Alg(A, B, 

C). 

Let (H, ) be a join geometry. From the associative and commutative 

properties, for every a1, a2, …, anH there is only a block a1 a2 …an 

generated by (a1, a2, …, an) and this block depend only by on the set {a1, a2, 

…, an} and not on the order of the elements. By the idempotence we can 

reduce to the case in which a1, a2, …, an are distinct.  

Definition 3.2 For every A  H, A ≠ , the convex hull of A, in (H, 

), is the set  

[A] = {xH: nN,  a1, a2, …, anA : x  a1 a2 …an}.  

If A is finite then [A] is said to be the polytope generated by A. 
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Let E = (E1, E2, …, En) be a n-tuple of events set and let At(E) the set 

of atoms associated to E. For every a = A1A2…An At(E), let xi(a) =1 if 

Ai = Ei and xi(a) = 0 if Ai = - Ei. The atom a is identified with the point (x1(a), 

x2(a), …, xn(a))Rn. From definition 3.1, the following theorem applies 

(Maturo, 2006, 2008, 2009). 

Theorem 3.3 Let (Rn, ) the Euclidean join geometry. The probability 

assessment p = (p1, p2, …, pn) on the n-tuple E = (E1, E2, …, En) of events is 

coherent iff p[At(E)].  

The theorem 3.3 opens the way to introduce measures of uncertainty 

that are different from the probability and coherent with respect non-Euclidean 

join geometries. We can introduce many possible join geometries. The 

following is an example. 

Example 3.1 Let H = Rn and  the hyperoperation that to every (a = 

(a1, a2, …, an), b = (b1, b2, …, bn))HH associated the Cartesian product of 

the open segments Ir with extremes ar and br belonging to (R, ). We can prove 

that (H, ) is a join geometry, called the Cartesian join geometry.  

Some applications of the Cartesian join geometry to problems of 

Architecture and Town-Planning are in (Ferri, Maturo, 2001a, 2001b). 

In a general join geometry with support Rn we can introduce the 

following definition: 

Definition 3.3 Let (Rn, ) be a join geometry. The measure assessment 

m = (m1, m2, …, mn) on the n-tuple E = (E1, E2, …, En) of events is said to be 

coherent with respect to (Rn, ) iff m[At(E)]. 

For example,  can be the hyperoperation that to every (a, b)HH 

associates a particular curve with extremes a and b, and the polytope [At(E)] 

is a deformation of the Euclidean polytope, obtained by replacing the segments 

with curves. It can have important meanings in appropriate contexts of Physics 

or Social Sciences. 

In a generic join geometry (Rn, ) can happen that some of the most 

intuitive properties of the Euclidean join geometry fall. To avoid this, you 

should restrict yourself to join geometries where some additional properties 

apply. Important is the following:  

Ordering condition. If a, b, c, are distinct elements of Rn, at most one 

of the following formulas occurs: abc, bac, cab. 

A join geometry (Rn, ) with the order condition is said to be an 

ordered join geometry. 
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4  Conditional Events, Conditional Probability 

and Hyperstructures 

The “axiomatic probability” by Kolmogorov, usually considered as the 

“true probability” is based on the assessment of a universal set U, whose 

elements are called the atoms, a -algebra S of subsets of U, whose elements 

are called the events, and a finite measure p on S, called the probability, such 

that p(U) = 1.  

Let S* = S-{}. In the Kolmogorov approach to probability no 

consideration is given to the logical concept of conditional event E|H, with 

ES and HS*, but only the conditional probability p(E|H) is defined, only in 

the case in which p(H) > 0, by the formula: 

 

                              p(E|H) = p(E H)/p(H).                                              (4.1) 

 

On the contrary, the “subjective probability” (de Finetti,1970; Dubins, 

1975; Coletti, Scozzafava 2002; Maturo, 2003b, 2006, 2008b), don’t consider 

the events as subsets of a given universal set U, but they are logical 

propositions that can assume only one of the truth values: true and false. A 

sharp separation is given among the concepts concerning the three areas of the 

logic of the certain, the logic of the uncertain and the measure theory.  

The conditional event E|H is a concept belonging to the logic of the 

certain and it is a proposition that can assume three values: true if both E and 

H are verified, false if H is verified but E is not and empty (or undetermined) if 

H is not verified. The conditional event E|H reduces to the event E if H is the 

certain event . In the appendix of his fundamental book (1970) de Finetti 

presents also some different interpretations of the logical concept of three 

valued proposition.  

By the point of view of Reichenbach (1942) the value “empty” is replaced 

by the value “undetermined”. In the following we assume the notation of 

Reichenbach and we write T for true, F for false and U for undetermined. The 

set V = {F, U, T} is also ordered by putting F < U < T. 

A numerical representation of the ordered set V is given by associating 0 

to F, 1 to T and the number 1/2 to U. An alternative, in a fuzzy contest, we can 

associate to U is the fuzzy number u with support and core the interval [0, 1], 

then the relation 0 < u <1 is a consequence of the usual order relation among 

the trapezoidal fuzzy numbers. 

In the subjective probability, the conditional probability p(E|H) of the 

conditional event E|H is given by an expert and no condition is given about the 

belonging of the events E and H to a structured set, e.g. like an algebra. The 

only condition of H ≠ is required, because if H =  we have the totally 

undetermined conditional event. 
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If C is a set of conditional events the assessment of a subjective 

conditional probability to the elements of C must satisfy some coherence 

conditions.  

The coherence of an assessment of probabilities p = (p1, p2, …, pn) on a n-

tuple K = (E1|H1, E2|H2, …, En|Hn) of conditional events is defined by an 

hypothetical bet with a n-tuple of wins S = (S1, S2, …, Sn) (de Finetti, 1970; 

Coletti, Scozzafava, 2002; Maturo, 2006).  

For every i {1, 2, …, n} an individual A, called the better, pays the stake 

piSi to an individual B, called the bank, and,  

• if the event EiHi occurs, A receives from B the win Si; 

• if the event -Hi occurs, the amount paid piSi is refunded to A; 

• if the event (-Ei) Hi occurs, no payment is made to A. 

The total random gain GA of A is given by the formula: 

                 GA, p, S = |H1| (|E1| – p1) S1 +…+|Hn|(|En| – pn) Sn.                 (4.2) 

where |Ei| = 1 if the event Ei is verified and |Ei| = 0 if the event Ei is not 

verified, and similarly to H. 

The atoms associated with the set of conditional events K = {E1|H1, E2|H2, 

…, En|Hn} are the intersections A1A2…An, where Ai{Ei Hi, -Ei Hi, -Hi}, 

different from the impossible event . The complement of H = {Hi, i {1, 2, 

…, n}} is said to be the inactive atom.  

Let Atc(E) be the set of the atoms associated to K. Then GA, p, S can be 

interpret as the function: 

GA, p, S: a = A1A2…An  Atc(E)  (|A1| – p1) S1 + (|A2| – p2) S2 + … 

+ (|An| – pn) Sn                                                                                              (4.3) 

where |Ai| = 1, 0, pi, if Ai = Ei Hi, -Ei Hi, -Hi, respectively. 

Definition 4.1 The conditional probability assessment p = (p1, p2, …, pn) 

on the n-tuple K = (E1|H1, E2|H2, …, En|Hn) of conditional events is said to be 

quasi-coherent if, for every S = (S1, S2, …, Sn)  Rn, there are a, bAtc(E) 

such that GA, p, S(a)  0 and GA, p, S(b)  0. Moreover, p = (p1, p2, …, pn) is said 

to be coherent if, for any s  n and for any {i1, i2, …, is}  {1, 2, …, n}, the 

conditional probability assessment pi1, i2, …, is = (pi1, pi2, …, pis) on (Ei1|Hi1, 

Ei2|Hi2, …, Eis|His) is quasi-coherent. 

Let K = (E1|H1, E2|H2, …, En|Hn) be a n-tuple of conditional events and let 

Atc(K) the set of atoms associated to K = {E1|H1, E2|H2, …, En|Hn}. For every 

a = A1A2…AnAtc(E), let xi(a) = |Ai|. The atom a is identified with the 

point (x1(a), x2(a), …, xn(a))Rn. From definition 4.1, the following theorems 

applies: 

Theorem 4.1 Let (Rn, ) the Euclidean join geometry. The probability 

assessment p = (p1, p2, …, pn) on the n-tuple K = (E1|H1, E2|H2, …, En|Hn) of 

conditional events is quasi-coherent iff p[Atc(K)].  
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Theorem 4.2 The probability assessment p = (p1, p2, …, pn) on K = 

(E1|H1, E2|H2, …, En|Hn) is coherent iff for any s  n and for any {i1, i2, …, is} 

 {1, 2, …, n}, the conditional probability assessment pi1, i2, …, is = (pi1, pi2, …, 

pis) on (Ei1|Hi1, Ei2|Hi2, …, Eis|His) belongs to [Atc(Ei1|Hi1, Ei2|Hi2, …, Eis|His)] 

 Rs. 

Let  be an algebra of events. An axiomatic formalization of the 

coherence conditions in the case in which K = {E|H, E, H - {}} is in 

Dubins (1975). 

In terms of hyperstructures, conditional events can be defined by the 

following hyperstructure, introduced in (Doria, Maturo, 1996) and studied in 

(Maturo, 1997c).  

Definition 4.2 Let  be an algebra of events. We define on  the 

hyperoperation: 

: (E, H)   {E H, H}. 

We have: 

E  H  H  E = {E H}; 

(E  H)  K = {E H K, H K, K},    E  (H  K) = {E H K, H K, E K, K}; 

E  E = {E}. 

Then we have the following theorem. 

Theorem 4.3 The hyperstructure (, ), let us call the hyperstructure of 

conditional events, is a weak commutative and idempotent Hv-semigroup. 

Moreover (, ) is right directed, i.e. (E  H)  K  E  (H  K). 

Any singleton {H} is the conditional event H|H and any set {E, H} with E 

 H is the conditional event E|H, true if E is verified, false if H is verified but 

not E, and it is not undetermined if H is not verified. Many other meanings, of 

the finite subsets of , are considered in (Maturo, 1997c). 

The coherence conditions of definition 4.1 and theorems 4.1 and 4.2 lead 

us to associate the n-tuple K = (E1|H1, E2|H2, …, En|Hn) of conditional events 

with the set all the conditional events A|B with AAt{E1, E2, …, En} and B an 

union of elements of {H1, H2, …, Hn}. Then, if  is an algebra of events, and 

   is a set of nonempty events, closed with respect to the union, the 

following hyperoperation can be introduced: 

: (E|H, F|K)  ()()  {A|B: AAt{E, F}, B{H, K, HK}}. 

We can prove the following thorem 

Theorem 4.4 The hyperstructure (, ) is a commutative Hv-

semigroup, called hypergroupoid of conditional atoms and, for  = {}, is 

isomorphic to (, ). 
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5 Conclusions and Perspectives of Research 

We have shown that all logical operations related to subjective probability 

can reduce to Vougiouklis hyperstructures. (, ) and (, ) are 

commutative Hv-semigroups, and (, ) is a commutative Hv-group. The 

hyperoperation  isweak commutative and idempotent and (, ) is a right 

directed Hv-semigroup. 

To verify the coherence of a subjective probability assignment p = (p1, p2, 

…, pn) on the n-tuple E = (E1, E2, …, En) of events, we represent the atoms as 

points of the space Rn, in which the i-th axis is associated with the event Ei. 

The assessment p is coherent iff p belongs to the polytope of the join geometry 

(Rn, ) generate from the atoms.  

More complex is the coherence check of a conditional probability 

assessment p = (p1, p2, …, pn) on the n-tuple K = (E1|H1, E2|H2, …, En|Hn) of 

conditional events, as in this case we must consider polytopes in all the join 

geometries (Rs, ), s  n associated to subsets of K = {E1|H1, E2|H2, …, En|Hn}. 

A research perspective is to investigate the properties of the considered 

Vougiouklis structures, highlighting their meanings from the point of view of 

logic and subjective probability. 

A further research perspective is studying the measures that can be 

obtained by applying the geometric coherence conditions in ordered join 

geometries other than the Euclidean join geometry.  
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