On P- H_{v}-Structures in a Two-Dimensional Real Vector Space

Ioanna Iliou, Achilles Dramalidis ${ }^{\dagger}$
${ }^{\ddagger}$ doi: $10.23755 / \mathrm{rm} . v 33 i 0.381$

Abstract

In this paper we study $\mathrm{P}-H_{v}$-structures in connection with H_{v}-structures, arising from a specific P -hope in a two-dimensional real vector space. The visualization of these $\mathrm{P}-H_{v}$-structures is our priority, since visual thinking could be an alternative and powerful resource for people doing mathematics. Using position vectors into the plane, abstract algebraic properties of these $\mathrm{P}-H_{v}$-structures are gradually transformed into geometrical shapes, which operate, not only as a translation of the algebraic concept, but also, as a teaching process.

Keywords: Hyperstructures; H_{v}-structures; hopes; P-hyperstructures.
2010 AMS subject classifications: 20N20.

[^0]
1 Introduction

In a set $H \neq \varnothing$, a hyperoperation (abbr. hyperoperation=hope) (\cdot) is defined:

$$
\cdot: H \times H \rightarrow \mathbf{P}(H)-\{\varnothing\}:(x, y) \mapsto x \cdot y \subset H
$$

and the (H, \cdot) is called hyperstructure.
It is abbreviated by WASS the weak associativity: $(x y) z \cap x(y z) \neq \varnothing, \forall x, y, z \in H$ and by $C O W$ the weak commutativity: $x y \cap y x \neq \varnothing, \forall x, y \in H$.

The largest class of hyperstructures is the one which satisfy the weak properties. These are called H_{v}-structures introduced by T. Vougiouklis in 1990 [13], [14] and they proved to have a lot of applications on several applied sciences such as linguistics, biology, chemistry, physics, and so on. The H_{v}-structures satisfy the weak axioms where the non-empty intersection replaces the equality. The H_{v}-structures can be used in models as an organized devise.

The hyperstructure (H, \cdot) is called H_{v}-group if it is WASS and the reproduction axiom is valid, i.e., $x H=H x=H, \forall x \in H$.
It is called commutative H_{v}-group if the commutativity is valid and it is called $H_{v^{-}}$commutative group if it is COW.

The motivation for the H_{v}-structures [13] is that the quotient of a group with respect to any partition (or equivalently to any equivalence relation), is an $H_{v^{-}}$ group. The fundamental relation β^{*} is defined in H_{v}-groups as the smallest equivalence so that the quotient is a group [14].

In a similar way more complicated hyperstructures are defined [14].
One can see basic definitions, results, applications and generalizations on both hyperstructure and H_{v}-structure theory in the books and papers [1], [2], [3], [10], [12], [14], [18].

The element $e \in H$, is called left unit element if $x \in e x, \forall x \in H$, right unit element if $x \in x e, \forall x \in H$ and unit element if $x \in x e \cap x \in e x, \forall x \in h$.
An element $x^{\prime} \in H$ is called left inverse of $x \in H$ if there exists a unit $e \in H$, such that $e \in x^{\prime} x$, right inverse of $x \in H$ if $e \in x x^{\prime}$ and inverse of $x \in H$ if $e \in x^{\prime} x \cap x x^{\prime}$.
By E_{*}^{l} is denoted the set of the left unit elements, by E_{*}^{r} the set of the right unit elements and by E_{*} the set of the unit elements with respect to hope (*) [7].
By $I_{*}^{l}(x, e)$ is denoted the set of the left inverses, by $I_{*}^{r}(x, e)$ the set of the right inverses and by $I_{*}(x, e)$ the set of the inverses of the element $x \in H$ associated with the unit $e \in H$ with respect to hope ${ }^{(*)}$ [7].

The class of P-hyperstructures was appeared in 80 's to represent hopes of constant length [16], [18]. Then many applications appeared [1], [2], [4], [5], [6], [8], [9], [15].
Vougiouklis introduced the following definition:

On P - H_{v}-Structures in a Two-Dimensional Real Vector Space

Definition 1.1. Let (G, \cdot) be a semigroup and $P \subset G P \neq \varnothing$. Then the following hyperoperations can be defined and they are called P-hyperoperations: $\forall x, y \in G$

$$
\begin{gathered}
P^{*}: x P^{*} y=x P y, \\
P_{r}^{*}: x P_{r}^{*} y=(x y) P \\
P_{l}^{*}: x P_{l}^{*} y=P(x y) .
\end{gathered}
$$

The $\left(G, P^{*}\right),\left(G, P_{r}^{*}\right),\left(G, P_{l}^{*}\right)$ are called P-hyperstructures.
One, combining the above definitions gets that the most usual case is if (G, \cdot) is semigroup, then $x \underline{P} y=x P^{*} y=x P y$ and (G, \underline{P}) is a semihypergroup, but we do not know about $\left(G, \underline{P}_{r}\right)$ and $\left(G, \underline{P}_{l}\right)$. In some cases, depending on the choice of $P,\left(G, \underline{P}_{r}\right)$ and $\left(G, \underline{P}_{l}\right)$ can be associative or WASS. $(G, \underline{P}),\left(G, \underline{P}_{r}\right)$ and $\left(G, \underline{P}_{l}\right)$ can be associative or WASS.

In this paper we define in the $I \mathbb{R}^{2}$ a hope which is originated from geometry. This geometrically motivated hope in $I \mathbb{R}^{2}$ constructs H_{v}-structures and P-HVstructures in which the existence of units and inverses are studied. One using the above H_{v}-structures and $\mathrm{P}-H_{v}$-structures into the plane can easily combine abstract algebraic properties with geometrical figures [11].

$2 \mathbf{P}$ - H_{v}-structures on $I \mathbb{R}^{2}$

Let us introduce a coordinate system into the $I \mathbb{R}^{2}$. We place a given vector \vec{p} so that its initial point P determines an ordered pair $\left(a_{1}, a_{2}\right)$. Conversely, a point P with coordinates $\left(a_{1}, a_{2}\right)$ determines the vector $\vec{p}=\overrightarrow{O P}$, where O the origin of the coordinate system. We shall refer to the elements x, y, z, \ldots of the set $I \mathbb{R}^{2}$, as vectors whose initial point is the origin. These vectors are very well known as position vectors.
In [7] Dramalidis introduced and studied a number of hyperoperations originated from geometry. Among them he introduced in $I \mathbb{R}^{2}$ the hyperoperation (\oplus) as follows:

Definition 2.1. For every $x, y \in I \mathbb{R}^{2}$

$$
\begin{gathered}
\oplus: I \mathbb{R}^{2} \times I \mathbb{R}^{2} \rightarrow \mathbf{P}\left(I \mathbb{R}^{2}\right)-\{\varnothing\}:(x, y) \mapsto x \oplus y= \\
=[0, x+y]=\{\mu(x+y) / \mu \in[0,1]\} \subset I \mathbb{R}^{2}
\end{gathered}
$$

From geometrical point of view and for x, y linearly independent position vectors, the set $x \oplus y$ is the main diagonal of the parallelogram having vertices $0, x, x+y, y$.

Proposition 2.1. The hyperstructure $\left(I \mathbb{R}^{2}, \oplus\right)$ is a commutative H_{v}-group.

Now, let P be the set $P=[0, p]=\{\lambda p / \lambda \in[0,1]\} \subset I \mathbb{R}^{2}$, where p is a fixed point of the plane. Geometrically, P is a line segment.

Consider the P-hyperoperation $\left(P_{r(\oplus)}^{*}\right)$:
Definition 2.2. For every $x, y \in I \mathbb{R}^{2}$

$$
P_{r(\oplus)}^{*}: I \mathbb{R}^{2} \times I \mathbb{R}^{2} \rightarrow \mathbf{P}\left(I \mathbb{R}^{2}\right)-\{\varnothing\}:(x, y) \mapsto x P_{r(\oplus)}^{*} y=(x \oplus y) \oplus P \subset I \mathbb{R}^{2}
$$

Obviously, $\left(P_{r(\oplus)}^{*}\right)$ is commutative and geometrically, for x, y linearly independent position vectors, the set $x P_{r(\oplus)}^{*} y$ is the closed region of the parallelogram with vertices $0, x+y, x+y+p, p$.

Proposition 2.2. The hyperstructure $\left(\mathbb{R}^{2}, P_{r(\oplus)}^{*}\right)$ is a commutative P - H_{v}-group.

Proof. Obviously, $x P_{r(\oplus)}^{*} \mathbb{R}^{2}=\mathbb{R}^{2} P_{r(\oplus)}^{*} x=\mathbb{R}^{2}, \forall x \in \mathbb{R}^{2}$.
For $x, y, z \in \mathbb{R}^{2}$

$$
\begin{aligned}
& \left(x P_{r(\oplus)}^{*} y\right) P_{r(\oplus)}^{*} z=\{[(x \oplus y) P] \oplus z\} \oplus P=[0, z, x+y+z, x+y+z+2 p, p] \\
& x P_{r(\oplus)}^{*}\left(y P_{r(\oplus)}^{*} z\right)=\{x \oplus[(y \oplus z) \oplus P]\} \oplus P= \\
& =[0, x+y+z, x+y+z+2 p, x+y+2 p, x+2 p, p]
\end{aligned}
$$

So,

$$
\left(x P_{r(\oplus)}^{*} y\right) P_{r(\oplus)}^{*} z \cap x P_{r(\oplus)}^{*}\left(y P_{r(\oplus)}^{*} z\right) \neq \varnothing, \forall x, y, z \in \mathbb{R}^{2} .
$$

Proposition 2.3. $E_{P_{r(\oplus)}^{*}}=[-p, 0]=\{-\lambda p / \lambda \in[0,1]\}$

Proof. Let $e \in E_{P_{r(\oplus)}^{*}}^{l} \Leftrightarrow x e P_{r(\oplus)}^{*} x, \forall x \in \mathbb{R}^{2} \Leftrightarrow x\{\mu \lambda e+\mu \lambda x+\mu \nu p / \mu, \nu, \lambda[0,1]\}$. That means that,
$\mu \lambda=1$ and $\mu \lambda e+\mu \nu p=0 \Leftrightarrow e+\mu \nu p=0 \Leftrightarrow e=-\mu \nu p,-1 \leq-\mu \nu \leq 0$, then $e \in[-p, 0]$. So, $E_{P_{r(\oplus)}^{*}}^{l}=[-p, 0]$ and according to commutativity $E_{P_{r(\oplus)}^{*}}^{r}=$ $[-p, 0]=E_{P_{r(\oplus)}^{*}}=[-p, 0]$.

Ioanna Iliou and Achilles Dramalidis

Proposition 2.4. $\left.I_{(} P_{r(\oplus)}^{*}\right)(x, e)=\left\{\frac{1}{\mu \lambda} e-x-\frac{\nu}{\lambda} p / \mu, \lambda \in(0,1], \nu \in[0,1]\right\}$, where $e \in E_{P_{r(\oplus)}^{*}}$.

Proof. Let $e \in E_{P_{r(\oplus)}^{*}}$ and $x^{\prime} \in I_{P_{r(\oplus)}^{*}}^{l}(x, e) \Leftrightarrow e \in x^{\prime} P_{r(\oplus)}^{*} x \Leftrightarrow e\left\{\mu \lambda x^{\prime}+\right.$ $\mu \lambda x+\mu \nu p / \lambda, \mu, \nu[0,1]\}$.
That means there exist $\lambda_{1}, \mu_{1}, \nu_{1}[0,1]$:

$$
e=\mu_{1} \lambda_{1} x^{\prime}+\mu_{1} \lambda_{1} x+\mu_{1} \nu_{1} p \Rightarrow x^{\prime}=\frac{1}{\mu_{1} \lambda_{1}} e-x-\frac{\nu_{1}}{\lambda_{1}} p, \mu_{1}, \lambda_{1} \neq 0 .
$$

So, $x^{\prime} \in\left\{\frac{1}{\mu \lambda} e-x-\frac{\nu}{\lambda} p / \mu, \lambda \in(0,1], \nu \in[0,1]\right\}$.
Since $\left(P_{r(\oplus)}^{*}\right)$ is commutative, we get $\left.I_{(} P_{r(\oplus)}^{*}\right)(x, e)=\left\{\frac{1}{\mu \lambda} e-x-\frac{\nu}{\lambda} p / \mu, \lambda \in\right.$ $(0,1], \nu \in[0,1]\}$.

The P-hyperoperation $P_{l(\oplus)}^{*}=P \oplus(x \oplus y)$ is identical to $\left(P_{r(\oplus)}^{*}\right)$. But the Phyperoperation $P_{(\oplus)}^{*}=x \oplus P \oplus y$ is different and even more $P_{(\oplus)}^{* l}=(x \oplus P) \oplus y \neq$ $x \oplus(P \oplus y)=x P_{(\oplus)}^{* r} y$, since (\oplus) is not associative.

On $P-H_{v}$-Structures in a Two-Dimensional Real Vector Space

Definition 2.3. For every $x, y \in I \mathbb{R}^{2}$

$$
P_{(\oplus)}^{* l}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow\left(\mathbb{R}^{2}\right):(x, y) \mapsto x P_{(\oplus)}^{* l} y=(x \oplus P) \oplus y
$$

More specifically,

$$
x P_{(\oplus)}^{* l} y=\{\lambda \kappa x+\lambda y+\lambda \kappa \mu p / \lambda, \kappa, \mu \in[0,1]\}, \forall x, y \in \mathbb{R}^{2} .
$$

Geometrically, for x, y linearly independent position vectors, the set $x P_{(\oplus)}^{* l} y$ is the closed region of the quadrilateral with vertices $0, x+y, x+y+p, y$. On the other hand the set $y P_{(\oplus)}^{* l} x$ is the closed region of the quadrilateral with vertices $0, x, x+y, x+y+p$. So,

$$
\left(x P_{(\oplus)}^{* l} y\right) \cap\left(y P_{(\oplus)}^{* l} x\right)=[0, x+y, x+y+p] \neq \varnothing, \forall x, y \in \mathbb{R}^{2}
$$

Proposition 2.5. The hyperstructure $\left(\mathbb{R}^{2}, P_{(\oplus)}^{* l}\right)$ is a $P-H_{v^{-}}$commutative group.
Proof. Obviously, $x P_{(\oplus)}^{* l} \mathbb{R}^{2}=\mathbb{R}^{2} P_{(\oplus)}^{* l} x=\mathbb{R}^{2}, \forall x \in \mathbb{R}^{2}$.
For $x, y, z \mathbb{R}^{2}$
$\left(x P_{(\oplus)}^{* l} y\right) P_{(\oplus)}^{* l} z=\{[(x \oplus P) \oplus y] P\} \oplus z \equiv[O, z, x+y+z, x+2 p+y+z, y+p+z]$
$x P_{(\oplus)}^{* l}\left(y P_{(\oplus)}^{* l} z\right)=(x \oplus P) \oplus[(y \oplus P) \oplus z] \equiv[O, x, x+y+z, x+2 p+y+z, y+p+z]$

Ioanna Iliou and Achilles Dramalidis

So,

$$
\left(x P_{(\oplus)}^{* l} y\right) P_{(\oplus)}^{* l} z \cap x P_{(\oplus)}^{* l}\left(y P_{(\oplus)}^{* l} z\right) \neq \varnothing, x, y, z \in \mathbb{R}^{2} .
$$

Proposition 2.6. i) $E_{P_{(\oplus)}^{* *}}^{l}=\mathbb{R}^{2}$
ii) $E_{P_{(\oplus)}^{* l}}^{r}=[0,-p]=\{-\nu p / \nu \in[0,1]\}=E_{P_{(\oplus)}^{* l}}$

Proof.

i) Notice that $x \in e P_{(\oplus)}^{* l} x=[0, e+x, e+x+p, x], \forall x, e \in \mathbb{R}^{2}$. So, $E_{P_{(\oplus)}^{l}}^{l}=\mathbb{R}^{2}$.
ii) Let $e \in E_{P_{(\oplus)}^{* l}}^{r} \Leftrightarrow x \in x P_{(\oplus)}^{* l} e, \forall x \in \mathbb{R}^{2} \Leftrightarrow x \in\{\lambda \kappa x+\lambda e+\lambda \kappa \mu p / \lambda, \kappa, \mu \in$ $[0,1]\}$. Then, there exist $\mu_{1}, \lambda_{1}, \kappa_{1} \in[0,1]: x=\lambda_{1} \kappa_{1} x+\lambda_{1} e+\lambda_{11} \mu_{1} p \Leftrightarrow$ $e=\frac{1}{j} \lambda_{1}\left[\left(1-\lambda_{11}\right) x-\lambda_{1} \kappa_{1} \mu_{1} p\right], \lambda_{1} \neq 0$. The last one is valid $\forall x \in \mathbb{R}^{2}$, so by setting $x=0$ we get $e=-\kappa_{1} \mu_{1} p$. Since $\mu_{1}, \kappa_{1} \in[0,1]$ there exists $\nu_{1} \in[0,1]: \nu_{1}=\kappa_{1} \mu_{1} \Rightarrow e=-\nu_{1} p \Rightarrow$

$$
e \in\{-\nu p / \nu \in[0,1]\}=[0,-p] .
$$

Since $E_{P_{(\oplus)}^{* l}}^{r} \subset \mathbb{R}^{2}=E_{P_{(\oplus)}^{* *}}^{l}$ we get $E_{P_{(\oplus)}^{* l}}^{l} \cap E_{P_{(\oplus)}^{* l}}^{r}=\{-\nu p / \nu[0,1]\}=$ $E_{P_{(\oplus)}^{* l}}$.

Proposition 2.7. $\alpha) I_{P_{(\oplus)}^{* k}}^{r}(x, e)=\left\{-\kappa x-\left(\frac{\nu}{\lambda}+\kappa \mu\right) p / \kappa, \mu, \nu \in[0,1], \lambda \in\right.$ $(0,1]\}, e \in E_{P_{(\oplus)}^{* l}}^{r}$.

乃) $I_{P_{(\oplus)}^{* k}}^{r}(x, e)=\left\{\frac{e}{\lambda}-\kappa x-\kappa \mu p / \kappa, \mu \in[0,1], \lambda \in(0,1]\right\}, e \in E_{P_{(\oplus)}^{* l}}^{l}$
र) $I_{\left.P_{(\oplus)}^{* k}\right)}^{l}(x, e)=\left\{-\frac{x}{\kappa}-\left(\frac{\nu}{\lambda \kappa}+\mu\right) p / \kappa, \lambda \in(0,1], \mu \in(0,1]\right\}, e \in E_{P_{(\oplus)}^{* * l}}^{r}$.
б) $I_{P_{(\oplus)}^{* l}}^{l}(x, e)=\left\{\frac{1}{\kappa}\left(\frac{e}{\lambda}-x\right)-\mu p / \kappa, \lambda \in(0,1], \mu \in[0,1]\right\}, e \in E_{P_{(\oplus)}^{* l}}^{l}$

Proof.

a) Let $e \in E_{P_{(\oplus)}^{* k}}^{r}=[0,-p]$ and $x^{\prime} \in I_{P_{\oplus()}^{* k}}^{r}(x, e)$, then
$e \in x P_{(\oplus)}^{* l} x^{\prime} \Rightarrow e \in\left\{\lambda \kappa x+\lambda x^{\prime}+\lambda \kappa \mu p / \kappa, \lambda, \mu \in[0,1]\right\}$. That means there exist $\kappa_{1}, \lambda_{1}, \mu_{1} \in[0,1]$:
$e=\lambda_{1} \kappa_{1} x+\lambda_{1} x^{\prime}+\lambda_{1} \kappa_{1} \mu_{1} p \Rightarrow x^{\prime}=\frac{e}{\lambda_{1}}-\kappa_{1} x-\kappa_{1} \mu_{1} p, \lambda_{1} \neq 0$.
But, $e \in\{-\nu p / \nu[0,1]\} \Rightarrow \ni \nu_{1} \in[0,1]: e=-\nu_{1} p$.
So, $x^{\prime}=-\frac{\nu_{1}}{\lambda_{1}} p-\kappa_{1} x-\kappa_{1} \mu_{1} p, \lambda_{1} \neq 0 \Rightarrow x^{\prime}=-\kappa_{1} x\left(\frac{\nu_{1}}{\lambda_{1}}+\kappa_{1} \mu_{1}\right) p, \lambda_{1} \neq 0$.
Then we get $x^{\prime} \in\left\{-\kappa x-\left(\frac{\nu}{\lambda}+\kappa \mu\right) p / \kappa, \mu, \nu \in[0,1], \lambda \in(0,1]\right\}$.
β) Similarly as above.
$\gamma)$ Similarly as above.
ס) Similarly as above.

Definition 2.4. For every $x, y \in I \mathbb{R}^{2}$

$$
\left.\stackrel{* r}{(\oplus)}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow\left(\mathbb{R}^{2}\right):(x, y) \mapsto x_{(\oplus)}^{* r}\right) y=x \oplus(P \oplus y)
$$

More specifically,

$$
x_{(\oplus)}^{* r} y=\{\lambda x+\lambda \kappa y+\lambda \kappa \mu p / \lambda, \kappa, \mu \in[0,1]\}, \forall x, y \in \mathbb{R}^{2}
$$

Geometrically, for x, y linearly independent position vectors, the set $x P_{(\oplus)}^{* r} y$ is the closed region of the quadrilateral with vertices $0, x, x+y, x+y+p$. On the other hand the set $y P_{(\oplus)}^{* r} x$ is the closed region of the quadrilateral with vertices $0, x+y, x+y+p, y$. So,

$$
\left(x P_{\oplus(}^{* r} y\right) \cap\left(y P_{(\oplus)}^{* r} x\right)=[0, x+y, x+y+p] \neq \varnothing, \forall x, y \in \mathbb{R}^{2} .
$$

Proposition 2.8. The hyperstructure $\left(\mathbb{R}^{2}, P_{(\oplus)}^{* r}\right)$ is a P - $H_{v^{-}}$commutative group.
Proof. Obviously, $x P_{(\oplus)}^{* r} \mathbb{R}^{2}=\mathbb{R}^{2} P_{(\oplus)}^{* r} x=\mathbb{R}^{2}, \forall x \in \mathbb{R}^{2}$.
For $x, y, z \in R^{2}$
$\left(x P_{(\oplus)}^{* r} y\right) P_{(\oplus)}^{* r} z=[(x \oplus(P \oplus y)] \oplus(P \oplus z) \equiv[O, x, x+z, x+y+z, x+y+z+2 p]$
$x P_{(\oplus)}^{* r}\left(y P_{(\oplus)}^{* r} z\right)=x \oplus\{P \oplus[y \oplus(P \oplus z)]\} \equiv[O, x, x+y+z, x+y+z+2 p, y+p+x]$

So,

$$
\left[\left(x P_{(\oplus)}^{* r} y\right) P_{(\oplus)}^{* r} z\right] \cap\left[x P_{(\oplus)}^{* r}\left(y P_{(\oplus)}^{* r} z\right)\right] \neq \varnothing, \forall x, y, z \in \mathbb{R}^{2} . \square
$$

The following, are respective propositions of the Propositions 2.6. and 2.7. :
Proposition 2.9. i) $E_{P_{(\oplus)}^{r * r}}^{r}=\mathbb{R}^{2}$
ii) $E_{P_{(\oplus)}^{* r}}^{l}=[0,-p]=\{-\nu p / \nu \in[0,1]\}=E_{P_{(\oplus)}^{* r}}$.

Proposition 2.10.
a) $I_{P_{(\oplus)}^{* r}}^{r}(x, e)=\left\{\frac{1}{\kappa}\left(\frac{e}{\lambda}-x\right)-\mu p / \kappa, \lambda \in(0,1], \mu \in[0,1]\right\}, e \in$ $E_{P_{(\oplus)}^{* r}}^{r}$
乃) $I_{P_{\oplus()}^{* *}}^{r}(x, e)=\left\{-\frac{x}{\kappa}-\left(\frac{\nu}{\lambda \kappa}+\mu\right) p / \kappa, \lambda \in(0,1], \mu \in(0,1]\right\}, e \in E_{P_{(\oplus)}^{* * r}}^{l}$.
र) $I_{P_{(\oplus)}^{* * r}}^{l}(x, e)=\left\{\frac{e}{\lambda}-\kappa x-\kappa \mu p / \kappa, \mu \in[0,1], \lambda \in(0,1]\right\}, e \in E_{P_{(\oplus)}^{* r}}^{r}$
б) $I_{P_{(\oplus)}^{* * r}}^{l}(x, e)=\left\{-\kappa x-\left(\frac{\nu}{\lambda}+\kappa \mu\right) p / \kappa, \mu, \nu \in[0,1], \lambda \in(0,1]\right\}, e \in E_{P_{(\oplus)}^{* r}}^{l}$.

Remark 2.1. Notice that,
人) $x_{(\oplus)}^{* l} y=y_{(\oplus)}^{* r} x, \forall x, y \in \mathbb{R}^{2}$
$\beta) x_{(\oplus)}^{* r} y=y_{(\oplus)}^{* l} x, \forall x, y \in \mathbb{R}^{2}$

On P - H_{v}-Structures in a Two-Dimensional Real Vector Space

References

[1] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.
[2] P. Corsini and V. Leoreanu, Application of Hyperstructure Theory, Klower Academic Publishers, 2003.
[3] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, Int. Academic Press, 2007.
[4] B. Davvaz, R.M. Santilli and T. Vougiouklis, Studies of multivalued hyperstructures for the characterization of matter-antimatter systems and their extension, Algebras, Groups and Geometries 28, (2011), 105116.
[5] A. Dramalidis, Some geometrical P - H_{v}-structures, New Frontiers in Hyperstructures, Hadronic Press, USA, (1996), 93-102.
[6] A. Dramalidis, Geometrical H_{v}-structures, Proceedings: Structure Elements of Hyperstructures, Spanidis, 2005.
[7] A. Dramalidis, Dual H_{v}-rings, Rivista di Matematica Pura ed Applicata, Italy, v. 17, (1996), 55-62.
[8] A. Dramalidis, R. Mahjoob and T. Vougiouklis, P-hopes on non-square matrices for Lie-Santilli Admissibility, Clifford Algebras Appl. CACAA, V.4, N.4, (2015), 361-372.
[9] A. Dramalidis and T. Vougiouklis, On a class of geometric fuzzy $H_{v^{-}}$ structures, $8^{t} h$ AHA Congress, Samothraki, Greece, 2002.
[10] A. Dramalidis and T. Vougiouklis, Fuzzy H_{v}-substructures in a two dimensional Euclidean vector space, $10^{\text {th }}$ AHA, Brno, Czech Republic 2008, (2009), 151-159, and Iranian J. Fuzzy Systems, 6(4), 1-9.
[11] A. Dramalidis, Visualization of Algebraic Properties of Special $H_{v^{-}}$ structures, Ratio Mathematica, Italy, v. 24, (2013), 41-52.
[12] M. Koskas, Groupoides demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49 (9), (1970), 155-192.
[13] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. 4th AHA, World Scientific, (1991), 203-211.
[14] T. Vougiouklis, Hyperstructures and their Representations, Monographs in Math. Hadronic Press, 1994
[15] T. Vougiouklis, Lie-Santilli Admissibility using P-hyperoperations on matrices, Hadronic J. 7, (2014), 1-14.
[16] T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Un. Car. Math. Et Ph. 22, (1981), 36.
[17] T. Vougiouklis, Generalization of P-hypergroups, Rend. Circolo Mat. Palermo Ser.II (1987), 114121.
[18] T. Vougiouklis and A. Dramalidis, H_{v}-modulus with external P hyperoperations, Proc. of the $5^{t} h$ AHA, Iasi, Romania, (1993), 191-197.

[^0]: *Democritus University of Thrace, School of Education, 68100 Alexandroupolis, Greece; iiliou@eled.duth.gr
 ${ }^{\dagger}$ Democritus University of Thrace, School of Education 68100 Alexandroupolis, Greece; adramali@psed.duth.gr
 ${ }^{\ddagger}$ ©Ioanna Iliou and Achilles Dramalidis. Received: 31-10-2017. Accepted: 26-12-2017. Published: 31-12-2017.

