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Abstract

In this paper we study P-Hv-structures in connection with Hv-structures,
arising from a specific P-hope in a two-dimensional real vector space. The
visualization of these P-Hv-structures is our priority, since visual thinking
could be an alternative and powerful resource for people doing mathematics.
Using position vectors into the plane, abstract algebraic properties of these
P-Hv-structures are gradually transformed into geometrical shapes, which
operate, not only as a translation of the algebraic concept, but also, as a
teaching process.
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1 Introduction
In a set H 6= ∅, a hyperoperation (abbr. hyperoperation=hope) (·) is defined:

· : H ×H → P(H)− {∅} : (x, y) 7→ x · y ⊂ H

and the (H, ·) is called hyperstructure.
It is abbreviated by WASS the weak associativity: (xy)z∩x(yz) 6= ∅,∀x, y, z ∈ H
and by COW the weak commutativity: xy ∩ yx 6= ∅,∀x, y ∈ H.

The largest class of hyperstructures is the one which satisfy the weak proper-
ties. These are called Hv-structures introduced by T. Vougiouklis in 1990 [13],
[14] and they proved to have a lot of applications on several applied sciences such
as linguistics, biology, chemistry, physics, and so on. The Hv-structures satisfy
the weak axioms where the non-empty intersection replaces the equality. The
Hv-structures can be used in models as an organized devise.

The hyperstructure (H, ·) is called Hv -group if it is WASS and the reproduc-
tion axiom is valid, i.e., xH = Hx = H, ∀x ∈ H.
It is called commutative Hv-group if the commutativity is valid and it is called
Hv- commutative group if it is COW.

The motivation for the Hv-structures [13] is that the quotient of a group with
respect to any partition (or equivalently to any equivalence relation), is an Hv-
group. The fundamental relation β* is defined inHv-groups as the smallest equiv-
alence so that the quotient is a group [14].

In a similar way more complicated hyperstructures are defined [14].
One can see basic definitions, results, applications and generalizations on both

hyperstructure and Hv-structure theory in the books and papers [1], [2], [3], [10],
[12], [14], [18].

The element e ∈ H , is called left unit element if x ∈ ex,∀x ∈ H , right unit
element if x ∈ xe, ∀x ∈ H and unit element if x ∈ xe ∩ x ∈ ex,∀x ∈ h.
An element x′ ∈ H is called left inverse of x ∈ H if there exists a unit e ∈ H ,
such that e ∈ x′x, right inverse of x ∈ H if e ∈ xx′ and inverse of x ∈ H if
e ∈ x′x ∩ xx′.
By El

∗ is denoted the set of the left unit elements, by Er
∗ the set of the right unit

elements and by E∗ the set of the unit elements with respect to hope (*) [7].
By I l∗(x, e) is denoted the set of the left inverses, by Ir∗(x, e) the set of the right
inverses and by I∗(x, e) the set of the inverses of the element x ∈ H associated
with the unit e ∈ H with respect to hope (*) [7].

The class of P-hyperstructures was appeared in 80’s to represent hopes of con-
stant length [16], [18]. Then many applications appeared [1], [2], [4], [5], [6], [8],
[9], [15].
Vougiouklis introduced the following definition:
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Definition 1.1. Let (G, ·) be a semigroup and P ⊂ GP 6= ∅. Then the following
hyperoperations can be defined and they are called P-hyperoperations: ∀x, y ∈ G

P ∗ : xP ∗y = xPy,

P ∗r : xP ∗r y = (xy)P

P ∗l : xP ∗l y = P (xy).

The (G,P ∗),(G,P ∗r ), (G,P
∗
l ) are called P-hyperstructures.

One, combining the above definitions gets that the most usual case is if (G, ·) is
semigroup, then xPy = xP ∗y = xPy and (G,P ) is a semihypergroup, but we do
not know about (G,P r) and (G,P l). In some cases, depending on the choice of
P, (G,P r) and (G,P l) can be associative or WASS. (G,P ), (G,P r) and (G,P l)
can be associative or WASS.

In this paper we define in the IR2 a hope which is originated from geometry.
This geometrically motivated hope in IR2 constructs Hv-structures and P-HV-
structures in which the existence of units and inverses are studied. One using
the above Hv-structures and P-Hv-structures into the plane can easily combine
abstract algebraic properties with geometrical figures [11].

2 P-Hv-structures on IR2

Let us introduce a coordinate system into the IR2. We place a given vector −→p
so that its initial point P determines an ordered pair (a1, a2). Conversely, a point
P with coordinates (a1, a2) determines the vector −→p =

−→
OP , where O the origin

of the coordinate system. We shall refer to the elements x, y, z, . . . of the set IR2,
as vectors whose initial point is the origin. These vectors are very well known as
position vectors.
In [7] Dramalidis introduced and studied a number of hyperoperations originated
from geometry. Among them he introduced in IR2 the hyperoperation (⊕) as
follows:

Definition 2.1. For every x, y ∈ IR2

⊕ : IR2 × IR2 → P(IR2)− {∅} : (x, y) 7→ x⊕ y =

= [0, x+ y] = {µ(x+ y)/µ ∈ [0, 1]} ⊂ IR2

From geometrical point of view and for x, y linearly independent position vectors,
the set x⊕y is the main diagonal of the parallelogram having vertices 0, x, x+y, y.
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Proposition 2.1. The hyperstructure (IR2,⊕) is a commutative Hv-group.

Now, let P be the set P = [0, p] = {λp/λ ∈ [0, 1]} ⊂ IR2, where p is a fixed
point of the plane. Geometrically, P is a line segment.

Consider the P-hyperoperation (P ∗r(⊕)):

Definition 2.2. For every x, y ∈ IR2

P ∗r(⊕) : IR2 × IR2 → P(IR2)− {∅} : (x, y) 7→ xP ∗r(⊕)y = (x⊕ y)⊕ P ⊂ IR2

Obviously, (P ∗r(⊕)) is commutative and geometrically, for x,y linearly independent
position vectors, the set xP ∗r(⊕)y is the closed region of the parallelogram with
vertices 0, x+ y, x+ y + p, p.

Proposition 2.2. The hyperstructure (R2, P ∗r(⊕)) is a commutative P-Hv-group.
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Proof. Obviously, xP ∗r(⊕)R2 = R2P ∗r(⊕)x = R2,∀x ∈ R2.

For x, y, z ∈ R2

(xP ∗r(⊕)y)P
∗
r(⊕)z = {[(x⊕ y)P ]⊕ z} ⊕ P = [0, z, x+ y + z, x+ y + z + 2p, p]

xP ∗r(⊕)(yP
∗
r(⊕)z) = {x⊕ [(y ⊕ z)⊕ P ]} ⊕ P =

= [0, x+ y + z, x+ y + z + 2p, x+ y + 2p, x+ 2p, p]

So,

(xP ∗r(⊕)y)P
∗
r(⊕)z ∩ xP ∗r(⊕)(yP ∗r(⊕)z) 6= ∅,∀x, y, z ∈ R2.2

Proposition 2.3. EP ∗
r(⊕)

= [−p, 0] = {−λp/λ ∈ [0, 1]}

Proof. Let e ∈ El
P ∗
r(⊕)
⇔ xeP ∗r(⊕)x,∀x ∈ R2 ⇔ x{µλe+µλx+µνp/µ, ν, λ[0, 1]}.

That means that,
µλ = 1 and µλe + µνp = 0 ⇔ e + µνp = 0 ⇔ e = −µνp,−1 ≤ −µν ≤ 0,
then e ∈ [−p, 0]. So, El

P ∗
r(⊕)

= [−p, 0] and according to commutativity Er
P ∗
r(⊕)

=

[−p, 0] = EP ∗
r(⊕)

= [−p, 0].
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Proposition 2.4. I(P ∗r(⊕))(x, e) = {
1
µλ
e−x− ν

λ
p/µ, λ ∈ (0, 1], ν ∈ [0, 1]}, where

e ∈ EP ∗
r(⊕)

.

Proof. Let e ∈ EP ∗
r(⊕)

and x′ ∈ I lP ∗
r(⊕)

(x, e) ⇔ e ∈ x′P ∗r(⊕)x ⇔ e{µλx′ +
µλx+ µνp/λ, µ, ν[0, 1]}.
That means there exist λ1, µ1, ν1[0, 1] :

e = µ1λ1x
′ + µ1λ1x+ µ1ν1p⇒ x′ =

1

µ1λ1
e− x− ν1

λ1
p, µ1, λ1 6= 0.

So, x′ ∈ { 1
µλ
e− x− ν

λ
p/µ, λ ∈ (0, 1], ν ∈ [0, 1]}.

Since (P ∗r(⊕)) is commutative, we get I(P ∗r(⊕))(x, e) = { 1
µλ
e − x − ν

λ
p/µ, λ ∈

(0, 1], ν ∈ [0, 1]}.

The P-hyperoperation P ∗l(⊕) = P ⊕ (x ⊕ y) is identical to (P ∗r(⊕)). But the P-
hyperoperation P ∗(⊕) = x⊕P⊕y is different and even more P ∗l(⊕) = (x⊕P )⊕y 6=
x⊕ (P ⊕ y) = xP ∗r(⊕)y, since (⊕) is not associative.2
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Definition 2.3. For every x, y ∈ IR2

P ∗l(⊕) : R2 × R2 → (R2) : (x, y) 7→ xP ∗l(⊕)y = (x⊕ P )⊕ y

More specifically,

xP ∗l(⊕)y = {λκx+ λy + λκµp/λ, κ, µ ∈ [0, 1]},∀x, y ∈ R2.

Geometrically, for x,y linearly independent position vectors, the set xP ∗l(⊕) y is the
closed region of the quadrilateral with vertices 0, x + y, x + y + p, y. On the
other hand the set yP ∗l(⊕)x is the closed region of the quadrilateral with vertices
0, x, x+ y, x+ y + p. So,

(xP ∗l(⊕)y) ∩ (yP ∗l(⊕)x) = [0, x+ y, x+ y + p] 6= ∅,∀x, y ∈ R2.

Proposition 2.5. The hyperstructure (R2, P ∗l(⊕)) is a P-Hv- commutative group.

Proof. Obviously, xP ∗l(⊕)R2 = R2P ∗l(⊕)x = R2,∀x ∈ R2.

For x, y, zR2

(xP ∗l(⊕)y)P
∗l
(⊕)z = {[(x⊕P )⊕y]P}⊕z ≡ [O, z, x+y+z, x+2p+y+z, y+p+z]

xP ∗l(⊕)(yP
∗l
(⊕)z) = (x⊕P )⊕[(y⊕P )⊕z] ≡ [O, x, x+y+z, x+2p+y+z, y+p+z]
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So,
(xP ∗l(⊕)y)P

∗l
(⊕)z ∩ xP ∗l(⊕)(yP ∗l(⊕)z) 6= ∅, x, y, z ∈ R2.

2

Proposition 2.6. i) El
P ∗l
(⊕)

= R2

ii) Er
P ∗l
(⊕)

= [0,−p] = {−νp/ν ∈ [0, 1]} = EP ∗l
(⊕)

Proof.

i) Notice that x ∈ eP ∗l(⊕)x = [0, e+x, e+x+p, x],∀x, e ∈ R2. So,El
P ∗l
(⊕)

= R2.

ii) Let e ∈ Er
P ∗l
(⊕)

⇔ x ∈ xP ∗l(⊕)e,∀x ∈ R2 ⇔ x ∈ {λκx+λe+λκµp/λ, κ, µ ∈
[0, 1]}. Then, there exist µ1, λ1, κ1 ∈ [0, 1] : x = λ1κ1x+ λ1e+ λ11µ1p⇔
e = 1

/
λ1[(1 − λ11)x − λ1κ1µ1p], λ1 6= 0. The last one is valid ∀x ∈ R2,

so by setting x = 0 we get e = −κ1µ1p. Since µ1, κ1 ∈ [0, 1] there exists
ν1 ∈ [0, 1] : ν1 = κ1µ1 ⇒ e = −ν1p⇒

e ∈ {−νp/ν ∈ [0, 1]} = [0,−p].

Since Er
P ∗l
(⊕)

⊂ R2 = El
P ∗l
(⊕)

we get El
P ∗l
(⊕)

∩ Er
P ∗l
(⊕)

= {−νp/ν[0, 1]} =

EP ∗l
(⊕)
.2

Proposition 2.7. α) Ir
P ∗l
(⊕)

(x, e) = {−κx − ( ν
λ
+ κµ)p/κ, µ, ν ∈ [0, 1], λ ∈

(0, 1]}, e ∈ Er
P ∗l
(⊕)

.

β) Ir
P ∗l
(⊕)

(x, e) = { e
λ
− κx− κµp/κ, µ ∈ [0, 1], λ ∈ (0, 1]}, e ∈ El

P ∗l
(⊕)

γ) I l
P ∗l
(⊕)

(x, e) = {−x
κ
− ( ν

λκ
+ µ)p/κ, λ ∈ (0, 1], µ ∈ (0, 1]}, e ∈ Er

P ∗l
(⊕)

.
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δ) I l
P ∗l
(⊕)

(x, e) = { 1
κ
( e
λ
− x)− µp/κ, λ ∈ (0, 1], µ ∈ [0, 1]}, e ∈ El

P ∗l
(⊕)

Proof.
α) Let e ∈ Er

P ∗l
(⊕)

= [0,−p] and x′ ∈ Ir
P ∗l
(⊕)

(x, e), then

e ∈ xP ∗l(⊕)x′ ⇒ e ∈ {λκx+λx′+λκµp/κ, λ, µ ∈ [0, 1]}. That means there
exist κ1, λ1, µ1 ∈ [0, 1] :
e = λ1κ1x+ λ1x

′ + λ1κ1µ1p⇒ x′ = e
λ1
− κ1x− κ1µ1p, λ1 6= 0.

But, e ∈ {−νp/ν[0, 1]} ⇒3 ν1 ∈ [0, 1] : e = −ν1p.
So, x′ = − ν1

λ1
p− κ1x− κ1µ1p, λ1 6= 0⇒ x′ = −κ1x( ν1λ1 + κ1µ1)p, λ1 6= 0.

Then we get x′ ∈ {−κx− ( ν
λ
+ κµ)p/κ, µ, ν ∈ [0, 1], λ ∈ (0, 1]}.

β) Similarly as above.

γ) Similarly as above.

δ) Similarly as above.

2

Definition 2.4. For every x, y ∈ IR2

∗r
(⊕) : R2 × R2 → (R2) : (x, y) 7→ x∗r(⊕))y = x⊕ (P ⊕ y)

More specifically,

x∗r(⊕)y = {λx+ λκy + λκµp/λ, κ, µ ∈ [0, 1]},∀x, y ∈ R2

Geometrically, for x,y linearly independent position vectors, the set xP ∗r(⊕)y is the
closed region of the quadrilateral with vertices 0, x, x + y, x + y + p. On the
other hand the set yP ∗r(⊕)x is the closed region of the quadrilateral with vertices
0, x+ y, x+ y + p, y. So,

(xP ∗r(⊕)y) ∩ (yP ∗r(⊕)x) = [0, x+ y, x+ y + p] 6= ∅,∀x, y ∈ R2.
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Proposition 2.8. The hyperstructure (R2, P ∗r(⊕)) is a P-Hv- commutative group.

Proof. Obviously, xP ∗r(⊕)R2 = R2P ∗r(⊕)x = R2,∀x ∈ R2.

For x, y, z ∈ R2

(xP ∗r(⊕)y)P
∗r
(⊕)z = [(x⊕(P⊕y)]⊕(P⊕z) ≡ [O, x, x+z, x+y+z, x+y+z+2p]

xP ∗r(⊕)(yP
∗r
(⊕)z) = x⊕{P⊕[y⊕(P⊕z)]} ≡ [O, x, x+y+z, x+y+z+2p, y+p+x]

So,
[(xP ∗r(⊕)y)P

∗r
(⊕)z] ∩ [xP ∗r(⊕)(yP

∗r
(⊕)z)] 6= ∅,∀x, y, z ∈ R2.2

The following, are respective propositions of the Propositions 2.6. and 2.7. :

Proposition 2.9. i) Er
P ∗r
(⊕)

= R2

ii) El
P ∗r
(⊕)

= [0,−p] = {−νp/ν ∈ [0, 1]} = EP ∗r
(⊕)
.

Proposition 2.10. α) IrP ∗r
(⊕)

(x, e) = { 1
κ
( e
λ
−x)−µp/κ, λ ∈ (0, 1], µ ∈ [0, 1]}, e ∈

Er
P ∗r
(⊕)

β) IrP ∗r
(⊕)

(x, e) = {−x
κ
− ( ν

λκ
+ µ)p/κ, λ ∈ (0, 1], µ ∈ (0, 1]}, e ∈ El

P ∗r
(⊕)
.

γ) I lP ∗r
(⊕)

(x, e) = { e
λ
− κx− κµp/κ, µ ∈ [0, 1], λ ∈ (0, 1]}, e ∈ Er

P ∗r
(⊕)

δ) I lP ∗r
(⊕)

(x, e) = {−κx− ( ν
λ
+ κµ)p/κ, µ, ν ∈ [0, 1], λ ∈ (0, 1]}, e ∈ El

P ∗r
(⊕)
.

Remark 2.1. Notice that,

α)x∗l(⊕)y = y∗r(⊕)x,∀x, y ∈ R2

β)x∗r(⊕)y = y∗l(⊕)x,∀x, y ∈ R2

112



On P-Hv-Structures in a Two-Dimensional Real Vector Space

References
[1] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.

[2] P. Corsini and V. Leoreanu, Application of Hyperstructure Theory, Klower
Academic Publishers, 2003.

[3] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, Int.
Academic Press, 2007.

[4] B. Davvaz, R.M. Santilli and T. Vougiouklis, Studies of multivalued hyper-
structures for the characterization of matter-antimatter systems and their
extension, Algebras, Groups and Geometries 28, (2011), 105116.

[5] A. Dramalidis, Some geometrical P-Hv-structures, New Frontiers in Hyper-
structures, Hadronic Press, USA, (1996), 93-102.

[6] A. Dramalidis, GeometricalHv-structures, Proceedings: Structure Elements
of Hyperstructures, Spanidis, 2005.

[7] A. Dramalidis, Dual Hv-rings, Rivista di Matematica Pura ed Applicata,
Italy, v. 17, (1996), 55-62.

[8] A. Dramalidis, R. Mahjoob and T. Vougiouklis, P-hopes on non-square ma-
trices for Lie-Santilli Admissibility, Clifford Algebras Appl. CACAA, V.4,
N.4, (2015), 361-372.

[9] A. Dramalidis and T. Vougiouklis, On a class of geometric fuzzy Hv-
structures, 8th AHA Congress, Samothraki, Greece, 2002.

[10] A. Dramalidis and T. Vougiouklis, Fuzzy Hv-substructures in a two dimen-
sional Euclidean vector space, 10th AHA, Brno, Czech Republic 2008,
(2009), 151-159, and Iranian J. Fuzzy Systems, 6(4), 1-9.

[11] A. Dramalidis, Visualization of Algebraic Properties of Special Hv-
structures, Ratio Mathematica, Italy, v. 24, (2013), 41-52.

[12] M. Koskas, Groupoides demi-hypergroupes et hypergroupes, J. Math. Pures
Appl., 49 (9), (1970), 155-192.

[13] T. Vougiouklis, The fundamental relation in hyperrings. The general hyper-
field, Proc. 4th AHA, World Scientific, (1991), 203-211.

[14] T. Vougiouklis, Hyperstructures and their Representations, Monographs in
Math. Hadronic Press, 1994

113



Ioanna Iliou and Achilles Dramalidis

[15] T. Vougiouklis, Lie-Santilli Admissibility using P-hyperoperations on matri-
ces, Hadronic J. 7, (2014), 1-14.

[16] T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Un. Car.
Math. Et Ph. 22, (1981), 36.

[17] T. Vougiouklis, Generalization of P-hypergroups, Rend. Circolo Mat.
Palermo Ser.II (1987), 114121.

[18] T. Vougiouklis and A. Dramalidis, Hv-modulus with external P-
hyperoperations, Proc. of the 5th AHA, Iasi, Romania, (1993), 191-197.

114


