Ratio Mathematica Vol. 33, 2017, pp. 89-102

Special Classes of *H*_b**-Matrices**

Achilles Dramalidis*

[†]**doi**:10.23755/rm.v33i0.382

Abstract

In the present paper we deal with constructions of 2×2 diagonal or uppertriangular or lower-triangular H_b -matrices with entries either of an H_b -field on \mathbb{Z}_2 or on \mathbb{Z}_3 . We study the kind of the hyperstructures that arise, their unit and inverse elements. Also, we focus our study on the cyclicity of these hyperstructures, their generators and the respective periods. **Keywords**: hope; H_v -structure; H_b -structure; H_v -matrix **2010 AMS subject classifications**: 20N20.

^{*}Democritus University of Thrace, School of Education, 68100 Alexandroupolis, Greece; adramali@psed.duth.gr

[†]©Achilles Dramalidis. Received: 31-10-2017. Accepted: 26-12-2017. Published: 31-12-2017.

1 Introduction

F. Marty, in 1934 [13], introduced the hypergroup as a set H equipped with a hyperoperation $\cdot : H \times H \to \mathcal{P}(H) - \{\emptyset\}$ which satisfies the associative law: (xy)z = x(yz), for all $x, y, z \in H$ and the reproduction axiom: xH = Hx = H, for all $x \in H$. In that case, the reproduction axiom is not valid, the (H, \cdot) is called semihypergroup.

In 1990, T. Vougiouklis [19] in the Fourth AHA Congress, introduced the H_v -structures, a larger class than the known hyperstructures, which satisfy the weak axioms where the non-empty intersection replaces the equality.

Definition 1.1. [21], The (\cdot) in H is called weak associative, we write WASS, if

$$(xy)z \cap x(yz) \neq \emptyset, \forall x, y, z \in H.$$

The (\cdot) is called weak commutative, we write COW, if

$$xy \cap yx \neq \emptyset, \forall x, y \in H.$$

The hyperstructure (H, \cdot) is called H_v -semigroup if (\cdot) is WASS. It is called H_v group if it is H_v -semigroup and the reproduction axiom is valid.

Further more, it is called H_v -commutative group if it is an H_v -group and a COW. If the commutativity is valid, then H is called commutative H_v -group.

Analogous definitions for other H_v -structures, as H_v -rings, H_v -module, H_v -vector spaces and so on can be given.

For more definitions and applications on hyperstructures one can see books [3], [4], [5], [6], [21] and papers as [2], [7], [9], [10], [12], [14], [20], [22], [23], [24], [26], [27].

An element $e \in H$ is called *left unit* if $x \in ex$, $\forall x \in H$ and it is called *right unit* if $x \in xe$, $\forall x \in H$. It is called *unit* if $x \in ex \cap xe$, $\forall x \in H$. The set of left units is denoted by E^{ℓ} [8]. The set of right units is denoted by E^r and by $E = E^{\ell} \cap E^r$ the set of units [8].

The element $a' \in H$ is called *left inverse* of the element $a \in H$ if $e \in a'a$, where e unit element (left or right) and it is called *right inverse* if $e \in aa'$. If $e \in a'a \cap aa'$ then it is called *inverse* element of $a \in H$. The set of the left inverses is denoted by $I^{\ell}(a, e)$ and the set of the right inverses is denoted by $I^{r}(a, e)$ [8]. By $I(a, e) = I^{\ell}(a, e) \cap I^{r}(a, e)$, the set of inverses of the element $a \in H$, is denoted. In an H_v -semigroup the *powers* are defined by: $h^1 = \{h\}, h^2 = h \cdot h, \dots, h^n = h \circ h \circ \dots \circ h$, where (\circ) is the *n*-ary circle hope, i.e. take the union of hyperproducts, n times, with all possible patterns of parentheses put on them. An H_v -semigroup (H, \cdot) is cyclic of period s, if there is an h, called generator and a natural s, the minimum: $H = h^1 \cup h^2 \cup \dots \cup h^s$. Analogously the cyclicity for the infinite period

Special Classes of H_b-Matrices

is defined [17],[21]. If there is an h and s, the minimum: $H = h^s$, then (H, \cdot) , is called *single-power cyclic of period s*.

Definition 1.2. The fundamental relations β^* , γ^* and ϵ^* , are defined, in H_v -groups, H_v -rings and H_v -vector spaces, respectively, as the smallest equivalences so that the quotient would be group, ring and vector spaces, respectively [18],[19],[21],[22], (see also [1],[3],[4]).

More general structures can be defined by using the fundamental structures. An application in this direction is the general hyperfield. There was no general definition of a hyperfield, but from 1990 [19] there is the following [20], [21]:

Definition 1.3. An H_v -ring $(R, +, \cdot)$ is called H_v -field if R/γ^* is a field.

 H_v -matrix is a matrix with entries of an H_v -ring or H_v -field. The hyperproduct of two H_v -matrices (a_{ij}) and (b_{ij}) , of type $m \times n$ and $n \times r$ respectively, is defined in the usual manner and it is a set of $m \times r H_v$ -matrices. The sum of products of elements of the H_v -ring is considered to be the n-ary circle hope on the hyperaddition. The hyperproduct of H_v -matrices is not necessarily WASS. H_v -matrices is a very useful tool in Representation Theory of H_v -groups [15],[16], [25],[28] (see also [11], [29]).

2 Constructions of 2×2 H_b -matrices with entries of an H_v -field on \mathbb{Z}_2

Consider the field $(\mathbb{Z}_2, +, \cdot)$. On the set \mathbb{Z}_2 also consider the hyperoperation (\odot) defined by setting:

$$1 \odot 1 = \{0, 1\}$$
 and $x \odot y = x \cdot y$ for all $(x, y) \in \mathbb{Z}_2 \times \mathbb{Z}_2 - \{(0, 1)\}$.

Then $(\mathbb{Z}_2, +, \odot)$ becomes an H_b -field.

All the $2 \times 2 H_b$ -matrices with entries of the H_b -field $(\mathbb{Z}_2, +, \odot)$, are $2^4 = 16$. Let us denote them by:

$$\mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, a_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, a_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, a_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, a_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, a_5 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, a_6 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, a_7 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, a_8 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, a_9 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, a_{10} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, a_{11} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, a_{11} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, a_{11} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, a_{11} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, a_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, a$$

$$a_{12} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, a_{13} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, a_{14} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, a_{15} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

By taking a_i^2 , $i = 1, \dots, 15$ there exist 15 closed sets, let us say H_i , $i = 1, \dots, 15$. Two of them are singletons, $H_2 = H_3 = \{0\}$. Also, $H_7 = H_8$ and $H_{11} = H_{14} = H_{15}$.

So, we shall study, according to the hyperproduct (\cdot) of two H_b -matrices, the following sets:

$$H_{1} = \{\mathbf{0}, a_{1}\}, H_{4} = \{\mathbf{0}, a_{4}\}, H_{5} = \{\mathbf{0}, a_{1}, a_{2}, a_{5}\}, H_{6} = \{\mathbf{0}, a_{1}, a_{3}, a_{6}\},$$
$$H_{7} = \{\mathbf{0}, a_{1}, a_{4}, a_{7}\}, H_{9} = \{\mathbf{0}, a_{2}, a_{4}, a_{9}\}, H_{10} = \{\mathbf{0}, a_{3}, a_{4}, a_{10}\},$$
$$H_{12} = \{\mathbf{0}, a_{1}, a_{2}, a_{4}, a_{5}, a_{7}, a_{9}, a_{12}\}, H_{13} = \{\mathbf{0}, a_{1}, a_{3}, a_{4}, a_{6}, a_{7}, a_{10}, a_{13}\},$$
$$H_{15} = \{\mathbf{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}a_{11}, a_{12}, a_{13}, a_{14}, a_{15}\}.$$

2.1 The case of diagonal $2 \times 2 H_b$ -matrices

Every set of H_1, H_4, H_7 consists of diagonal $2 \times 2 H_b$ -matrices. Then, the multiplicative tables of the hyperproduct, are the following:

	0				-		
·	0	$\mathbf{a_1}$		•	l)	$\mathbf{a_4}$
0	0	0	,	0	()	0
\mathbf{a}_1	0	H_1		\mathbf{a}_4	()	H_4
•	0	a ₁		\mathbf{a}_4			a ₇
0	0	0		0			0
$\mathbf{a_1}$	0	$0, a_1$		0		($0, a_1$
\mathbf{a}_4	0	0		$0, a_4$		($0, a_4$
a_7	0	$ 0, a_1 $		$0, a_4$			H_7

In all cases:

$$x \cdot y = y \cdot x, \ \forall x, y \in H_i, \ i = 1, 4, 7$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z), \ \forall x, y, z \in H_i, \ i = 1, 4, 7$$

So, we get the next propositions:

Proposition 2.1. Every set H, consisting of diagonal 2×2 H_b -matrices with entries of the H_b -field $(\mathbb{Z}_2, +, \odot)$, equipped with the usual hyperproduct (\cdot) of matrices, is a commutative semihypergroup.

Notice that $H_1, H_4 \subset H_7$ and since $H_1 \cdot H_1 \subseteq H_1$, $H_4 \cdot H_4 \subseteq H_4$ then H_1, H_4 are sub-semihypergroups of (H_7, \cdot) .

Proposition 2.2. For all commutative semihypergroups (H, \cdot) , consisting of diagonal 2×2 H_b -matrices with entries of the H_b -field $(\mathbb{Z}_2, +, \odot)$:

$$E = \{a_i\}, I(a_i, a_i) = \{a_i\}, where a_i^2 = H.$$

Remark 2.1. According to the above construction, the commutative semihypergroups $(H_1, \cdot), (H_4, \cdot)$ and (H_7, \cdot) , are single-power cyclic commutative semihypergroups with generators the elements a_1, a_4 and a_7 , respectively, with singlepower period 2.

2.2 The case of upper- and lower- triangular $2 \times 2 H_b$ -matrices

Every set of H_5 , H_9 , H_{12} consists of upper-triangular 2×2 H_b -matrices and every set of H_6 , H_{10} , H_{13} consists of lower-triangular 2×2 H_b -matrices. Then, the multiplicative tables of the hyperproduct, are the following:

•	0	a_1	a ₂	a_5		•	0	$\mathbf{a_2}$	a_4	a ₉
0	0	0	0	0		0	0	0	0	0
\mathbf{a}_1	0	$0, a_1$	$0, a_2$	H_5	,	$\mathbf{a_2}$	0	0	$0, a_2$	$0, a_2$
$\mathbf{a_2}$	0	0	0	0		\mathbf{a}_4	0	0	$0, a_4$	$0, a_4$
\mathbf{a}_{5}	0	$0, a_1$	$0, a_2$	H_5		\mathbf{a}_{9}	0	0	H_9	H_9

•	0	a_1	a_2	\mathbf{a}_4	a_5	a_7	\mathbf{a}_9	a ₁₂
0	0	0	0	0	0	0	0	0
a_1	0	$0, a_1$	$0, a_2$	0	$0, a_1,$	$0, a_1$	$0, a_2$	$0, a_1,$
					a_2, a_5			a_2, a_5
a_2	0	0	0	$0, a_2$	0	$0, a_2$	$0, a_2$	$0, a_2$
\mathbf{a}_4	0	0	0	$0, a_4$	0	$0, a_4$	$0, a_4$	$0, a_4$
a_5	0	$0, a_1$	$0, a_2$	$0, a_2$	$0, a_1,$	$0, a_1,$	$0, a_2$	$0, a_1,$
					a_2, a_5	a_2, a_5		a_2, a_5
a_7	0	$0, a_1$	$0, a_2$	$0, a_4$	$0, a_1,$	$0, a_1,$	$0, a_2,$	H_{12}
					a_2, a_5	a_4, a_7	a_4, a_9	
\mathbf{a}_{9}	0	0	0	$0, a_2,$	0	$0, a_2,$	$0, a_2,$	$0, a_2,$
				a_4, a_9		a_4, a_9	a_4, a_9	a_4, a_9
a ₁₂	0	$0, a_1$	$0, a_2$	$0, a_2,$	$0, a_1,$	H_{12}	$0, a_2,$	H_{12}
				a_4, a_9	a_2, a_5		a_4, a_9	

•	0	a_1	a_3	\mathbf{a}_{6}		•	0	a_3	\mathbf{a}_4	a_{10}
0	0	0	0	0		0	0	0	0	0
\mathbf{a}_1	0	$0, a_1$	0	$0, a_1$,	a_3	0	0	0	0
$\mathbf{a_3}$	0	$0, a_3$	0	$0, a_3$		\mathbf{a}_4	0	$0, a_3$	$0, a_4$	H_{10}
$\mathbf{a_6}$	0	H_6	0	H_6		a_{10}	0	$0, a_3$	$0, a_4$	H_{10}

•	0	\mathbf{a}_1	\mathbf{a}_{3}	$\mathbf{a_4}$	a_6	a_7	a_{10}	a_{13}
0	0	0	0	0	0	0	0	0
a_1	0	$0, a_1$	0	0	$0, a_1$	$0, a_1$	0	$0, a_1$
a_3	0	$0, a_3$	0	0	$0, a_3$	$0, a_3$	0	$0, a_3$
a_4	0	0	$0, a_{3}$	$0, a_4$	$0, a_3$	$0, a_4$	$0, a_3,$	$0, a_3,$
							a_4, a_{10}	a_4, a_{10}
a_6	0	$0, a_1,$	0	0	$0, a_1,$	$0, a_1,$	0	$0, a_1,$
		a_3, a_6			a_3, a_6	a_3, a_6		a_{3}, a_{6}
a_7	0	$0, a_1$	$0, a_{3}$	$0, a_4$	$0, a_1,$	$0, a_1,$	$0, a_3,$	H_{13}
					a_{3}, a_{6}	a_4, a_7	a_4, a_{10}	
a ₁₀	0	$0, a_3$	$0, a_{3}$	$0, a_4$	$0, a_3$	$0, a_3,$	$0, a_3,$	$0, a_3,$
						a_4, a_{10}	a_4, a_{10}	a_4, a_{10}
a ₁₃	0	$0, a_1,$	$0, a_{3}$	$0, a_4$	$0, a_1,$	H_{13}	$0, a_3,$	H_{13}
		a_{3}, a_{6}			a_3, a_6		a_4, a_{10}	

In all cases:

$$(x \cdot y) \cap (y \cdot x) \neq \emptyset, \ \forall x, y \in H_i, \ i = 5, 6, 9, 10, 12, 13$$

 $(x \cdot y) \cdot z = x \cdot (y \cdot z), \ \forall x, y, z \in H_i, \ i = 5, 6, 9, 10, 12, 13$

So, we get the next proposition:

Proposition 2.3. Every set H, consisting either of upper-triangular or lowertriangular 2×2 H_b -matrices with entries of the H_b -field $(\mathbb{Z}_2, +, \odot)$, equipped with the usual hyperproduct (·) of matrices, is a weak commutative semihypergroup.

Notice that $H_5, H_9 \subset H_{12}$ and $H_6, H_{10} \subset H_{13}$. Since $H_5 \cdot H_5 \subseteq H_5$, $H_9 \cdot H_9 \subseteq H_9$, $H_6 \cdot H_6 \subseteq H_6$, $H_{10} \cdot H_{10} \subseteq H_{10}$, then H_5, H_9 are sub-semihypergroups of (H_{12}, \cdot) and H_6, H_{10} are sub-semihypergroups of (H_{13}, \cdot) .

Proposition 2.4. For all weak commutative semihypergroups (H, \cdot) , consisting either of upper-triangular or lower-triangular 2×2 H_b -matrices with entries of the H_b -field $(\mathbb{Z}_2, +, \odot)$, the following assertions hold i) If $a_i, a_j \in H : a_i \cdot a_j = H$, $a_i \in a_i^2$, $a_i^2 = H$, $a_i \in a_j \cdot a_i$, then

$$a)E^{\ell} = \{a_i, a_j\}, \ b)I(a_i, a_i) = I(a_j, a_i) = \{a_i, a_j\}$$

Special Classes of H_b-Matrices

 $c)I(a_{j}, a_{j}) = I^{r}(a_{i}, a_{j}) = \{a_{j}\}, \ d)I^{\ell}(a_{i}, a_{j}) = \emptyset$ $ii) If a_{i}, a_{j} \in H : a_{j} \cdot a_{i} = H, \ a_{i} \in a_{i}^{2}, \ a_{j}^{2} = H, \ a_{i} \in a_{i} \cdot a_{j}, \ then$ $a)E^{r} = \{a_{i}, a_{j}\}, \ b)I(a_{i}, a_{i}) = I(a_{j}, a_{i}) = \{a_{i}, a_{j}\}$ $c)I(a_{j}, a_{j}) = I^{\ell}(a_{i}, a_{j}) = \{a_{j}\}, \ d)I^{r}(a_{i}, a_{j}) = \emptyset$ $iii) If a_{i}, a_{j} \in H : a_{i} \cdot a_{j} = a_{j} \cdot a_{i} = H, \ a_{i} \in a_{i}^{2}, \ a_{j}^{2} = H, \ then$ $a)E = \{a_{i}, a_{j}\}, \ b)I(a_{i}, a_{i}) = I(a_{j}, a_{i}) = I(a_{j}, a_{j}) = \{a_{i}, a_{j}\}, \ c)I(a_{i}, a_{j}) = \{a_{j}\}$

Remark 2.2. According to the above construction, the weak commutative semihypergroups (H_i, \cdot) , i=5,6,9,10,12,13 are single-power cyclic weak commutative semihypergroups with generators the elements $a_5, a_6, a_9, a_{10}, a_{12}, a_{13}$ respectively, with single-power period 2.

3 Constructions of 2×2 H_b -matrices with entries of an H_b -field on \mathbb{Z}_3

Consider the field $(\mathbb{Z}_3, +, \cdot)$. On the set \mathbb{Z}_3 , we consider four cases for the hyperoperation (\odot_i) , i = 1, 2, 3, 4 defined, each time, by setting:

1)
$$1 \odot_1 2 = \{1, 2\}$$
 and $x \odot_1 y = x \cdot y$ for all $(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 - \{(1, 2)\}$.

2)
$$2 \odot_2 1 = \{1, 2\}$$
 and $x \odot_2 y = x \cdot y$ for all $(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 - \{(1, 2)\}$.

3)
$$1 \odot_3 1 = \{1, 2\}$$
 and $x \odot_3 y = x \cdot y$ for all $(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 - \{(1, 2)\}$.

4) $2 \odot_4 2 = \{1, 2\}$ and $x \odot_4 y = x \cdot y$ for all $(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 - \{(1, 2)\}.$

Then, each time, $(\mathbb{Z}_3, +, \odot_i)$, i = 1, 2, 3, 4 becomes an H_b -field.

Now, consider the set H of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_i)$. Let us denote them by:

$$a_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, a_{12} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, a_{21} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, a_{22} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

So, H = $\{a_{11}, a_{12}, a_{21}, a_{22}\}$.

3.1 The case of $1 \odot_1 2 = \{1, 2\}$

The multiplicative table of the hyperproduct, is the following:

•	a_{11}	a_{12}	a_{21}	a_{22}
a ₁₁	a_{11}	a_{11}, a_{12}	a_{11}, a_{21}	Н
a ₁₂	a_{12}	a_{11}	a_{12}, a_{22}	a_{11}, a_{21}
a ₂₁	a_{21}	a_{21}, a_{22}	a_{11}	a_{11}, a_{12}
a ₂₂	a_{22}	a_{21}	a_{12}	a_{11}

Notice that in the above multiplicative table:

i) $x \cdot H = H \cdot x = H, \forall x \in H$ ii) $(x \cdot y) \cap (y \cdot x) \neq \emptyset, \forall x, y \in H$ iii) $(x \cdot y) \cdot z \cap x \cdot (y \cdot z) \neq \emptyset, \forall x, y, z \in H$

So, we get the next proposition:

Proposition 3.1. The set H, consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_1)$, equipped with the usual hyperproduct (\cdot) of matrices, is an H_v -commutative group.

Proposition 3.2. For the H_v -commutative group (H, \cdot) , consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_1)$:

i)
$$E = \{a_{11}\}$$
 ii) $I^r(x, a_{11}) = \{a_{22}\}, \forall x \in H$ *iii*) $I^\ell(x, a_{11}) = \{a_{11}\}, \forall x \in H$

Proposition 3.3. The H_v -commutative group (H, \cdot) , consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_1)$, is a single-power cyclic H_v -commutative group with generator the element a_{22} , with single-power period 3.

3.2 The case of $2 \odot_2 1 = \{1, 2\}$

•	a ₁₁	a ₁₂	a_{21}	a ₂₂
a_{11}	a_{11}	a_{12}	a_{21}	a_{22}
a_{12}	a_{11}, a_{12}	a_{11}	a_{21}, a_{22}	a_{21}
a_{21}	a_{11}, a_{21}	a_{12}, a_{22}	a_{11}	a_{12}
a_{22}	Н	a_{11}, a_{21}	a_{11}, a_{12}	a_{11}

The multiplicative table of the hyperproduct, is the following:

As in the paragraph 3.1:

Proposition 3.4. The set H, consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_2)$, equipped with the usual hyperproduct (\cdot) of matrices, is an H_v -commutative group.

Special Classes of H_b-Matrices

Now, take a map f onto and 1:1, $f: H \to H$, such that

$$f(a_{11}) = a_{22}, \ f(a_{12}) = a_{21}, \ f(a_{21}) = a_{12}, \ f(a_{22}) = a_{11}$$

Then, the successive transformations of the above multiplicative table are:

•	$\mathbf{a_{2}}$	a_{22}		1	a_{12}	2	a ₁₁
a ₂₂	a_1	a_{11}		2	a_{21}		a_{22}
a ₂₁	a_{11}, a_{11}, a_{1	a_{11}, a_{12}		a_{11}		a_{21}, a_{22}	
a ₁₂	a_{11}, a_{11}, a_{1	a_{21}	a_{12}, a_{22}		a_{11}	L	a_{12}
a ₁₁	H		a_{11}, a_{11}, a_{1	a_{21}	a_{11}, a_{11}, a_{1	a_{12}	a_{11}
•	\mathbf{a}_{2}	a ₂₂		a_{21}		a_{12}	
a ₁₁	H		a_{11}, a_{21}		a_{11}, a_{12}		a_{11}
a ₁₂	a_{11}, a_{11}, a_{1	a_{21}	a_{12}, a_{12}, a_{1	a_{22}	a_{11}	L	a_{12}
a ₂₁	a_{11}, a_{11}, a_{11}	a_{12}	a_{11}		a_{21}, a_{21}, a_{21}	a_{22}	a_{21}
a ₂₂	a_1	L	a_{12}	2	a_{21}		a_{22}
•	a_{11}	ć	a_{12}		a_{21}	6	a_{22}
a ₁₁	a_{11}	a_1	a_{11}, a_{12}		$_{1}, a_{21}$		Н
a ₁₂	a_{12}	(a_{11}	a_{12}	a_2, a_{22}	a_{11}	a_{1}, a_{21}
a ₂₁	a_{21}	a_2	$1, a_{22}$	(a_{11}	a_{11}	$1, a_{12}$

Then, the last multiplicative table is the table of the paragraph 3.1. So, we get:

 a_{12}

 a_{11}

 a_{21}

 a_{22}

 a_{22}

Proposition 3.5. The H_v -commutative group (H, \cdot) consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_2)$, is isomorphic to H_v -commutative group (H, \cdot) consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_1)$.

3.3 The case of $1 \odot_3 1 = \{1, 2\}$

The multiplicative table of the hyperproduct, is the following:

•	a ₁₁	a ₁₂	a_{21}	a_{22}
a_{11}	Н	a_{12}, a_{22}	a_{21}, a_{22}	a_{22}
a_{12}	a_{12}, a_{22}	a_{11}, a_{21}	a_{22}	a_{21}
a_{21}	a_{21}, a_{22}	a_{22}	a_{11}, a_{12}	a_{12}
a ₂₂	a_{22}	a_{21}	a_{12}	a_{11}

Notice that in the above multiplicative table: i) $x \cdot H = H \cdot x = H, \forall x \in H$

ii) $x \cdot y = y \cdot x, \ \forall x, y \in H$ iii) $(x \cdot y) \cdot z \cap x \cdot (y \cdot z) \neq \emptyset, \ \forall x, y, z \in H$

So, we get the next proposition:

Proposition 3.6. The set H, consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_3)$, equipped with the usual hyperproduct (\cdot) of matrices, is a commutative H_v - group.

Proposition 3.7. For the commutative H_v -group (H, \cdot) , consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_3)$:

i)
$$E = E^r = E^{\ell} = \{a_{11}\} \ ii$$
) $I(x, a_{11}) = I^r(x, a_{11}) = I^{\ell}(x, a_{11}) = \{x\}, \forall x \in H$

Proposition 3.8. The commutative H_v -group (H, \cdot) , consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_3)$: *i*) is a single-power cyclic commutative H_v -group with generator the element a_{11} , with single-power period 2.

ii) is a single-power cyclic commutative H_v -group with generator the element a_{22} , with single-power period 4.

iii) is a cyclic commutative H_v -group of period 3 to each of the generators a_{12} and a_{21} .

3.4 The case of $2 \odot_4 2 = \{1, 2\}$

The multiplicative table of the hyperproduct, is the following:

•	a_{11}	a_{12}	a_{21}	a_{22}
a ₁₁	a_{11}	a_{12}	a_{21}	a_{22}
a ₁₂	a_{12}	a_{11}, a_{12}	a_{22}	a_{21}, a_{22}
a ₂₁	a_{21}	a_{22}	a_{11}, a_{21}	a_{12}, a_{22}
a ₂₂	a_{22}	a_{21}, a_{22}	a_{12}, a_{22}	Н

Notice that in the above multiplicative table:

i) $x \cdot H = H \cdot x = H, \forall x \in H$ ii) $x \cdot y = y \cdot x, \forall x, y \in H$ iii) $(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in H$

So, we get the next proposition:

Proposition 3.9. The set H, consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_4)$, equipped with the usual hyperproduct (\cdot) of matrices, is a commutative hypergroup.

Proposition 3.10. For the commutative hypergroup (H, \cdot) , consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_4)$:

i)
$$E = \{a_{11}\}$$
 ii) $I(x, a_{11}) = \{x\}, \forall x \in H$

Proposition 3.11. The commutative hypergroup (H, \cdot) , consisting of the diag (b_{11}, b_{22}) , $b_{11}, b_{22} \in \mathbb{Z}_3$ with $b_{11}b_{22} \neq 0$ H_b -matrices, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_4)$ is a single-power cyclic commutative hypergroup with generator the element a_{22} , with single-power period 2.

4 Construction of 2×2 upper-triangular H_b -matrices with entries of an H_b -field on \mathbb{Z}_3

On the set \mathbb{Z}_3 , consider the hyperoperation (\odot_1) defined, by setting:

$$1 \odot_1 2 = \{1, 2\}$$
 and $x \odot_1 y = x \cdot y$ for all $(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 - \{(1, 2)\}$

Now, consider the set H of the 2×2 upper-triangular H_b -matrices with $b_{11}, b_{22} \in \mathbb{Z}_3$ and $b_{11}b_{22} \neq 0$, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_1)$. Let us denote the elements of H by:

$$a_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, a_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, a_{3} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, a_{4} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix},$$
$$a_{5} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, a_{6} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, a_{7} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, a_{8} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix},$$
$$a_{9} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, a_{10} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, a_{11} = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}, a_{12} = \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$$

So, H = { $a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}$ }.

Since the multiplicative table is long enough, it is omitted. From this table we get: i) $x \cdot H = H \cdot x = H, \forall x \in H$

ii) (\cdot) is non-commutative

iii) $(x \cdot y) \cdot z \cap x \cdot (y \cdot z) \neq \emptyset, \ \forall x, y, z \in H$

So, we get the next proposition:

Proposition 4.1. The set H, consisting of the 2×2 upper-triangular H_b -matrices with $b_{11}, b_{22} \in \mathbb{Z}_3$ and $b_{11}b_{22} \neq 0$, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_1)$, equipped with the usual hyperproduct (\cdot) of matrices, is a non-commutative H_v -group.

Proposition 4.2. For the non-commtative H_v -group (H, \cdot) , consisting of the 2×2 upper-triangular H_b -matrices with $b_{11}, b_{22} \in \mathbb{Z}_3$ and $b_{11}b_{22} \neq 0$, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_1) : E = E^{\ell} = E^r = \{a_1\}, \forall x \in H.$

Proposition 4.3. The non-commutative H_v -group (H, \cdot) , consisting of the 2×2 upper-triangular H_b -matrices with $b_{11}, b_{22} \in \mathbb{Z}_3$ and $b_{11}b_{22} \neq 0$, with entries of the H_b -field $(\mathbb{Z}_3, +, \odot_1)$:

i) is a single-power cyclic non-commutative H_v -group with generator the element a_{12} , with single-power period 4.

ii) is a single-power cyclic non-commutative H_v -group with generator the element a_{10} , with single-power period 3.

Now, take any H_b -field $(\mathbb{Z}_p, +, \odot_1)$, $p = prime \neq 2$ and then consider a set H consisting of the 2×2 upper-triangular H_b -matrices with entries of this H_b -field, with $b_{11}b_{22} \neq 0$, $b_{11}, b_{22} \in \mathbb{Z}_p$.

Then, for any such a set \mathbb{Z}_p , take for example the elements $a_3, a_7 \in H$, then:

$$a_7 \cdot a_3 = a_{11} \text{ and } a_3 \cdot a_7 = \{a_1, a_7\}$$

So, we get the next general proposition:

Proposition 4.4. Any set H, consisting of the 2×2 upper-triangular H_b -matrices with $b_{11}b_{22} \neq 0$, $b_{11}, b_{22} \in \mathbb{Z}_p$, $p = prime \neq 2$, with entries of the H_b -field $(\mathbb{Z}_p, +, \odot_1)$, equipped with the usual hyperproduct (\cdot) of matrices, is a non-commutative hyperstructure.

Remark 4.1. The above proposition means that, the **minimum non-commutative** H_v - group, equipped with the usual hyperproduct (\cdot) of matrices and consisting of the 2 × 2 upper-triangular H_b -matrices with $b_{11}b_{22} \neq 0$, is that with entries of the H_b -field ($\mathbb{Z}_p, +, \odot_1$), where $1 \odot_1 2 = \{1, 2\}$ and $x \odot_1 y = x \cdot y$ for all $(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 - \{(1, 2)\}$.

References

- [1] N. Antampoufis and S. Spartalis and T. Vougiouklis, *Fundamental relations in special extensions*, 8^th AHA, Samothraki, Greece, (2002), 81-89.
- [2] J. Chvalina and S. Hoskova, *Modelling of join spaces with proximities by first-order linear partial differential operators*, Ital. J. Pure Appl. Math. 21,(2007), 177-190.
- [3] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.
- [4] P. Corsini and V. Leoreanu, *Applications of Hypergroup Theory*, Kluwer Academic Publishers, 2003.
- [5] B. Davvaz, Semihypergoup Theory, Academic Press, 2016.
- [6] B. Davvaz and V. Leoreanu, *Hyperring Theory and Applications*. Int. Academic Press, 2007.
- [7] B. Davvaz, A brief survey of the theory of H_v -structures, 8th AHA, Samoth-raki, Greece, (2002), 39-70.
- [8] A. Dramalidis, *Dual H_v-rings*, Rivista di Matematica Pura e Applicata, Italy, v. 17, (1996), 55-62.
- [9] A. Dramalidis and T. Vougiouklis, Fuzzy H_v -substructures in a two dimensional Euclidean vector space, Iranian J. Fuzzy Systems, 6(4), (2009), 1-9.
- [10] A. Dramalidis and T. Vougiouklis, *The rational numbers through* H_v -*structures*, Int. J. Modern Sc. Eng. Techn., ISSN 2347-3755, V.2(7), (2015), 32-41.
- [11] A. Dramalidis and R. Mahjoob and T. Vougiouklis, *P-hopes on non-square matrices for Lie-Santilli Admissibility*, Clifford Algebras Appl. CACAA, V.4, N.4, (2015), 361-372.
- [12] N. Lygeros and T. Vougiouklis, *The LV-hyperstructures*, Ratio Math., 25, (2013), 59-66.
- [13] F. Marty, *Sur un generalisation de la notion de groupe*, In: 8'eme Congr'es Math., Math. Scandinaves, Stockholm, (1934).
- [14] S. Spartalis and A. Dramalidis and T. Vougiouklis, On H_v -Group Rings, Algebras, Groups and Geometries, 15, (1998), 47-54.

- [15] T. Vougiouklis, *Representations of hypergroups, Hypergroup algebra*, Proc. Convegno: ipergrouppi, altre strutture multivoche appl. Udine, (1985), 59-73.
- [16] T. Vougiouklis, *Representations of hypergroups by hypermatrices*, Rivista Mat. Pura Appl., N 2, (1987), 7-19.
- [17] T. Vougiouklis, *Generalization of P-hypergroups*, Rend. Circ. Mat. Palermo, S.II, 36, (1987), 114-121.
- [18] T. Vougiouklis, *Groups in hypergroups*, Annals Discrete Math. 37, (1988), 459-468.
- [19] T. Vougiouklis, *The fundamental relation in hyperrings. The general hyperfield*, Proc. 4th AHA, World Scientific, (1991), 203-211.
- [20] T. Vougiouklis, *Representations of* H_v -structures, Proc. Int. Conf. Group Theory 1992, Timisoara, (1993), 159-184.
- [21] T. Vougiouklis, *Hyperstructures and their Representations*, Monographs in Math., Hadronic Press, 1994.
- [22] T. Vougiouklis, *Some remarks on hyperstructures*, Contemporary Math., Amer. Math. Society, 184, (1995), 427-431.
- [23] T. Vougiouklis, A new class of hyperstructures, JCISS, V.20, N.1-4, (1995), 229-239
- [24] T. Vougiouklis, *Enlarging* H_v -structures, Algebras and Comb., ICAC97, Hong Kong, Springer-Verlag, (1999), 455-463.
- [25] T. Vougiouklis, *Finite* H_v -structures and their representations, Rend. Sem. Mat. Messina S.II, V.9, (2003), 245-265.
- [26] T. Vougiouklis, *On a matrix hyperalgebra*, J. Basic Science V.3/N1, (2006), 43-47.
- [27] T. Vougiouklis, From H_v -rings to H_v -fields, Int. J.A.H.A. V.1, N.1,(2014), 1-13.
- [28] T. Vougiouklis, Hypermathematics, H_v-structures, hypernumbers, hypermatrices and Lie-Santilli admissibility, American J. Modern Physics, 4(5), (2015), 34-46.
- [29] T. Vougiouklis and S. Vougiouklis, *The helix hyperoperations*, Italian J. Pure Appl. Math., 18, (2005), 197-206.