Special Classes of H_{b}-Matrices

Achilles Dramalidis*
${ }^{\dagger}$ doi: $10.23755 / \mathrm{rm} . v 33 \mathrm{i} 0.382$

Abstract

In the present paper we deal with constructions of 2×2 diagonal or uppertriangular or lower-triangular H_{b}-matrices with entries either of an H_{b}-field on \mathbb{Z}_{2} or on \mathbb{Z}_{3}. We study the kind of the hyperstructures that arise, their unit and inverse elements. Also, we focus our study on the cyclicity of these hyperstructures, their generators and the respective periods.

Keywords: hope; H_{v}-structure; H_{b}-structure; H_{v}-matrix
2010 AMS subject classifications: 20N20.

[^0]Achilles Dramalidis

1 Introduction

F. Marty, in 1934 [13], introduced the hypergroup as a set H equipped with a hyperoperation $\cdot: H \times H \rightarrow \mathcal{P}(H)-\{\emptyset\}$ which satisfies the associative law: $(\mathrm{xy}) \mathrm{z}=\mathrm{x}(\mathrm{yz})$, for all $x, y, z \in H$ and the reproduction axiom: $\mathrm{xH}=\mathrm{Hx}=\mathrm{H}$, for all $x \in H$. In that case, the reproduction axiom is not valid, the (H, \cdot) is called semihypergroup.
In 1990, T. Vougiouklis [19] in the Fourth AHA Congress, introduced the $H_{v^{-}}$ structures, a larger class than the known hyperstructures, which satisfy the weak axioms where the non-empty intersection replaces the equality.

Definition 1.1. [21], The (\cdot) in H is called weak associative, we write WASS, if

$$
(x y) z \cap x(y z) \neq \emptyset, \forall x, y, z \in H .
$$

The (.) is called weak commutative, we write COW, if

$$
x y \cap y x \neq \emptyset, \forall x, y \in H
$$

The hyperstructure (H, \cdot) is called H_{v}-semigroup if (\cdot) is WASS. It is called $H_{v^{-}}$ group if it is H_{v}-semigroup and the reproduction axiom is valid.
Further more, it is called H_{v}-commutative group if it is an $H_{v^{-}}$-group and a COW. If the commutativity is valid, then H is called commutative H_{v}-group.
Analogous definitions for other H_{v}-structures, as H_{v}-rings, H_{v}-module, H_{v}-vector spaces and so on can be given.

For more definitions and applications on hyperstructures one can see books [3], [4], [5], [6], [21] and papers as [2], [7], [9], [10], [12], [14], [20], [22], [23], [24], [26], [27].
An element $e \in H$ is called left unit if $x \in e x, \forall x \in H$ and it is called right unit if $x \in x e, \forall x \in H$. It is called unit if $x \in e x \cap x e, \forall x \in H$. The set of left units is denoted by E^{ℓ} [8]. The set of right units is denoted by E^{r} and by $E=E^{\ell} \cap E^{r}$ the set of units [8].
The element $a \prime \in H$ is called left inverse of the element $a \in H$ if $e \in a^{\prime} a$, where e unit element (left or right) and it is called right inverse if $e \in a a \prime$. If $e \in a^{\prime} a \cap a a \prime$ then it is called inverse element of $a \in H$. The set of the left inverses is denoted by $I^{\ell}(a, e)$ and the set of the right inverses is denoted by $I^{r}(a, e)[8]$. By $I(a, e)=I^{\ell}(a, e) \cap I^{r}(a, e)$, the set of inverses of the element $a \in H$, is denoted. In an H_{v}-semigroup the powers are defined by: $h^{1}=\{h\}, h^{2}=h \cdot h, \cdots, h^{n}=h \circ$ $h \circ \cdots \circ h$, where (\circ) is the n-ary circle hope, i.e. take the union of hyperproducts, n times, with all possible patterns of parentheses put on them. An H_{v}-semigroup (H, \cdot) is cyclic of period s, if there is an h , called generator and a natural s , the minimum: $H=h^{1} \cup h^{2} \cup \cdots \cup h^{s}$. Analogously the cyclicity for the infinite period
is defined [17],[21]. If there is an h and s , the minimum: $H=h^{s}$, then (H, \cdot), is called single-power cyclic of periods.

Definition 1.2. The fundamental relations β^{*}, γ^{*} and ϵ^{*}, are defined, in H_{v}-groups, H_{v}-rings and H_{v}-vector spaces, respectively, as the smallest equivalences so that the quotient would be group, ring and vector spaces, respectively [18],[19],[21],[22], (see also [1],[3],[4]).

More general structures can be defined by using the fundamental structures. An application in this direction is the general hyperfield. There was no general definition of a hyperfield, but from 1990 [19] there is the following [20], [21]:

Definition 1.3. An H_{v}-ring $(R,+, \cdot)$ is called H_{v}-field if R / γ^{*} is a field.
H_{v}-matrix is a matrix with entries of an H_{v}-ring or H_{v}-field. The hyperproduct of two H_{v}-matrices $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$, of type $m \times n$ and $n \times r$ respectively, is defined in the usual manner and it is a set of $m \times r H_{v}$-matrices. The sum of products of elements of the H_{v}-ring is considered to be the n-ary circle hope on the hyperaddition. The hyperproduct of H_{v}-matrices is not necessarily WASS. H_{v}-matrices is a very useful tool in Representation Theory of H_{v}-groups [15],[16], [25],[28] (see also [11], [29]).

2 Constructions of $2 \times 2 H_{b}$-matrices with entries of an H_{v}-field on \mathbb{Z}_{2}

Consider the field $\left(\mathbb{Z}_{2},+, \cdot\right)$. On the set \mathbb{Z}_{2} also consider the hyperoperation (\odot) defined by setting:

$$
1 \odot 1=\{0,1\} \text { and } x \odot y=x \cdot y \text { for all }(x, y) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}-\{(0,1)\}
$$

Then $\left(\mathbb{Z}_{2},+, \odot\right)$ becomes an H_{b}-field.
All the $2 \times 2 H_{b}$-matrices with entries of the H_{b}-field $\left(\mathbb{Z}_{2},+, \odot\right)$, are $2^{4}=16$. Let us denote them by:

$$
\begin{aligned}
& \mathbf{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), a_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), a_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), a_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
& a_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), a_{5}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), a_{6}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), a_{7}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& a_{8}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), a_{9}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), a_{10}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), a_{11}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),
\end{aligned}
$$

$$
a_{12}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), a_{13}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), a_{14}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), a_{15}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

By taking $a_{i}^{2}, i=1, \cdots, 15$ there exist 15 closed sets, let us say $H_{i}, i=$ $1, \cdots, 15$. Two of them are singletons, $H_{2}=H_{3}=\{\mathbf{0}\}$. Also, $H_{7}=H_{8}$ and $H_{11}=H_{14}=H_{15}$.
So, we shall study, according to the hyperproduct (\cdot) of two H_{b}-matrices, the following sets:

$$
\begin{gathered}
H_{1}=\left\{\mathbf{0}, a_{1}\right\}, H_{4}=\left\{\mathbf{0}, a_{4}\right\}, H_{5}=\left\{\mathbf{0}, a_{1}, a_{2}, a_{5}\right\}, H_{6}=\left\{\mathbf{0}, a_{1}, a_{3}, a_{6}\right\}, \\
H_{7}=\left\{\mathbf{0}, a_{1}, a_{4}, a_{7}\right\}, H_{9}=\left\{\mathbf{0}, a_{2}, a_{4}, a_{9}\right\}, H_{10}=\left\{\mathbf{0}, a_{3}, a_{4}, a_{10}\right\} \\
H_{12}=\left\{\mathbf{0}, a_{1}, a_{2}, a_{4}, a_{5}, a_{7}, a_{9}, a_{12}\right\}, H_{13}=\left\{\mathbf{0}, a_{1}, a_{3}, a_{4}, a_{6}, a_{7}, a_{10}, a_{13}\right\}, \\
H_{15}=\left\{\mathbf{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10} a_{11}, a_{12}, a_{13}, a_{14}, a_{15}\right\} .
\end{gathered}
$$

2.1 The case of diagonal $2 \times 2 H_{b}$-matrices

Every set of H_{1}, H_{4}, H_{7} consists of diagonal $2 \times 2 H_{b}$-matrices. Then, the multiplicative tables of the hyperproduct, are the following:

\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{1}}$				
$\mathbf{0}$	0	0				
$\mathbf{a}_{\mathbf{1}}$	0	H_{1}	,	\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{4}}$
:---:	:---:	:---:				
$\mathbf{0}$	0	0				
$\mathbf{a}_{\mathbf{4}}$	0	H_{4}				

\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{1}}$	$\mathbf{a}_{\mathbf{4}}$	$\mathbf{a}_{\mathbf{7}}$
$\mathbf{0}$	0	0	0	0
$\mathbf{a}_{\mathbf{1}}$	0	$0, a_{1}$	0	$0, a_{1}$
$\mathbf{a}_{\mathbf{4}}$	0	0	$0, a_{4}$	$0, a_{4}$
$\mathbf{a}_{\mathbf{7}}$	0	$0, a_{1}$	$0, a_{4}$	H_{7}

In all cases:

$$
\begin{gathered}
x \cdot y=y \cdot x, \forall x, y \in H_{i}, i=1,4,7 \\
(x \cdot y) \cdot z=x \cdot(y \cdot z), \forall x, y, z \in H_{i}, i=1,4,7
\end{gathered}
$$

So, we get the next propositions:
Proposition 2.1. Every set H, consisting of diagonal $2 \times 2 H_{b}$-matrices with entries of the H_{b}-field $\left(\mathbb{Z}_{2},+, \odot\right)$, equipped with the usual hyperproduct (\cdot) of matrices, is a commutative semihypergroup.

Notice that $H_{1}, H_{4} \subset H_{7}$ and since $H_{1} \cdot H_{1} \subseteq H_{1}, H_{4} \cdot H_{4} \subseteq H_{4}$ then H_{1}, H_{4} are sub-semihypergroups of $\left(H_{7}, \cdot\right)$.

Proposition 2.2. For all commutative semihypergroups (H, \cdot), consisting of diagonal $2 \times 2 H_{b}$-matrices with entries of the H_{b}-field $\left(\mathbb{Z}_{2},+, \odot\right)$:

$$
E=\left\{a_{i}\right\}, I\left(a_{i}, a_{i}\right)=\left\{a_{i}\right\}, \text { where } a_{i}^{2}=H .
$$

Remark 2.1. According to the above construction, the commutative semihypergroups $\left(H_{1}, \cdot\right),\left(H_{4}, \cdot\right)$ and $\left(H_{7}, \cdot\right)$, are single-power cyclic commutative semihypergroups with generators the elements a_{1}, a_{4} and a_{7}, respectively, with singlepower period 2.

2.2 The case of upper- and lower- triangular $2 \times 2 H_{b}$-matrices

Every set of H_{5}, H_{9}, H_{12} consists of upper-triangular $2 \times 2 H_{b}$-matrices and every set of H_{6}, H_{10}, H_{13} consists of lower-triangular $2 \times 2 H_{b}$-matrices. Then, the multiplicative tables of the hyperproduct, are the following:

\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{1}}$	$\mathbf{a}_{\mathbf{2}}$	$\mathbf{a}_{\mathbf{5}}$						
$\mathbf{0}$	0	0	0	0						
$\mathbf{a}_{\mathbf{1}}$	0	$0, a_{1}$	$0, a_{2}$	H_{5}						
$\mathbf{a}_{\mathbf{2}}$	0	0	0	0						
$\mathbf{a}_{\mathbf{5}}$	0	$0, a_{1}$	$0, a_{2}$	H_{5}	\quad	\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{2}}$	$\mathbf{a}_{\mathbf{4}}$	$\mathbf{a}_{\mathbf{9}}$
:---:	:---:	:---:	:---:	:---:	:---:					
$\mathbf{0}$	0	0	0	0						
$\mathbf{a}_{\mathbf{2}}$	0	0	$0, a_{2}$	$0, a_{2}$						
$\mathbf{a}_{\mathbf{4}}$	0	0	$0, a_{4}$	$0, a_{4}$						
$\mathbf{a}_{\mathbf{9}}$	0	0	H_{9}	H_{9}						

\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{1}}$	$\mathbf{a}_{\mathbf{2}}$	$\mathbf{a}_{\mathbf{4}}$	$\mathbf{a}_{\mathbf{5}}$	$\mathbf{a}_{\mathbf{7}}$	$\mathbf{a}_{\mathbf{9}}$	$\mathbf{a}_{\mathbf{1 2}}$
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{a}_{\mathbf{1}}$	0	$0, a_{1}$	$0, a_{2}$	0	$0, a_{1}$, a_{2}, a_{5}	$0, a_{1}$	$0, a_{2}$	$0, a_{1}$, a_{2}, a_{5}
$\mathbf{a}_{\mathbf{2}}$	0	0	0	$0, a_{2}$	0	$0, a_{2}$	$0, a_{2}$	$0, a_{2}$
$\mathbf{a}_{\mathbf{4}}$	0	0	0	$0, a_{4}$	0	$0, a_{4}$	$0, a_{4}$	$0, a_{4}$
$\mathbf{a}_{\mathbf{5}}$	0	$0, a_{1}$	$0, a_{2}$	$0, a_{2}$	$0, a_{1}$, a_{2}, a_{5}	$0, a_{1}$, a_{2}, a_{5}	$0, a_{2}$	$0, a_{1}$, a_{2}, a_{5}
$\mathbf{a}_{\mathbf{7}}$	0	$0, a_{1}$	$0, a_{2}$	$0, a_{4}$	$0, a_{1}$, a_{2}, a_{5}	$0, a_{1}$, a_{4}, a_{7}	$0, a_{2}$, a_{4}, a_{9}	H_{12}
$\mathbf{a}_{\mathbf{9}}$	0	0	0	$0, a_{2}$, a_{4}, a_{9}	0	$0, a_{2}$, a_{4}, a_{9}	$0, a_{2}$, a_{4}, a_{9}	$0, a_{2}$, a_{4}, a_{9}
$\mathbf{a}_{\mathbf{1 2}}$	0	$0, a_{1}$	$0, a_{2}$	$0, a_{2}$, a_{4}, a_{9}	$0, a_{1}$, a_{2}, a_{5}	H_{12}	$0, a_{2}$, a_{4}, a_{9}	H_{12}

\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{1}}$	$\mathbf{a}_{\mathbf{3}}$	$\mathbf{a}_{\mathbf{6}}$
$\mathbf{0}$	0	0	0	0
$\mathbf{a}_{\mathbf{1}}$	0	$0, a_{1}$	0	$0, a_{1}$
$\mathbf{a}_{\mathbf{3}}$	0	$0, a_{3}$	0	$0, a_{3}$
$\mathbf{a}_{\mathbf{6}}$	0	H_{6}	0	H_{6}

\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{3}}$	$\mathbf{a}_{\mathbf{4}}$	$\mathbf{a}_{\mathbf{1 0}}$
$\mathbf{0}$	0	0	0	0
$\mathbf{a}_{\mathbf{3}}$	0	0	0	0
$\mathbf{a}_{\mathbf{4}}$	0	$0, a_{3}$	$0, a_{4}$	H_{10}
$\mathbf{a}_{\mathbf{1 0}}$	0	$0, a_{3}$	$0, a_{4}$	H_{10}

\cdot	$\mathbf{0}$	$\mathbf{a}_{\mathbf{1}}$	$\mathbf{a}_{\mathbf{3}}$	$\mathbf{a}_{\mathbf{4}}$	$\mathbf{a}_{\mathbf{6}}$	$\mathbf{a}_{\mathbf{7}}$	$\mathbf{a}_{\mathbf{1 0}}$	$\mathbf{a}_{\mathbf{1 3}}$
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{a}_{\mathbf{1}}$	0	$0, a_{1}$	0	0	$0, a_{1}$	$0, a_{1}$	0	$0, a_{1}$
$\mathbf{a}_{\mathbf{3}}$	0	$0, a_{3}$	0	0	$0, a_{3}$	$0, a_{3}$	0	$0, a_{3}$
$\mathbf{a}_{\mathbf{4}}$	0	0	$0, a_{3}$	$0, a_{4}$	$0, a_{3}$	$0, a_{4}$	$0, a_{3}$, a_{4}, a_{10}	$0, a_{3}$, a_{4}, a_{10}
$\mathbf{a}_{\mathbf{6}}$	0	$0, a_{1}$, a_{3}, a_{6}	0	0	$0, a_{1}$, a_{3}, a_{6}	$0, a_{1}$, a_{3}, a_{6}	0	$0, a_{1}$, a_{3}, a_{6}
$\mathbf{a}_{\mathbf{7}}$	0	$0, a_{1}$	$0, a_{3}$	$0, a_{4}$	$0, a_{1}$, a_{3}, a_{6}	$0, a_{1}$, a_{4}, a_{7}	$0, a_{3}$, a_{4}, a_{10}	H_{13}
$\mathbf{a}_{\mathbf{1 0}}$	0	$0, a_{3}$	$0, a_{3}$	$0, a_{4}$	$0, a_{3}$	$0, a_{3}$, a_{4}, a_{10}	$0, a_{3}$, a_{4}, a_{10}	$0, a_{3}$, a_{4}, a_{10}
$\mathbf{a}_{\mathbf{1 3}}$	0	$0, a_{1}$,	$0, a_{3}$	$0, a_{4}$	$0, a_{1}$, a_{3}, a_{6}	H_{13}	$0, a_{3}$, a_{4}, a_{10}	H_{13}

In all cases:

$$
\begin{gathered}
(x \cdot y) \cap(y \cdot x) \neq \emptyset, \forall x, y \in H_{i}, i=5,6,9,10,12,13 \\
(x \cdot y) \cdot z=x \cdot(y \cdot z), \forall x, y, z \in H_{i}, i=5,6,9,10,12,13
\end{gathered}
$$

So, we get the next proposition:
Proposition 2.3. Every set H, consisting either of upper-triangular or lowertriangular $2 \times 2 H_{b}$-matrices with entries of the H_{b}-field $\left(\mathbb{Z}_{2},+, \odot\right)$, equipped with the usual hyperproduct (\cdot) of matrices, is a weak commutative semihypergroup.

Notice that $H_{5}, H_{9} \subset H_{12}$ and $H_{6}, H_{10} \subset H_{13}$. Since $H_{5} \cdot H_{5} \subseteq H_{5}, H_{9} \cdot H_{9} \subseteq$ $H_{9}, H_{6} \cdot H_{6} \subseteq H_{6}, H_{10} \cdot H_{10} \subseteq H_{10}$, then H_{5}, H_{9} are sub-semihypergroups of ($\left.H_{12}, \cdot\right)$ and H_{6}, H_{10} are sub-semihypergroups of $\left(H_{13}, \cdot\right)$.
Proposition 2.4. For all weak commutative semihypergroups (H, \cdot), consisting either of upper-triangular or lower-triangular $2 \times 2 \mathrm{H}_{b}$-matrices with entries of the H_{b}-field $\left(\mathbb{Z}_{2},+, \odot\right)$, the following assertions hold
i) If $a_{i}, a_{j} \in H: a_{i} \cdot a_{j}=H, a_{i} \in a_{i}^{2}, a_{j}^{2}=H, a_{i} \in a_{j} \cdot a_{i}$, then

$$
\text { a) } \left.E^{\ell}=\left\{a_{i}, a_{j}\right\}, b\right) I\left(a_{i}, a_{i}\right)=I\left(a_{j}, a_{i}\right)=\left\{a_{i}, a_{j}\right\}
$$

Special Classes of H_{b}-Matrices

$$
\text { c) } \left.I\left(a_{j}, a_{j}\right)=I^{r}\left(a_{i}, a_{j}\right)=\left\{a_{j}\right\}, d\right) I^{\ell}\left(a_{i}, a_{j}\right)=\emptyset
$$

ii) If $a_{i}, a_{j} \in H: a_{j} \cdot a_{i}=H, a_{i} \in a_{i}^{2}, a_{j}^{2}=H, a_{i} \in a_{i} \cdot a_{j}$, then

$$
\begin{aligned}
& \text { a) } \left.E^{r}=\left\{a_{i}, a_{j}\right\}, b\right) I\left(a_{i}, a_{i}\right)=I\left(a_{j}, a_{i}\right)=\left\{a_{i}, a_{j}\right\} \\
& \text { c) } \left.I\left(a_{j}, a_{j}\right)=I^{\ell}\left(a_{i}, a_{j}\right)=\left\{a_{j}\right\}, d\right) I^{r}\left(a_{i}, a_{j}\right)=\emptyset
\end{aligned}
$$

iii) If $a_{i}, a_{j} \in H: a_{i} \cdot a_{j}=a_{j} \cdot a_{i}=H, a_{i} \in a_{i}^{2}, a_{j}^{2}=H$, then
a) $\left.\left.E=\left\{a_{i}, a_{j}\right\}, b\right) I\left(a_{i}, a_{i}\right)=I\left(a_{j}, a_{i}\right)=I\left(a_{j}, a_{j}\right)=\left\{a_{i}, a_{j}\right\}, c\right) I\left(a_{i}, a_{j}\right)=\left\{a_{j}\right\}$

Remark 2.2. According to the above construction, the weak commutative semihypergroups $\left(H_{i}, \cdot\right), i=5,6,9,10,12,13$ are single-power cyclic weak commutative semihypergroups with generators the elements $a_{5}, a_{6}, a_{9}, a_{10}, a_{12}, a_{13}$ respectively, with single-power period 2 .

3 Constructions of $2 \times 2 H_{b}$-matrices with entries of an H_{b}-field on \mathbb{Z}_{3}

Consider the field $\left(\mathbb{Z}_{3},+, \cdot\right)$. On the set \mathbb{Z}_{3}, we consider four cases for the hyperoperation $\left(\odot_{i}\right), i=1,2,3,4$ defined, each time, by setting:

1) $1 \odot_{1} 2=\{1,2\}$ and $x \odot_{1} y=x \cdot y$ for all $(x, y) \in \mathbb{Z}_{3} \times \mathbb{Z}_{3}-\{(1,2)\}$.
2) $2 \odot_{2} 1=\{1,2\}$ and $x \odot_{2} y=x \cdot y$ for all $(x, y) \in \mathbb{Z}_{3} \times \mathbb{Z}_{3}-\{(1,2)\}$.
3) $1 \odot_{3} 1=\{1,2\}$ and $x \odot_{3} y=x \cdot y$ for all $(x, y) \in \mathbb{Z}_{3} \times \mathbb{Z}_{3}-\{(1,2)\}$.
4) $2 \odot_{4} 2=\{1,2\}$ and $x \odot_{4} y=x \cdot y$ for all $(x, y) \in \mathbb{Z}_{3} \times \mathbb{Z}_{3}-\{(1,2)\}$.

Then, each time, $\left(\mathbb{Z}_{3},+, \odot_{i}\right), i=1,2,3,4$ becomes an H_{b}-field.
Now, consider the set H of the $\operatorname{diag}\left(b_{11}, b_{22}\right), b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b^{-}}$ matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{i}\right)$. Let us denote them by:

$$
a_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), a_{12}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), a_{21}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), a_{22}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) .
$$

So, $\mathrm{H}=\left\{a_{11}, a_{12}, a_{21}, a_{22}\right\}$.

Achilles Dramalidis

3.1 The case of $1 \odot_{1} 2=\{1,2\}$

The multiplicative table of the hyperproduct, is the following:

\cdot	$\mathbf{a}_{\mathbf{1 1}}$	$\mathbf{\mathbf { a } _ { \mathbf { 1 2 } }}$	$\mathbf{\mathbf { a } _ { \mathbf { 2 1 } }}$	$\mathbf{\mathbf { a } _ { \mathbf { 2 2 } }}$
$\mathbf{\mathbf { a } _ { 1 1 }}$	a_{11}	a_{11}, a_{12}	a_{11}, a_{21}	H
$\mathbf{\mathbf { a } _ { 1 2 }}$	a_{12}	a_{11}	a_{12}, a_{22}	a_{11}, a_{21}
$\mathbf{\mathbf { a } _ { \mathbf { 2 1 } }}$	a_{21}	a_{21}, a_{22}	a_{11}	a_{11}, a_{12}
$\mathbf{\mathbf { a } _ { \mathbf { 2 2 } }}$	a_{22}	a_{21}	a_{12}	a_{11}

Notice that in the above multiplicative table:
i) $x \cdot H=H \cdot x=H, \forall x \in H$
ii) $(x \cdot y) \cap(y \cdot x) \neq \emptyset, \forall x, y \in H$
iii) $(x \cdot y) \cdot z \cap x \cdot(y \cdot z) \neq \emptyset, \forall x, y, z \in H$

So, we get the next proposition:
Proposition 3.1. The set H, consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right), b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{1}\right)$, equipped with the usual hyperproduct (\cdot) of matrices, is an H_{v}-commutative group.
Proposition 3.2. For the H_{v}-commutative group ($H, \cdot \cdot$, consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{1}\right)$:
i) $E=\left\{a_{11}\right\}$ ii) $I^{r}\left(x, a_{11}\right)=\left\{a_{22}\right\}, \forall x \in H$ iii) $I^{\ell}\left(x, a_{11}\right)=\left\{a_{11}\right\}, \forall x \in H$

Proposition 3.3. The H_{v}-commutative group (H, \cdot), consisting of the diag $\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{1}\right)$, is a single-power cyclic H_{v}-commutative group with generator the element a_{22}, with single-power period 3 .

3.2 The case of $2 \odot_{2} 1=\{1,2\}$

The multiplicative table of the hyperproduct, is the following:

\cdot	\mathbf{a}_{11}	\mathbf{a}_{12}	$\mathbf{a}_{\mathbf{2 1}}$	$\mathbf{\mathbf { a } _ { 2 2 }}$
$\mathbf{\mathbf { a } _ { 1 1 }}$	a_{11}	a_{12}	a_{21}	a_{22}
$\mathbf{\mathbf { a } _ { 1 2 }}$	a_{11}, a_{12}	a_{11}	a_{21}, a_{22}	a_{21}
$\mathbf{\mathbf { a } _ { 2 1 }}$	a_{11}, a_{21}	a_{12}, a_{22}	a_{11}	a_{12}
$\mathbf{\mathbf { a } _ { \mathbf { 2 } }}$	H	a_{11}, a_{21}	a_{11}, a_{12}	a_{11}

As in the paragraph 3.1:
Proposition 3.4. The set H, consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right), b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{2}\right)$, equipped with the usual hyperproduct (\cdot) of matrices, is an H_{v}-commutative group.

Special Classes of H_{b}-Matrices

Now, take a map f onto and $1: 1, f: H \rightarrow H$, such that

$$
f\left(a_{11}\right)=a_{22}, f\left(a_{12}\right)=a_{21}, f\left(a_{21}\right)=a_{12}, f\left(a_{22}\right)=a_{11}
$$

Then, the successive transformations of the above multiplicative table are:

\cdot	$\mathbf{\mathbf { a } _ { \mathbf { 2 2 } }}$	$\mathbf{\mathbf { a } _ { \mathbf { 2 1 } }}$	$\mathbf{\mathbf { a } _ { \mathbf { 1 2 } }}$	$\mathbf{\mathbf { a } _ { 1 1 }}$
$\mathbf{\mathbf { a } _ { 2 2 }}$	a_{11}	a_{12}	a_{21}	a_{22}
$\mathbf{a}_{\mathbf{2 1}}$	a_{11}, a_{12}	a_{11}	a_{21}, a_{22}	a_{21}
$\mathbf{\mathbf { a } _ { 1 2 }}$	a_{11}, a_{21}	a_{12}, a_{22}	a_{11}	a_{12}
\mathbf{a}_{11}	H	a_{11}, a_{21}	a_{11}, a_{12}	a_{11}

\cdot	$\mathbf{\mathbf { a } _ { 2 2 }}$	$\mathbf{\mathbf { a } _ { 2 1 }}$	$\mathbf{\mathbf { a } _ { \mathbf { 1 2 } }}$	$\mathbf{\mathbf { a } _ { 1 1 }}$
$\mathbf{\mathbf { a } _ { 1 1 }}$	H	a_{11}, a_{21}	a_{11}, a_{12}	a_{11}
$\mathbf{\mathbf { a } _ { 1 2 }}$	a_{11}, a_{21}	a_{12}, a_{22}	a_{11}	a_{12}
$\mathbf{\mathbf { a } _ { 2 1 }}$	a_{11}, a_{12}	a_{11}	a_{21}, a_{22}	a_{21}
$\mathbf{\mathbf { a } _ { 2 2 }}$	a_{11}	a_{12}	a_{21}	a_{22}

\cdot	$\mathbf{a}_{\mathbf{1 1}}$	$\mathbf{\mathbf { a } _ { \mathbf { 1 2 } }}$	$\mathbf{\mathbf { a } _ { \mathbf { 2 1 } }}$	$\mathbf{\mathbf { a } _ { \mathbf { 2 2 } }}$
$\mathbf{\mathbf { a } _ { 1 1 }}$	a_{11}	a_{11}, a_{12}	a_{11}, a_{21}	H
$\mathbf{a}_{\mathbf{1 2}}$	a_{12}	a_{11}	a_{12}, a_{22}	a_{11}, a_{21}
$\mathbf{\mathbf { a } _ { 2 1 }}$	a_{21}	a_{21}, a_{22}	a_{11}	a_{11}, a_{12}
$\mathbf{\mathbf { a } _ { 2 2 }}$	a_{22}	a_{21}	a_{12}	a_{11}

Then, the last multiplicative table is the table of the paragraph 3.1. So, we get:
Proposition 3.5. The H_{v}-commutative group (H, \cdot) consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{2}\right)$, is isomorphic to H_{v}-commutative group (H, \cdot) consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{1}\right)$.

3.3 The case of $1 \odot_{3} 1=\{1,2\}$

The multiplicative table of the hyperproduct, is the following:

\cdot	$\mathbf{\mathbf { a } _ { 1 1 }}$	$\mathbf{\mathbf { a } _ { 1 2 }}$	$\mathbf{\mathbf { a } _ { 2 1 }}$	$\mathbf{\mathbf { a } _ { \mathbf { 2 2 } }}$
$\mathbf{\mathbf { a } _ { 1 1 }}$	H	a_{12}, a_{22}	a_{21}, a_{22}	a_{22}
$\mathbf{\mathbf { a } _ { 1 2 }}$	a_{12}, a_{22}	a_{11}, a_{21}	a_{22}	a_{21}
$\mathbf{\mathbf { a } _ { \mathbf { 2 1 } }}$	a_{21}, a_{22}	a_{22}	a_{11}, a_{12}	a_{12}
$\mathbf{\mathbf { a } _ { 2 2 }}$	a_{22}	a_{21}	a_{12}	a_{11}

Notice that in the above multiplicative table:
i) $x \cdot H=H \cdot x=H, \forall x \in H$

Achilles Dramalidis

ii) $x \cdot y=y \cdot x, \forall x, y \in H$
iii) $(x \cdot y) \cdot z \cap x \cdot(y \cdot z) \neq \emptyset, \forall x, y, z \in H$

So, we get the next proposition:
Proposition 3.6. The set H, consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right), b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{3}\right)$, equipped with the usual hyperproduct (\cdot) of matrices, is a commutative $H_{v^{-}}$group.

Proposition 3.7. For the commutative H_{v}-group ($\left.H, \cdot\right)$, consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{3}\right)$:
i) $E=E^{r}=E^{\ell}=\left\{a_{11}\right\}$ ii) $I\left(x, a_{11}\right)=I^{r}\left(x, a_{11}\right)=I^{\ell}\left(x, a_{11}\right)=\{x\}, \forall x \in H$

Proposition 3.8. The commutative H_{v}-group (H, \cdot), consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{3}\right)$: $i)$ is a single-power cyclic commutative H_{v}-group with generator the element a_{11}, with single-power period 2 .
ii) is a single-power cyclic commutative H_{v}-group with generator the element a_{22}, with single-power period 4.
iii) is a cyclic commutative H_{v}-group of period 3 to each of the generators a_{12} and a_{21}.

3.4 The case of $2 \odot_{4} 2=\{1,2\}$

The multiplicative table of the hyperproduct, is the following:

\cdot	$\mathbf{a}_{\mathbf{1 1}}$	$\mathbf{a}_{\mathbf{1 2}}$	$\mathbf{a}_{\mathbf{2 1}}$	$\mathbf{a}_{\mathbf{2 2}}$
$\mathbf{a}_{\mathbf{1 1}}$	a_{11}	a_{12}	a_{21}	a_{22}
$\mathbf{\mathbf { a } _ { 1 2 }}$	a_{12}	a_{11}, a_{12}	a_{22}	a_{21}, a_{22}
$\mathbf{\mathbf { a } _ { 2 1 }}$	a_{21}	a_{22}	a_{11}, a_{21}	a_{12}, a_{22}
$\mathbf{a}_{\mathbf{2 2}}$	a_{22}	a_{21}, a_{22}	a_{12}, a_{22}	H

Notice that in the above multiplicative table:
i) $x \cdot H=H \cdot x=H, \forall x \in H$
ii) $x \cdot y=y \cdot x, \forall x, y \in H$
iii) $(x \cdot y) \cdot z=x \cdot(y \cdot z), \forall x, y, z \in H$

So, we get the next proposition:
Proposition 3.9. The set H, consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{4}\right)$, equipped with the usual hyperproduct (\cdot) of matrices, is a commutative hypergroup.

Special Classes of H_{b}-Matrices

Proposition 3.10. For the commutative hypergroup (H, \cdot), consisting of the diag $\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{4}\right)$:

$$
\text { i) } E=\left\{a_{11}\right\} \text { ii) } I\left(x, a_{11}\right)=\{x\}, \forall x \in H
$$

Proposition 3.11. The commutative hypergroup (H, \cdot), consisting of the $\operatorname{diag}\left(b_{11}, b_{22}\right)$, $b_{11}, b_{22} \in \mathbb{Z}_{3}$ with $b_{11} b_{22} \neq 0 H_{b}$-matrices, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{4}\right)$ is a single-power cyclic commutative hypergroup with generator the element a_{22}, with single-power period 2 .

4 Construction of 2×2 upper-triangular H_{b}-matrices with entries of an H_{b}-field on \mathbb{Z}_{3}

On the set \mathbb{Z}_{3}, consider the hyperoperation $\left(\odot_{1}\right)$ defined, by setting:

$$
1 \odot_{1} 2=\{1,2\} \text { and } x \odot_{1} y=x \cdot y \text { for all }(x, y) \in \mathbb{Z}_{3} \times \mathbb{Z}_{3}-\{(1,2)\}
$$

Now, consider the set H of the 2×2 upper-triangular H_{b}-matrices with $b_{11}, b_{22} \in$ \mathbb{Z}_{3} and $b_{11} b_{22} \neq 0$, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{1}\right)$. Let us denote the elements of H by:

$$
\begin{aligned}
& a_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), a_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), a_{3}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), a_{4}=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right), \\
& a_{5}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), a_{6}=\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right), a_{7}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), a_{8}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \\
& a_{9}=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right), a_{10}=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right), a_{11}=\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right), a_{12}=\left(\begin{array}{ll}
2 & 2 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

So, $\mathrm{H}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}\right\}$.
Since the multiplicative table is long enough, it is omitted. From this table we get:
i) $x \cdot H=H \cdot x=H, \forall x \in H$
ii) (\cdot) is non-commutative
iii) $(x \cdot y) \cdot z \cap x \cdot(y \cdot z) \neq \emptyset, \forall x, y, z \in H$

So, we get the next proposition:
Proposition 4.1. The set H, consisting of the 2×2 upper-triangular H_{b}-matrices with $b_{11}, b_{22} \in \mathbb{Z}_{3}$ and $b_{11} b_{22} \neq 0$, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{1}\right)$, equipped with the usual hyperproduct (\cdot) of matrices, is a non-commtative $H_{v^{-}}$ group.

Achilles Dramalidis

Proposition 4.2. For the non-commtative H_{v}-group (H, \cdot), consisting of the 2×2 upper-triangular H_{b}-matrices with $b_{11}, b_{22} \in \mathbb{Z}_{3}$ and $b_{11} b_{22} \neq 0$, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{1}\right): E=E^{\ell}=E^{r}=\left\{a_{1}\right\}, \forall x \in H$.

Proposition 4.3. The non-commtative H_{v}-group (H, \cdot), consisting of the 2×2 upper-triangular H_{b}-matrices with $b_{11}, b_{22} \in \mathbb{Z}_{3}$ and $b_{11} b_{22} \neq 0$, with entries of the H_{b}-field $\left(\mathbb{Z}_{3},+, \odot_{1}\right)$:
i) is a single-power cyclic non-commutative H_{v}-group with generator the element a_{12}, with single-power period 4 .
ii) is a single-power cyclic non-commutative $H_{v^{-}}$group with generator the element a_{10}, with single-power period 3 .

Now, take any H_{b}-field $\left(\mathbb{Z}_{p},+, \odot_{1}\right), p=$ prime $\neq 2$ and then consider a set H consisting of the 2×2 upper-triangular H_{b}-matrices with entries of this H_{b}-field, with $b_{11} b_{22} \neq 0, b_{11}, b_{22} \in \mathbb{Z}_{p}$.
Then, for any such a set \mathbb{Z}_{p}, take for example the elements $a_{3}, a_{7} \in H$, then:

$$
a_{7} \cdot a_{3}=a_{11} \text { and } a_{3} \cdot a_{7}=\left\{a_{1}, a_{7}\right\}
$$

So, we get the next general proposition:
Proposition 4.4. Any set H, consisting of the 2×2 upper-triangular H_{b}-matrices with $b_{11} b_{22} \neq 0, b_{11}, b_{22} \in \mathbb{Z}_{p}$, $p=$ prime $\neq 2$, with entries of the $H_{b^{-}}$ field $\left(\mathbb{Z}_{p},+, \odot_{1}\right)$, equipped with the usual hyperproduct (\cdot) of matrices, is a noncommutative hyperstructure.

Remark 4.1. The above proposition means that, the minimum non-commutative $H_{v^{-}}$group, equipped with the usual hyperproduct (\cdot) of matrices and consisting of the 2×2 upper-triangular H_{b}-matrices with $b_{11} b_{22} \neq 0$, is that with entries of the H_{b}-field $\left(\mathbb{Z}_{p},+, \odot_{1}\right)$, where $1 \odot_{1} 2=\{1,2\}$ and $x \odot_{1} y=x \cdot y$ for all $(x, y) \in$ $\mathbb{Z}_{3} \times \mathbb{Z}_{3}-\{(1,2)\}$.

Special Classes of H_{b}-Matrices

References

[1] N. Antampoufis and S. Spartalis and T. Vougiouklis, Fundamental relations in special extensions, $8^{t} h$ AHA, Samothraki, Greece, (2002), 81-89.
[2] J. Chvalina and S. Hoskova, Modelling of join spaces with proximities by first-order linear partial differential operators, Ital. J. Pure Appl. Math. 21,(2007), 177-190.
[3] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.
[4] P. Corsini and V. Leoreanu, Applications of Hypergroup Theory, Kluwer Academic Publishers, 2003.
[5] B. Davvaz, Semihypergoup Theory, Academic Press, 2016.
[6] B. Davvaz and V. Leoreanu, Hyperring Theory and Applications. Int. Academic Press, 2007.
[7] B. Davvaz, A brief survey of the theory of H_{v}-structures, 8th AHA, Samothraki, Greece, (2002), 39-70.
[8] A. Dramalidis, Dual H_{v}-rings, Rivista di Matematica Pura e Applicata, Italy, v. 17, (1996), 55-62.
[9] A. Dramalidis and T. Vougiouklis, Fuzzy H_{v}-substructures in a two dimensional Euclidean vector space, Iranian J. Fuzzy Systems, 6(4), (2009), 1-9.
[10] A. Dramalidis and T. Vougiouklis, The rational numbers through $H_{v^{-}}$ structures, Int. J. Modern Sc. Eng. Techn., ISSN 2347-3755, V.2(7), (2015), 32-41.
[11] A. Dramalidis and R. Mahjoob and T. Vougiouklis, P-hopes on non-square matrices for Lie-Santilli Admissibility, Clifford Algebras Appl. CACAA, V.4, N.4, (2015), 361-372.
[12] N. Lygeros and T. Vougiouklis, The LV-hyperstructures, Ratio Math., 25, (2013), 59-66.
[13] F. Marty, Sur un generalisation de la notion de groupe, In: 8‘eme Congr‘es Math., Math. Scandinaves, Stockholm, (1934).
[14] S. Spartalis and A. Dramalidis and T. Vougiouklis, On H_{v}-Group Rings, Algebras, Groups and Geometries, 15, (1998), 47-54.

Achilles Dramalidis

[15] T. Vougiouklis, Representations of hypergroups, Hypergroup algebra, Proc. Convegno: ipergrouppi, altre strutture multivoche appl. Udine, (1985), 5973.
[16] T. Vougiouklis, Representations of hypergroups by hypermatrices, Rivista Mat. Pura Appl., N 2, (1987), 7-19.
[17] T. Vougiouklis, Generalization of P-hypergroups, Rend. Circ. Mat. Palermo, S.II, 36, (1987), 114-121.
[18] T. Vougiouklis, Groups in hypergroups, Annals Discrete Math. 37, (1988), 459-468.
[19] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. 4th AHA, World Scientific, (1991), 203-211.
[20] T. Vougiouklis, Representations of H_{v}-structures, Proc. Int. Conf. Group Theory 1992, Timisoara, (1993), 159-184.
[21] T. Vougiouklis, Hyperstructures and their Representations, Monographs in Math., Hadronic Press, 1994.
[22] T. Vougiouklis, Some remarks on hyperstructures, Contemporary Math., Amer. Math. Society, 184, (1995), 427-431.
[23] T. Vougiouklis, A new class of hyperstructures, JCISS, V.20, N.1-4, (1995), 229-239
[24] T. Vougiouklis, Enlarging H_{v}-structures, Algebras and Comb., ICAC97, Hong Kong, Springer-Verlag, (1999), 455-463.
[25] T. Vougiouklis, Finite H_{v}-structures and their representations, Rend. Sem. Mat. Messina S.II, V.9, (2003), 245-265.
[26] T. Vougiouklis, On a matrix hyperalgebra, J. Basic Science V.3/N1, (2006), 43-47.
[27] T. Vougiouklis, From H_{v}-rings to H_{v}-fields, Int. J.A.H.A. V.1, N.1,(2014), 1-13.
[28] T. Vougiouklis, Hypermathematics, H_{v}-structures, hypernumbers, hypermatrices and Lie-Santilli admissibility, American J. Modern Physics, 4(5), (2015), 34-46.
[29] T. Vougiouklis and S. Vougiouklis, The helix hyperoperations, Italian J. Pure Appl. Math., 18, (2005), 197-206.

[^0]: *Democritus University of Thrace, School of Education, 68100 Alexandroupolis, Greece; adramali@psed.duth.gr
 ${ }^{\dagger}$ (c)Achilles Dramalidis. Received: 31-10-2017. Accepted: 26-12-2017. Published: 31-122017.

