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Abstract  

Some important concepts about algebraic hyperstructures, especially 

from a geometric point of view, are recalled. Many applications of the Hv 

structures, introduced by Vougiouklis in 1990, to the de Finetti 

subjective probability theory are considered. We show how the wealth of 

probabilistic meanings of Hv-structures confirms the importance of the 

theoretical results obtained by Vougiouklis. Such results can be very 

meaningful also in many application fields, such as decision theory, 

highly dependent on subjective probability.  

Keywords: algebraic hyperstructures; subjective probability; Hv 

structures, join spaces. 
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1 Introduction  

The theory of the algebraic hyperstructures was born with the paper 

(Marty, 1934) at the VIII Congress of Scandinavian Mathematicians and it was 

developed in the last 40 years. 

In the book "Prolegomena of hypergroup theory" (Corsini, 1993) all the 

fundamental results on the algebraic hyperstructures, until 1992, have been 

presented. A complete bibliography is given in the appendix. A review of the 

results until 2003 is in (Corsini, Leoreanu, 2003).  

Perhaps the most important motivation for the study of algebraic 

hyperstructures comes from the basic text "Join Geometries" by Prenowitz and 

Jantosciak (1979), which in addition to giving an original and general 

approach to the study of Geometry, introduces an interdisciplinary vision of 

Geometry and Algebra, showing how the Euclidean Spaces can be drawn as 

Join Spaces, i.e. commutative hypergroups that satisfy an axiom called 

"incidence property". Moreover, various other geometries, such as the 

Projective Geometries (Beutelspacher, Rosembaum, 1998), are also Join 

Spaces. 

Considering, for example, the Affine Geometries, it is seen that associative 

property is not satisfied in many important geometric spaces. This and other 

important geometric and algebraic issues have led to the study of weak 

associative hyperstructures. The theory of such hyperstructures, called Hv-

structures, was carried out by Thomas Vougiouklis, who introduced the 

concept of Hv-structures in the work “The fundamental relation in hyperrings. 

The general hyperfield” (1991),. presented at the 4th AHA Conference, 

Xanthi, Greece, 1990. Subsequently Vougiouklis found many fundamental 

results on the Hv-structures in numerous works (e.g. Vougiouklis, 1991, 1992, 

1994a, 1994b; Spartalis, Vougiouklis, 1994). A collection of all the results on 

the subject until 1994 is in the important book “Hyperstructures and their 

representations” (Vougiouklis, 1994c).  

Subsequent insights into Hv-structures were made by Vougiouklis in many 

subsequent works (1996a, 1996b, 1996c, 1997, 1999a, 1999b, 2003a, 2003b, 

2008, 2014), also in collaboration with other authors (Dramalidis, 

Vougiouklis, 2009, 2012; Vougiouklis et al., 1997; Nikolaidou, Vougiouklis, 

2012). 

From the Hv-structures of Vougiouklis, the idea in the Chieti-Pescara 

research group was conceived to interpret some important structures of 

subjective probability as algebraic structures. Some paper on this topic are 

(Doria, Maturo, 1995, 1996; Maturo, 1997a, 1997b, 1997c, 2000a, 2000b, 

2001a, 2001b, 2003c, 2008, 2010).  

The study of applications of hyperstructures to the treatment of uncertainty 

and decision-making problems in Architecture and Social Sciences begins with 
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a series of lectures held at the Faculty of Architecture in Pescara by Giuseppe 

Tallini in 1993, on hyperstructures seen from a geometric point of view, and 

was developed at various AHA conferences (Algebraic Hyperstructures and 

Applications) as well as various seminars and conferences with Piergiulio 

Corsini from 1994 to 2014. 

For example, in December 1994 and October 1995, two conferences on 

"Hyperstructures and their Applications in Cryptography, Geometry and 

Uncertainty Treatment" were organized by Corsini, Eugeni and Maturo, 

respectively in Chieti and Pescara, with which it was initiated the systematic 

study of the applications of hyperstructures to the treatment of uncertainty and 

Architecture.  

In (Corsini, 1994), it is proved that the fuzzy sets are particular 

hypergroups. This fact leads us to examine properties of fuzzy partitions from 

a point of view of the theory of hypergroups. In particular, crisp and fuzzy 

partitions given by a clustering could be well represented by hypergroups. 

Some results on this topic and applications in Architecture are in the papers of 

Ferri and Maturo (1997, 1998, 1999a, 1999b, 2001a, 2001b). Applications of 

hyperstructures in Architecture are also in (Antampoufis et al., 2011; Maturo, 

Tofan, 2001). Moreover, the results on fuzzy regression by Fabrizio Maturo, 

Sarka Hoskova-Mayerova (2016) can be translate as results on 

hyperstructures.  

A new research trend concerns the applications of hypergroupoid to Social 

Sciences. Vougiouklis, in some of his papers (e.g. 2009, 2011), propose 

hyperstructures as models in social sciences; Hoskova-Mayerova and Maturo 

analyze social relations and social group behaviors with fuzzy sets and Hv-

structures (2013, 2014), and introduce some generalization of the Moreno 

indices. 

 

2  Fundamental Definitions on Hyperstructures 

Let us recall some of the main definitions on the hyperstructures that will 

be applied in this paper to represent concepts of Logic and Subjective 

Probability.  

For further details on hyperstructure theory, see, for example, (Corsini, 

1993; Corsini, Leoreanu, 2003; Vougiouklis, 1994c). 

Definition 2.1 Let H be a non-empty set and let *(H) be the family of 

non-empty subsets of H. A hyperoperation on H is a function  HH  

*(H), such that to every ordered pair (a, b) of elements of H associates a 

non-empty subset of H, noted ab. The pair (H, ) is called hypergroupoid 

with support H and hyperoperation .  
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If A and B are non-empty subsets of H, we put AB = {ab: aA, 

bB}. Moreover, a, bH, we put, aB = {a}B and Ab = A{b}. 

Definition 2.2 A hypergroupoid (H, ) is said to be: 

• a semihypergroup, if a, y, cH, a(bc) = (ab)c    (associativity);  

• a quasihypergroup, if aH, aH = H = Ha            (riproducibility);  

• a hypergroup if it is both a semihypergroup and a quasihypergroup;  

• commutative, if a, bH, ab = ba; 

• idempotent, if aH, aa={a}.    

• weak associative, if a, b, cH, a(bc)  (ab)c  ; 

• weak commutative, if a, bH, ab  ba ≠. 

The weak associative hypergroupoid, called also Hv-semigroup by 

Vougiouklis (1991), appear to be particularly significant in the Theory of 

Subjective Probability, and all results found by Vougiouklis in later papers 

(e.g.1992, 1994a, 1994b), should have important logic and probabilistic 

meanings. Vougiouklis (1991) introduced also the notation “Hv-group” for the 

weak associative quasihypergroups. 

A Hv-semigroup is said to be left directed if a, b, cH, a(bc)  

(ab)c, and right directed if a(bc)  (ab)c. 

Let (H, ) a hypergroupoid. Using a geometric language, a singleton {a}, 

aH, is said to be a block of order 1 (briefly 1-block) generated by a. Every 

hyperproduct ab, a, bH, is a block of order 2 (2-block), called block 

generated by (a, b). For every a1, a2, a3 H, the hyperproducts a1  (a2  a3) 

and (a1  a2)  a3 are the 3-blocks generated by (a1, a2, a3). For recurrence, for 

every a1, a2, …, anH, n > 2, the blocks generated by (a1, a2, …, an) are the 

hyperproducts AB, with A block of order s < n, generated by (a1, …, as), and 

B block of order n-s generated by (as+1, …, an). In general, for every n > 1, a 

block of order n (or n-block) is a hyperproduct AB, with A block of order s < 

n, B block of order n - s.  

For every nN, let n be the set of all the blocks of order n, and let 0 = 

{n, nN}. Then for every nN0, a geometric space (H, n) is associated to 

the hypergroupoid (H, ). A polygonal with length m of (H, n) is a n-tuple 

(A1, A2, …, Am) of blocks of n such that Ai  Ai+1 ≠ . Let n be the set of 

all the polygonals of (H, n). 

The relation n and n* are defined as: 

a, bH, a n b   An: {a, b} A, 

a, bH, a n* b   Pn: {a, b} P. 

n is reflexive and symmetric, n* is the transitive closure of n. For n = 0 

we have the classical relations  and * considered in many papers, e.g. 

(Freni,1991; Corsini, 1993; Gutan, 1997; Vougiouklis 1999b), 
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A more restrictive condition than the weak associativity is the “strong 

weak associativity”, called also feeble associativity.  

Definition 2.3 A hypergroupoid (H, ) is said to be feeble associative if, 

for every a1, a2, …, anH, the intersection of all the blocks generated by (a1, 

a2, …, an) is not empty. 

If (H, ) is a commutative quasihypergroup, the -division is defined in H, 

as the hyperoperation /  HH  *(H) that to every pair (a, b) HH 

associates the nonempty set {xH: abx}.  

Definition 2.4 A commutative hypergroup (H, ) is said to be a join space 

if the following “incidence property” hold: 

 

a, b, c, d H, a / b  c / d ≠  ad  bc ≠ .                             (2.1) 

 

A join space (H, ) is: 

• open, if, a, b H, a ≠ b, a  b  {a, b} = ; 

• closed, if, a, b H, {a, b}  a  b; 

• -idempotent, if, aH, a  a = {a}; 

• / -idempotent, if, aH, a / a = {a}. 

A join space (H, ) is said to be a join geometry if it is -idempotent 

and / -idempotent. We have the following theorem. 

Theorem 2.1 Let H = Rn and  the hyperoperation that to every (a, 

b)HH associates the open segment with extremes a and b if a ≠ b, and a  a 

= {a}. (H, ) is a join geometry, called Euclidean join geometry. 

Let (H, ) be a join geometry. We can note that it is open. Using a 

notation like that of Euclidean join geometry, in this paper the elements of H 

are called points and a block ab, with a ≠ b, is called (open) “-segment” 

with extremes a and b or simply “segment” if only the hyperoperation  is 

considered in the context.  

The concept of join space leads to a unified vision of Algebra and 

Geometry, that can be very useful from the point of view of advanced 

didactics (Di Gennaro, Maturo, 2002). Also, as some of our papers show, join 

geometries have important applications in subjective probability. Moreover, 

we can introduce general uncertainty measures in join geometries such that in 

the Euclidean join geometries reduce to the de Finetti coherent probability 

(Maturo, 2003a, 2003b, 2006, 2008; Maturo et al., 2010). 

 



Antonio Maturo and Fabrizio Maturo 

10 

 

3  Subjective Probability and Hyperstructures 

Let us recall the concept of coherent probabilty and its geometric 

representation with the notation given in (Maturo, 2006).  

The coherence of an assessment of probabilities p = (p1, p2, …, pn) on a 

n-tuple E = (E1, E2, …, En) of events is defined by an hypothetical bet with a 

n-tuple of wins S = (S1, S2, …, Sn) (de Finetti, 1970; Coletti, Scozzafava, 

2002; Maturo 2006).  

For every i {1, 2, …, n} an individual A, called the better, pays the 

stake piSi to an individual B, called the bank, and, if the event Ei occurs, A 

receives from B the win Si. If Si < 0 the verse of the bet on Ei is inverted, i. e. 

B pays the stake and A pays the win. 

The total random gain GA of A is given by the formula: 

GA, p, S = (|E1| – p1) S1 + (|E2| – p2) S2 + … + (|En| – pn) Sn.               (3.1)    

where |Ei| = 1 if the event Ei is verified and |Ei| = 0 if the event Ei is not 

verified. 

The atoms associated with the set of events E = {E1, E2, …, En} are the 

intersections A1A2…An, where Ai{Ei, -Ei}, different from the 

impossible event . Let At(E) be the set of the atoms. Then GA(p, S) can be 

interpret as the function: 

GA, p, S: a = A1A2…An  At(E)  (|E1| – p1) S1 + (|E2| – p2) S2 + 

… + (|En| – pn) Sn.                                                                                         (3.2) 

Definition 3.1 The probability assessment p = (p1, p2, …, pn) on the n-

tuple E = (E1, E2, …, En) of events is said to be coherent if, for every S = (S1, 

S2, …, Sn)  Rn, there are a, bAt(E) such that GA, p, S(a)  0 and GA, p, S(b)  

0.   

We note that the previous definition implies a hyperoperation. Let  be 

an algebra of events containing the set E. Then  also contains At(E) and we 

can define the hyperoperation  on : 

                       : (A, B) At(A, B).                                      (3.3)                                                                                              

The above considerations show that it may be important, in a 

probabilistic context, to know the properties of the algebraic hyperstructure (, 

), introduced in (Doria, Maturo, 2006), and called hypergroupoid of atoms.  

The coatoms associated with E are the nonimpossible complementary 

events of the atoms. Let Co(E) be the set of coatoms, and k be the number of 

atoms. For k = 1, At(E) = {}, where  is the certain event and Co(E) is 

empty. For k = 2, At(E) = Co(E) and for k >2 the sets At(E) and Co(E) are 

disjoint and with the some number of elements. 

For every A, B, C  , we have (we write X Y to denote X  Y): 

(AB)C = ({X C, X (-C), XAt(A, B)}  {Y C, Y (-C), YCo(A, 

B)})-{}, 
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A(BC) = ({A Z, (-A) Z, ZAt(B, C)}  {A T, (-A) T, TCo(B, 

C)}-{}, 

At{A, B, C} = {X C, X (-C), XAt(A, B)}-{} = {A Z, (-A) Z, 

ZAt(B, C)}-{}. 

Then: 

At{A, B, C}  (AB)C  A(BC).   

Therefore, the following theorem applies: 

Theorem 3.1 Let  be an algebra of events, and  the hyperoperation 

defined by (3.3). Then (, ) is a commutative Hv-semigroup. 

The algebra associated with the set of events E = {E1, E2, …, En}, 

denoted with Alg(E) is the set containing the impossible event  and all the 

unions of the elements of At(E), i.e. XAlg(E) iff Y(At(E)) such that X 

is the union of the elements of Y. If |At(E)|=s, then |Alg(E)| = 2s. 

Let  be an algebra of events. We can introduce the following 

hyperoperation on : 

                          : (A, B) Alg(A, B)                                   (3.4)                                                             

The hyperoperation  is commutative, and, since {A, B}  Alg(A, B), 

(, ) is a quasihypergroup. Moreover At(A, B)  Alg(A, B) and so  is an 

extension of the operation  and we have: 

At{A, B, C}  (A  B)  C  A  (B  C). 

Theorem 3.2 Let  be an algebra of events, and  the hyperoperation 

defined by (3.4). Then (, ) is a commutative Hv-group. 

Suppose A, B, C are logically independent events, then |At(A, B| = 4, 

|Alg(A, B| = 24 = 16, |At(A, B, C)| = 8, Alg(A, B, C)| = 28 = 256. Moreover 

Alg(A, B) contains ,  and other 7 elements with their complements. If X is 

one of these elements, then X  C contains , , C, -C and other 12 elements.  

Then (A  B)  C has 712+4= 88 elements and 168 elements are in 

Alg(A, B, C) but not in (A  B)  C. So, in general, we can write: 

At{A, B, C}  Co{A, B, C}  (A  B)  C, A  (B  C)  Alg(A, B, 

C). 

Let (H, ) be a join geometry. From the associative and commutative 

properties, for every a1, a2, …, anH there is only a block a1 a2 …an 

generated by (a1, a2, …, an) and this block depend only by on the set {a1, a2, 

…, an} and not on the order of the elements. By the idempotence we can 

reduce to the case in which a1, a2, …, an are distinct.  

Definition 3.2 For every A  H, A ≠ , the convex hull of A, in (H, 

), is the set  

[A] = {xH: nN,  a1, a2, …, anA : x  a1 a2 …an}.  

If A is finite then [A] is said to be the polytope generated by A. 
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Let E = (E1, E2, …, En) be a n-tuple of events set and let At(E) the set 

of atoms associated to E. For every a = A1A2…An At(E), let xi(a) =1 if 

Ai = Ei and xi(a) = 0 if Ai = - Ei. The atom a is identified with the point (x1(a), 

x2(a), …, xn(a))Rn. From definition 3.1, the following theorem applies 

(Maturo, 2006, 2008, 2009). 

Theorem 3.3 Let (Rn, ) the Euclidean join geometry. The probability 

assessment p = (p1, p2, …, pn) on the n-tuple E = (E1, E2, …, En) of events is 

coherent iff p[At(E)].  

The theorem 3.3 opens the way to introduce measures of uncertainty 

that are different from the probability and coherent with respect non-Euclidean 

join geometries. We can introduce many possible join geometries. The 

following is an example. 

Example 3.1 Let H = Rn and  the hyperoperation that to every (a = 

(a1, a2, …, an), b = (b1, b2, …, bn))HH associated the Cartesian product of 

the open segments Ir with extremes ar and br belonging to (R, ). We can prove 

that (H, ) is a join geometry, called the Cartesian join geometry.  

Some applications of the Cartesian join geometry to problems of 

Architecture and Town-Planning are in (Ferri, Maturo, 2001a, 2001b). 

In a general join geometry with support Rn we can introduce the 

following definition: 

Definition 3.3 Let (Rn, ) be a join geometry. The measure assessment 

m = (m1, m2, …, mn) on the n-tuple E = (E1, E2, …, En) of events is said to be 

coherent with respect to (Rn, ) iff m[At(E)]. 

For example,  can be the hyperoperation that to every (a, b)HH 

associates a particular curve with extremes a and b, and the polytope [At(E)] 

is a deformation of the Euclidean polytope, obtained by replacing the segments 

with curves. It can have important meanings in appropriate contexts of Physics 

or Social Sciences. 

In a generic join geometry (Rn, ) can happen that some of the most 

intuitive properties of the Euclidean join geometry fall. To avoid this, you 

should restrict yourself to join geometries where some additional properties 

apply. Important is the following:  

Ordering condition. If a, b, c, are distinct elements of Rn, at most one 

of the following formulas occurs: abc, bac, cab. 

A join geometry (Rn, ) with the order condition is said to be an 

ordered join geometry. 
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4  Conditional Events, Conditional Probability 

and Hyperstructures 

The “axiomatic probability” by Kolmogorov, usually considered as the 

“true probability” is based on the assessment of a universal set U, whose 

elements are called the atoms, a -algebra S of subsets of U, whose elements 

are called the events, and a finite measure p on S, called the probability, such 

that p(U) = 1.  

Let S* = S-{}. In the Kolmogorov approach to probability no 

consideration is given to the logical concept of conditional event E|H, with 

ES and HS*, but only the conditional probability p(E|H) is defined, only in 

the case in which p(H) > 0, by the formula: 

 

                              p(E|H) = p(E H)/p(H).                                              (4.1) 

 

On the contrary, the “subjective probability” (de Finetti,1970; Dubins, 

1975; Coletti, Scozzafava 2002; Maturo, 2003b, 2006, 2008b), don’t consider 

the events as subsets of a given universal set U, but they are logical 

propositions that can assume only one of the truth values: true and false. A 

sharp separation is given among the concepts concerning the three areas of the 

logic of the certain, the logic of the uncertain and the measure theory.  

The conditional event E|H is a concept belonging to the logic of the 

certain and it is a proposition that can assume three values: true if both E and 

H are verified, false if H is verified but E is not and empty (or undetermined) if 

H is not verified. The conditional event E|H reduces to the event E if H is the 

certain event . In the appendix of his fundamental book (1970) de Finetti 

presents also some different interpretations of the logical concept of three 

valued proposition.  

By the point of view of Reichenbach (1942) the value “empty” is replaced 

by the value “undetermined”. In the following we assume the notation of 

Reichenbach and we write T for true, F for false and U for undetermined. The 

set V = {F, U, T} is also ordered by putting F < U < T. 

A numerical representation of the ordered set V is given by associating 0 

to F, 1 to T and the number 1/2 to U. An alternative, in a fuzzy contest, we can 

associate to U is the fuzzy number u with support and core the interval [0, 1], 

then the relation 0 < u <1 is a consequence of the usual order relation among 

the trapezoidal fuzzy numbers. 

In the subjective probability, the conditional probability p(E|H) of the 

conditional event E|H is given by an expert and no condition is given about the 

belonging of the events E and H to a structured set, e.g. like an algebra. The 

only condition of H ≠ is required, because if H =  we have the totally 

undetermined conditional event. 
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If C is a set of conditional events the assessment of a subjective 

conditional probability to the elements of C must satisfy some coherence 

conditions.  

The coherence of an assessment of probabilities p = (p1, p2, …, pn) on a n-

tuple K = (E1|H1, E2|H2, …, En|Hn) of conditional events is defined by an 

hypothetical bet with a n-tuple of wins S = (S1, S2, …, Sn) (de Finetti, 1970; 

Coletti, Scozzafava, 2002; Maturo, 2006).  

For every i {1, 2, …, n} an individual A, called the better, pays the stake 

piSi to an individual B, called the bank, and,  

• if the event EiHi occurs, A receives from B the win Si; 

• if the event -Hi occurs, the amount paid piSi is refunded to A; 

• if the event (-Ei) Hi occurs, no payment is made to A. 

The total random gain GA of A is given by the formula: 

                 GA, p, S = |H1| (|E1| – p1) S1 +…+|Hn|(|En| – pn) Sn.                 (4.2) 

where |Ei| = 1 if the event Ei is verified and |Ei| = 0 if the event Ei is not 

verified, and similarly to H. 

The atoms associated with the set of conditional events K = {E1|H1, E2|H2, 

…, En|Hn} are the intersections A1A2…An, where Ai{Ei Hi, -Ei Hi, -Hi}, 

different from the impossible event . The complement of H = {Hi, i {1, 2, 

…, n}} is said to be the inactive atom.  

Let Atc(E) be the set of the atoms associated to K. Then GA, p, S can be 

interpret as the function: 

GA, p, S: a = A1A2…An  Atc(E)  (|A1| – p1) S1 + (|A2| – p2) S2 + … 

+ (|An| – pn) Sn                                                                                              (4.3) 

where |Ai| = 1, 0, pi, if Ai = Ei Hi, -Ei Hi, -Hi, respectively. 

Definition 4.1 The conditional probability assessment p = (p1, p2, …, pn) 

on the n-tuple K = (E1|H1, E2|H2, …, En|Hn) of conditional events is said to be 

quasi-coherent if, for every S = (S1, S2, …, Sn)  Rn, there are a, bAtc(E) 

such that GA, p, S(a)  0 and GA, p, S(b)  0. Moreover, p = (p1, p2, …, pn) is said 

to be coherent if, for any s  n and for any {i1, i2, …, is}  {1, 2, …, n}, the 

conditional probability assessment pi1, i2, …, is = (pi1, pi2, …, pis) on (Ei1|Hi1, 

Ei2|Hi2, …, Eis|His) is quasi-coherent. 

Let K = (E1|H1, E2|H2, …, En|Hn) be a n-tuple of conditional events and let 

Atc(K) the set of atoms associated to K = {E1|H1, E2|H2, …, En|Hn}. For every 

a = A1A2…AnAtc(E), let xi(a) = |Ai|. The atom a is identified with the 

point (x1(a), x2(a), …, xn(a))Rn. From definition 4.1, the following theorems 

applies: 

Theorem 4.1 Let (Rn, ) the Euclidean join geometry. The probability 

assessment p = (p1, p2, …, pn) on the n-tuple K = (E1|H1, E2|H2, …, En|Hn) of 

conditional events is quasi-coherent iff p[Atc(K)].  
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Theorem 4.2 The probability assessment p = (p1, p2, …, pn) on K = 

(E1|H1, E2|H2, …, En|Hn) is coherent iff for any s  n and for any {i1, i2, …, is} 

 {1, 2, …, n}, the conditional probability assessment pi1, i2, …, is = (pi1, pi2, …, 

pis) on (Ei1|Hi1, Ei2|Hi2, …, Eis|His) belongs to [Atc(Ei1|Hi1, Ei2|Hi2, …, Eis|His)] 

 Rs. 

Let  be an algebra of events. An axiomatic formalization of the 

coherence conditions in the case in which K = {E|H, E, H - {}} is in 

Dubins (1975). 

In terms of hyperstructures, conditional events can be defined by the 

following hyperstructure, introduced in (Doria, Maturo, 1996) and studied in 

(Maturo, 1997c).  

Definition 4.2 Let  be an algebra of events. We define on  the 

hyperoperation: 

: (E, H)   {E H, H}. 

We have: 

E  H  H  E = {E H}; 

(E  H)  K = {E H K, H K, K},    E  (H  K) = {E H K, H K, E K, K}; 

E  E = {E}. 

Then we have the following theorem. 

Theorem 4.3 The hyperstructure (, ), let us call the hyperstructure of 

conditional events, is a weak commutative and idempotent Hv-semigroup. 

Moreover (, ) is right directed, i.e. (E  H)  K  E  (H  K). 

Any singleton {H} is the conditional event H|H and any set {E, H} with E 

 H is the conditional event E|H, true if E is verified, false if H is verified but 

not E, and it is not undetermined if H is not verified. Many other meanings, of 

the finite subsets of , are considered in (Maturo, 1997c). 

The coherence conditions of definition 4.1 and theorems 4.1 and 4.2 lead 

us to associate the n-tuple K = (E1|H1, E2|H2, …, En|Hn) of conditional events 

with the set all the conditional events A|B with AAt{E1, E2, …, En} and B an 

union of elements of {H1, H2, …, Hn}. Then, if  is an algebra of events, and 

   is a set of nonempty events, closed with respect to the union, the 

following hyperoperation can be introduced: 

: (E|H, F|K)  ()()  {A|B: AAt{E, F}, B{H, K, HK}}. 

We can prove the following thorem 

Theorem 4.4 The hyperstructure (, ) is a commutative Hv-

semigroup, called hypergroupoid of conditional atoms and, for  = {}, is 

isomorphic to (, ). 
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5 Conclusions and Perspectives of Research 

We have shown that all logical operations related to subjective probability 

can reduce to Vougiouklis hyperstructures. (, ) and (, ) are 

commutative Hv-semigroups, and (, ) is a commutative Hv-group. The 

hyperoperation  isweak commutative and idempotent and (, ) is a right 

directed Hv-semigroup. 

To verify the coherence of a subjective probability assignment p = (p1, p2, 

…, pn) on the n-tuple E = (E1, E2, …, En) of events, we represent the atoms as 

points of the space Rn, in which the i-th axis is associated with the event Ei. 

The assessment p is coherent iff p belongs to the polytope of the join geometry 

(Rn, ) generate from the atoms.  

More complex is the coherence check of a conditional probability 

assessment p = (p1, p2, …, pn) on the n-tuple K = (E1|H1, E2|H2, …, En|Hn) of 

conditional events, as in this case we must consider polytopes in all the join 

geometries (Rs, ), s  n associated to subsets of K = {E1|H1, E2|H2, …, En|Hn}. 

A research perspective is to investigate the properties of the considered 

Vougiouklis structures, highlighting their meanings from the point of view of 

logic and subjective probability. 

A further research perspective is studying the measures that can be 

obtained by applying the geometric coherence conditions in ordered join 

geometries other than the Euclidean join geometry.  
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1 Introduction
As was mentioned e.g. in [32], in various branches of mathematics we en-

counter important examples of topologico-algebraical structures like topological
groupoids, groups, rings, fields etc. Therefore, there was a natural interest to gen-
eralize the concept of topological groupoid to topological hypergroupoid. First
results of this type can be found e.g. in [6, 32].

Hypergroups are generalizations of groups. Group is a set with a binary oper-
ation on it satisfying a number of conditions. If this binary operation is taken to be
multivalued, then we arrive at a hypergroup. The motivation for generalization of
the notion of group resulted naturally from various problems in non-commutative
algebra, another motivation for such an investigation came from geometry.

Hypergroups theory, born in 1934 with Marty‘s paper [39] presented in the
8th Congress of Scandinavian Mathematicians where he had given this renowned
definition. ”Marty, managed to do the greatest generalisation anybody would ever
do, acting as a pure and clever researcher. He left space for future generalisations
”between” his axioms and other hypergroups, as the regular hypergroups, join
spaces etc. The reproduction axiom in the theory of groups is also presented as
solutions of two equations, consequently, Marty got round that hitch, too. ” [53].
He was followed in 1938 by Dresher with Ore [23] as well as by Griffiths [27] and
in 1940 by Eaton [24] is now studied from the theoretical point of view and for its
applications to many subjects of pure and applied mathematics (see [9, 15, 16, 57])
like algebra, geometry, convexity, topology, cryptography and code theory, graphs
and hypergraphs, lattice theory, Boolean algebras, logic, probability theory, binary
relations, theory of fuzzy and rough sets [12, 20], automata theory, economy, etc.
[10, 11, 15].

Hypergroupoids, [17] quasi-hypergroups, semihypergroups [41, 42], hyper-
groups [1, 2], hyperrings [40, 52], hyperfields, [60] hyper vector spaces, hyperlat-
tices, up to all kinds of fuzzy hyperstructures [49], have been studied theoretically
as well as from the perspective of particular applications, see e.g. [5, 18, 21, 30,
33, 56]. In 1990, Th. Vougiouklis introduced the class of Hv-structures which
satisfy the weak axioms where the non-empty intersection replaces the equality
[55].

Moreover, topological and algebraic structures in fuzzy sets are strategically
located at the juncture of fuzzy sets, topology, [26] algebra [7], lattices, etc. They
has these unique features: major studies in uniformities and convergence struc-
tures, fundamental examples in lattice-valued topology, modifications and exten-
sions of sobriety, categorical aspects of lattice-valued subsets, logic and founda-
tions of mathematics, t-norms and associated algebraic and ordered structures. In
the last decade a number of interesting applications to social sciences appear, e.g.
[3, 43, 44, 59, 61, 62].
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In [6], Ameri presented the concept of topological (transposition) hypergroups.
He introduced the concept of a (pseudo, strong pseudo) topological hypergroup
and gave some related basic results. R. Ameri studied the relationships between
pseudo, pseudo topological polygroups and topological polygroups. In [28], Hei-
dari et al. studied the notion of topological hypergroups as a generalization of
topological groups. They showed - by considering the quotient topology induced
by the fundamental relation on a hypergroup - that if every open subset of a topo-
logical hypergroup is complete part, then it’s fundamental group is a topological
group. Moreover, in [29], Heidari et al. defined the notion of topological poly-
groups and they investigated the topological isomorphism theorems it. Later on,
Salehi Shadkami et al. [47, 48] established various relations between its com-
plete parts and open sets and they used these facts to obtain some new results in
topological polygroups. For example, they investigated some properties of cp-
resolvable topological polygroups. In [32], the author of this note introduced the
concept of topological hypergroupoid and found necessary and sufficient condi-
tions for having a τU -topological hypergroupoid, a τL-topological hypergroupoid
and a τℵ-topological hypergroupoid by using the concepts of pseudocontinuity,
strong pseudocontinuity and both respectively.

When in 1965 Zadeh [63] introduced the fuzzy sets, than the reconsideration
of the concept of classical mathematics began. Since then the connections be-
tween fuzzy sets and hyperstructures was studied. Using the structure of a fuzzy
topological space and that of a fuzzy group (introduced by Rosenfeld [46]), Fos-
ter [26] defined the concept of fuzzy topological group. Later, Ma and Yu [38]
changed Foster’s definition in order to make sure that an ordinary topological
group is a special case of a fuzzy topological group. An interesting book concern-
ing fuzzy topology was published in 1997 by Liu [36].

Inspired by the definition of the topological groupoid I. Cristea and S. Hoskova-
Mayerova in [19] extended these notions on a fuzzy topological space.

This paper is an overview of results received by S. Hoskova-Mayerova in [32]
as well as the results with coauthors I. Cristea [19], M. Tahere, B. Davaz [50]. Pa-
per is organized as follows: Firstly, we review some basic definitions and results
on hypergroups and topology and fuzzy topological spaces. Section 3 recall the
results concerning topological hypergroupoids. In Section 4 we recall some basic
results on the fuzzy topological spaces that we use in the following Section 6. In
Section 5 we recall the definition of fuzzy (pseudo)continuous hyperoperations,
we explain relations between fuzzy continuous and continuous hyperoperations,
between fuzzy continuous and fuzzy pseudocontinuous hyperoperations, respec-
tively. Moreover, we give the condition when a product hypergroupoid is a fuzzy
pseudotopological hypergroupoid. Finally, in Section 6 we recall some results -
published in [19] concerning fuzzy topological hypergroupoids.
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2 Basic Definitions
In this section, we present some definitions related to hyperstructures and

topology that are used throughout the paper. They can be found in e.g. [4, 19,
31, 22].

Definition 2.1. Let H be a non-empty set. Then, a mapping ◦ : H×H → P∗(H)
is called a binary hyperoperation on H , where P∗(H) is the family of all non-
empty subsets of H . The couple (H, ◦) is called a hypergroupoid.

If A and B are two non-empty subsets of H and x ∈ H , then we define:

A ◦B =
⋃
a∈A
b∈B

a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a:

• semihypergroup if for every x, y, z ∈ H , we have x ◦ (y ◦ z) = (x ◦ y) ◦ z;

• quasihypergroup if for every x ∈ H , x◦ = H = H ◦ x (This condition is
called the reproduction axiom);

• hypergroup if it is a semihypergroup and a quasihypergroup.

Definition 2.2. Let (X, τ) be a topological space. Then

1. (X, τ) is a T0-space if for all x 6= y ∈ X , there exists U ∈ τ such that
x ∈ U and y is not in U or y ∈ U and x is not in U .

2. (X, τ) is a T1-space if for all x 6= y ∈ X , there exist U, V ∈ τ such that
x ∈ U and y is not in U and y ∈ V and x is not in V .

3. (X, τ) is a T2-space if for all x 6= y ∈ X , there exist U, V ∈ τ such that
x ∈ U , y ∈ V and U ∩ V = ∅.

So, every T2-topological space is a T1-topological space and every T1-topological
space is a T0-topological space.

Definition 2.3. Let (H1, ◦1), (H2, ◦2) be two hypergroupoids and define the topolo-
gies τ, τ ′ on H1, H2 respectively. A mapping f from H1 to H2 is said to be good
topological homomorphism if for all x, y ∈ H1,

1. f(a ◦1 b) = f(a) ◦2 f(b);

2. f is continuous;
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3. f is open.

A good topological homomorphism is a topological isomorphism if f is one to one
and onto and we say that H1 is topologically isomorphic to H2.

Let (H, ◦) be a hypergroupoid and A,B be non empty subsets of H . By
A ≈ B we mean that A ∩B 6= ∅.

3 Topological Hypergroupoids
Š. Hošková-Mayerová in [32] introduced some new definitions inspired by the

definition of topological groupoid. Her results are summarized in this section.

Definition 3.1. [32] Let (H, ·) be a hypergroupoid and (H, τ) be a topological
space. The hyperoperation “ · ” is called:

1. pseudocontinuous (p-continuous) if for everyO ∈ τ , the setO? = {(x, y) ∈
H2 : x · y ⊆ O} is open in H ×H .

2. strongly pseudocontinuous (sp-continuous) if for every O ∈ τ , the set O? =
{(x, y) ∈ H2 : x · y ≈ O} is open in H ×H .

A simple way to prove that a hyperoperation “ · ” is p- continuous (sp- con-
tinuous) is to take any open set O in τ and (x, y) ∈ H2 such that x · y ⊆ O
(x · y ≈ O) and prove that there exist U, V ∈ τ such that u.v ⊆ O (u.v ≈ O) for
all (u, v) ∈ U × V .

Definition 3.2. [32] Let (H, ·) be a hypergroupoid, (H, τ) be a topological space
and τ? be a topology on P∗(H).

The triple (H, ·, τ) is called a pseudotopological or strongly pseudotopolog-
ical hypergroupoid if the hyperoperation “ · ” is p-continuous or sp-continuous
respectively.

The quadruple (H, ·, τ, τ?) is called τ?-topological hypergroupoid if the hyper-
operation “ · ” is τ?-continuous.

Let (H, τ) be a topological space, V, U1, . . . , Uk ∈ τ . We define SV , IV and
ℵ(U1, . . . , Uk) as follows:

• SV = {U ∈ P∗(H) : U ⊆ V } = P∗(V ).

• IV = {U ∈ P∗(H) : U ≈ V }.

• ℵ(U1, . . . , Uk) = {B ∈ P∗(H) : B ⊆
⋃k
i=1 Ui and B ≈ Ui for i =

1, . . . , k}.
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S∅ = I∅ = ∅. For all V 6= ∅, we have

SV = P∗(V ) and IV ⊇ {H,P∗(V )}.

Lemma 3.1. Let (H, τ) be a topological space.
Then {SV }V ∈τ forms a base for a topology (τU ) on P∗(H). Moreover, τU is

called the upper topology.
Then {IV }V ∈τ forms a subbase for a topology (τL) on P∗(H). Moreover, τL

is called the lower topology.
Let (H, τ) be a topological space. Then {ℵ(U1, . . . , Uk)}Ui∈τ forms a base for

a topology (τℵ) on P∗(H). Moreover, τℵ is called the Vietoris topology [51].

Following results was proved by S. Hoskova-Mayerova in [32].

Theorem 3.1. Let (H, ·) be a hypergroupoid and (H, τ) be a topological space.
Then the triple (H, ·, τ) is a pseudotopological hypergroupoid if and only if

the quadruple (H, ·, τ, τU) is a τU -topological hypergroupoid.
Then the triple (H, ·, τ) is a strongly pseudotopological hypergroupoid if and

only if the quadruple (H, ·, τ, τL) is a τL-topological hypergroupoid.
Then the triple (H, ·, τ) is a pseudotopological hypergroupoid and strongly

pseudotopological hypergroupoid if and only if the quadruple (H, ·, τ, τℵ) is a
τℵ-topological hypergroupoid.

4 Fuzzy Topological Spaces
In this section we recall some basic results on the fuzzy topological spaces

that we use in the following.
LetX be a nonempty set. A fuzzy setA inX is characterized by a membership

function µA : X −→ [0, 1]. We denote by FS(X) the set of all fuzzy sets on X .
In this paper we use the definition of a fuzzy topological space given by Chang

[8].

Definition 4.1. [8] A fuzzy topology on a set X is a collection T of fuzzy sets in
X satisfying

(i) 0 ∈ T and 1 ∈ T (where 0, 1 : X −→ [0, 1], 0(x) = 0, 1(x) = 1, for any
x ∈ X).

(ii) If A1, A2 ∈ T , then A1 ∩ A2 ∈ T .

(iii) If Ai ∈ T for any i ∈ I , then
⋃
i∈I Ai ∈ T ,
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where µA1∩A2(x) = µA1(x) ∧ µA2(x) and µ⋃
i∈I Ai

(x) =
∨
i∈I µAi

(x).

The pair (X, T ) is called a fuzzy topological space.

In the definition of a fuzzy topology of Lowen [37], the condition (i) is sub-
stituted by

(i’) for all c ∈ [0, 1], kc ∈ T , where µkc(x) = c, for any x ∈ X .

Example 4.1. Now we present some examples of fuzzy topologies on a set X . For
more details see [19].

(i) The family T = {0, 1} is called the indiscrete fuzzy topology on X .

(ii) The family of all fuzzy sets in X is called the discrete fuzzy topology on X .

(iii) If τ is a topology on X , then the collection T = {AO | O ∈ τ} of fuzzy
sets X , where µAO

is the characteristic function of the open set O, is a fuzzy
topology on X .

(iv) The collection of all constant fuzzy sets in X is a fuzzy topology on X ,
where a constant fuzzy set A in x has the membership function µA defined
as follows : µa : −→ [0, 1], µA(x) = k, with k a fix constant in [0, 1].

Definition 4.2. [8] Given two topological spaces (X, T ) and (Y,U), a function
f : X −→ Y is fuzzy continuous if, for any fuzzy set A ∈ U , the inverse image
f−1[A] belongs to T , where µf−1[A](x) = µA(f(x)), for any x ∈ X .

Proposition 4.1. [8] A composition of fuzzy continuous functions is fuzzy contin-
uous function.

Definition 4.3. [36] A base for a fuzzy topological space (X, T ) is a subcollection
B of T such that each member A of T can be written as the union of members of
B.

A natural question is: ‘How to judge whether some fuzzy subsets just form a
base of some fuzzy topological space?’ We have the following rule:

Proposition 4.2. [36] A family B of fuzzy sets in X is a base for a fuzzy topology
T on X if and only if it satisfies the following conditions:

(i) For any A1, A2 ∈ B, we have A1 ∩ A2 ∈ B.

(ii)
⋃
A∈B

A = 1.
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If (X1, T1) and (X2, T2) are fuzzy topological spaces, we can speak about the
product fuzzy topological space (X1 × X2, T1 × T2), where the product fuzzy
topology is given by a base like in the following result, which can be generalized
to a family of fuzzy topological spaces.

Proposition 4.3. [36] Let (X1, T1) and (X2, T2) be fuzzy topological spaces. The
product fuzzy topology T on the product space X = X1 × X2 has as a base
the set of product fuzzy sets of the form A1 × A2, where Ai ∈ Ti, i = 1, 2, and
µA1×A2(x1, x2) = µA1(x1) ∧ µA2(x2).

Proposition 4.4. [26] Let {(Xi, Ti)}i∈I , {(Yi,Ui)}i∈I be two families of fuzzy topo-
logical spaces and (X, T ), (Y,U) the respective product fuzzy topological spaces.
For each i ∈ I , let fi : (Xi, Ti) −→ (Yi,Ui). Then the product mapping
f = ×fi : (xi) −→ (fi(xi)) of (X, T ) into (Y,U) is fuzzy continuous if fi is
fuzzy continuous, for each i ∈ I .

5 Some Results on Relation between Topological
Spaces on a Set and Topological Spaces on its Pow-
erset

In this section, we use the results presented in [32] to study topological hyper-
groupoids. First, we show that there is no relation (in general) between pseudo-
topological and strongly pseudotopological hypergroupoids.

Proposition 5.1. [50] Let H = {a, b}, τ = {∅, {a}, H} and define a hyperopera-
tion “ ◦1 ” on H as follows:

◦1 a b

a b H

b H H

Then (H, ◦1, τ) is a pseudotopological hypergroupoid.

Thus, the quadruple (H, ◦1, τ, τU) is a τU - topological hypergroupoid.
Moreover, (H, ◦1, τ) is not strongly pseudotopological hypergroupoid.

Proposition 5.2. [50] Let H = {a, b}, τ = {∅, {a}, H} and define a hyperopera-
tion “ ◦2 ” on H as follows:

◦2 a b

a H a

b a b
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Then (H, ◦2, τ) is a strongly pseudotopological hypergroupoid.

Now we have: The quadruple (H, ◦2, τ, τL) is a τL- topological hypergroupoid.
(H, ◦2, τ) is not pseudotopological hypergroupoid. Not every strongly pseudo-
topological hypergroupoid is a pseudotopological hypergroupoid.

Let (H, ◦) be a hypergroupoid and τ a topology on H . Then (H, ◦, τ) may
be neither a pseudotopological hypergroupoid nor a strongly pseudotopological
hypergroupoid. We illustrate this fact by the following example.

Example 5.1. [50] Let H = {a, b}, τ = {∅, {a}, H} and define a hyperoperation
“ ◦3 ” on H as follows:

◦3 a b

a b a

b a b

It is easy to check, by taking O = {a} and a ◦3 b ∈ O, that (H, ◦3, τ) is nei-
ther a pseudotopological hypergroupoid nor a strongly pseudotopological hyper-
groupoid.

Proposition 5.3. Let (H, ◦, τ, τU) be a topological hypergroupoid. Then (H, τ) is
the trivial topology if and only if (P∗(H), τU) is the trivial topology.

For the proof see [50].

Corolary 5.1. Let (H, ◦, τ, τℵ) be a topological hypergroupoid. Then (H, τ) is
the trivial topology if and only if (P∗(H), τℵ) is the trivial topology.

Proposition 5.4. Let (H, ◦, τ, τL) be a topological hypergroupoid. Then (H, τ) is
the trivial topology if and only if (P∗(H), τL) is the trivial topology.

The proof is similar to that of Proposition 5.3.

Proposition 5.5. Let (H, ◦, τ, τU) be a topological hypergroupoid, |H| ≥ 2 and
(H, τ) be the powerset topology.

Then (P∗(H), τU) is not the powerset topology on P∗(H).
Then (P∗(H), τL) is not the powerset topology on P∗(H).

Proposition 5.6. Let (H1, ◦1, τ) and (H2, ◦2, τ ′) be two topologically isomorphic
hypergroupoids.

If (H1, ◦1, τ, τU) is a τU - topological hypergroupoid then (H2, ◦2, τ ′, τ ′U) is a
τU - topological hypergroupoid.

If (H1, ◦1, τ, τL) is a τL- topological hypergroupoid then (H2, ◦2, τ ′, τ ′L) is a
τL- topological hypergroupoid.
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Corolary 5.2. Let (H1, ◦1, τ) and (H2, ◦2, τ ′) be two topologically isomorphic
hypergroupoids. If (H1, ◦1, τ, τℵ) is a τℵ- topological hypergroupoid then
(H2, ◦2, τ ′, τ ′ℵ) is a τℵ- topological hypergroupoid.

We present now some τℵ- topological hypergroupoids.

Proposition 5.7. Let (H, ◦) be the total hypergroup (i.e., x◦y = H for all (x, y) ∈
H2) and τ be any topology on H . Then (H, ◦, τ) is both: pseudotopological
hypergroupoid and strongly pseudotopological hypergroupoid.

Corolary 5.3. Let (H, ◦) be the total hypergroup and τ be any topology on H .
Then the quadruple (H, ◦, τ, τℵ) is a τℵ- topological hypergroupoid.

Proposition 5.8. Let H = R, (H, ◦) be the hypergroupoid defined by:

x ◦ y =

{
{a ∈ R : x ≤ a ≤ y}, if x ≤ y;
{a ∈ R : y ≤ a ≤ x}, if y ≤ x.

and τ be the topology on H defined by:

τ = {]−∞, a[: a ∈ R ∪ {±∞}}.

Then (H, ◦, τ, τℵ) is a τℵ- topological hypergroupoid.

Proposition 5.9. Let H = R, (H, ◦) be the hypergroupoid defined by:

x ◦ y =

{
{a ∈ R : x ≤ a ≤ y}, if x ≤ y;
{a ∈ R : y ≤ a ≤ x}, if y ≤ x.

and τ be the topology on H defined by:

τ = {]a,∞[: a ∈ R ∪ {±∞}}.

Then (H, ◦, τ ′, τ ′ℵ) is a τ ′ℵ- topological hypergroupoid.

Proposition 5.10. Let (H, ?) be the hypergroupoid defined by x ? y = {x, y} and
τ be any topology on H . Then (H, ?, τ, τℵ) is a τℵ- topological hypergroupoid.

Example 5.2. [50] Let H = {a, b}, τ = {∅, {a}, H} and define a hyperoperation
“ ◦4 ” on H as follows:

◦4 a b

a a H

b H b

Then, by Proposition 5.10, (H, ◦4, τ, τℵ) is a τℵ- topological hypergroupoid. More-
over, τℵ = {∅, {{a}},P∗(H)}.
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Proposition 5.11. Let (H, ·) be any hypergroupoid and τ be the power set topol-
ogy on H . Then (H, ·, τ, τℵ) is a τℵ- topological hypergroupoid.

Proposition 5.12. Let (H, ·) be any hypergroupoid and τ be the trivial topology
on H . Then (H, ·, τ, τℵ) is a τℵ- topological hypergroupoid.

Next, we present a topological hypergroupoid that does not depend on the
pseudocontinuity nor on strongly pseudocontinuity of the hyperoperation.

Proposition 5.13. Let (H, ·) be any hypergroupoid, τ be any topology on H and
τ? be the trivial topology on P∗(H). Then (H, ·, τ, τ?) is a topological hyper-
groupoid.

Next, we present some results on T0, T1, T2- topological spaces.

Proposition 5.14. Let (H, ·, τ, τU) be a τU -topological hypergroupoid.
If (P∗(H), τU) is a T0- topological space then (H, τ) is a T0- topological space.

The converse of Proposition 5.14 is not always true. An illustrating example
is presented in [50].

Proposition 5.15. Let |H| ≥ 2 and (H, ·, τ, τU) be a τU -topological hypergroupoid.
Then (P∗(H), τU) is neither a T1- topological space nor a T2- topological space.

Proposition 5.16. Let |H| ≥ 2 and (H, ·, τ, τL) be a τL-topological hypergroupoid.
Then (P∗(H), τL) is neither a T1- topological space nor a T2- topological space.

Proposition 5.17. Let (H, ·, τ, τL) be a τL-topological hypergroupoid.
If (P∗(H), τL) is a T0- topological space then (H, τ) is a T0- topological space.

Proposition 5.18. Let (H, ·, τ, τL) be a τL-topological hypergroupoid. If (H, τ)
is a T0- topological space then (P∗(H), τL) may not be a T0- topological space.

It can be proved that: Let (H, ·, τ, τℵ) be a τℵ-topological hypergroupoid. If
(P∗(H), τℵ) is a T0- topological space then (H, τ) is a T0- topological space.

Let (H, ·, τ, τℵ) be a τℵ-topological hypergroupoid. Then (P∗(H), τℵ) is nei-
ther a T2- topological space nor a T1- topological space.

6 Fuzzy Topological Hypergroupoids
In this section we recall some results - published in [19] concerning fuzzy

topological hypergroupoids.
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Definition 6.1. Let (H, ◦) be a hypergroupoid, T and U be fuzzy topologies on
H and P∗(H), respectively. The hyperoperation ”◦” is called U-fuzzy continuous
if the map ◦ : H × H −→ P∗(H) is fuzzy continuous with respect to the fuzzy
topologies T × T and U .

For any topology τ on a set X , we denote by Tc the fuzzy topology formed
with the characteristic functions of the open sets of τ . In the following result we
give a relation between the continuity and fuzzy continuity of a hyperoperation.

Proposition 6.1. Let (H, ◦) be a hypergroupoid, τ and τ ∗ be topologies on H
and P∗(H), respectively. Let Tc and Uc be the fuzzy topologies on H and P∗(H),
respectively, generated by τ and τ ∗, respectively. The hyperoperation ”◦” is τ ∗-
continuous if and only if it is Uc-fuzzy continuous.

Let (H, T ) be a fuzzy topological space. Then the family B = {Ã ∈ FS
(P∗(H)) | A ∈ T }, where µÃ(X) =

∧
x∈X

µA(x), is a base for a fuzzy topology T ∗

on P∗(H).

Definition 6.2. Let (H, ◦) be a hypergroupoid endowed with a fuzzy topology
T . The hyperoperation ”◦” is called fuzzy pseudocontinuous (or briefly fuzzy p-
continuous) if, for any A ∈ T , the fuzzy set A∗ in H×H belongs to T ×T , where
µA∗(x, y) =

∧
u∈x◦y

µA(u).

The triple (H, ◦, T ) is called a fuzzy pseudotopological hypergroupoid if the
hyperoperation ”◦” is fuzzy p-continuous.

Now we can characterize a fuzzy pseudotopological hypergroupoid (H, ◦, T )
using the T ∗-fuzzy continuity of the hyperoperation ”◦”, where the fuzzy topology
T ∗ is that one given in Proposition 6.1.

Let (H, ◦) be a hypergroupoid and T be a fuzzy topology on H . Then the
triple (H, ◦, T ) is a fuzzy pseudotopological hypergroupoid if and only if the hy-
peroperation ”◦” is T ∗-fuzzy continuous.

Proposition 6.2. Let (H1, T1) and (H2, T2) be two fuzzy topological spaces. We
denote H = H1 ×H2 and T = T1 × T2. Then the mapping

α : (H, T )× (H, T ) −→ (H1 ×H1, T1 × T1)× (H2 ×H2, T2 × T2),

defined by α((x1, x2), (y1, y2)) = ((x1, y1), (x2, y2)) is fuzzy continuous.

Let (H1, ◦1) and (H2, ◦2) be two hypergroupoids. The product hypergroupoid
(H1 × H2,⊗) has the hyperoperation defined by (x1, x2) ⊗ (y1, y2) = (x1 ◦1
y1, x2 ◦2 y2), for any (x1, x2), (y1, y2) ∈ H1 ×H2.
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So, we get:
If (H1, ◦1, T1) and (H2, ◦2, T2) are fuzzy pseudotopological hypergroupoids,

then the product hypergroupoid (H1×H2,⊗, T1×T2) is a fuzzy pseudotopological
hypergroupoid.

7 Conclusions
On a hypergroup, a topology such that the hyperoperation is pseudocontinuous

can be defined. This paper highlighted the topological hypergroupoids by proving
some of theirs properties. It illustrated the results achieved on topological hyper-
groupoids in [32] by examples and remarks. Moreover, it was shown that there is
no relation (in general) between pseudotopological and strongly pseudotopologi-
cal hypergroupoids. In particular, we presented a topological hypergroupoid that
does not depend on the pseudocontinuity nor on strongly pseudocontinuity of the
hyperoperation.

For future work, the existence of topological hypergroupoids on P∗(H) that
are neither τU nor τL nor τℵ can be investigated or the existence of n-ary topolog-
ical hypergroupoids can be studied.

This work could be also continued in order to introduce the notion of fuzzy
topological hypergroup as a generalization of a fuzzy topological group in the
sense of Foster [26] or in the sense of Ma and Yu [38].

The author would like to express a wish for this beautiful discipline of math-
ematics to be continue and to be developed. Since there are already numbers of
excellent mathematicians around the world who are concerned with this issue, lets
believe their interest will not go away, and that the School of Professor P. Corsini
and Professor T. Vougiouklis will find many followers.
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[30] Š. Hošková, J. Chvalina, A survey of investigations of the Brno research
group in the hyperstructure theory since the last AHA Congress, In: 10th In-
ternational Congress on Algebraic Hyperstructures and Applications : Brno
2008, Czech Republic, 71–83, 2009.
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1 Hyperstructures and applications
Theory of hyperstructures is a field of algebra, around 80 years old and very

rich in applications, for instance in geometry, fuzzy and rough sets, automata,
cryptography, codes, probabilities, graphs and hypergraphs (see [2], [3]).

Some basic definitions:

A hyperoperation on a nonempty set H is a map ◦ : H ×H → P∗(H), where
P∗(H) denotes the set of nonempty subsets of H .

For subsets A,B of H , set A ◦B =
⋃
a∈A;b∈B a ◦ b, and for h ∈ H write h ◦A

and A ◦ h for {h} ◦ A and A ◦ {h}.
The pair (H, ◦) is a hypergroup if for all a, b, c of H we have

(a ◦ b) ◦ c = a ◦ (b ◦ c) and a ◦H = H ◦ a = H.

If only the associativity is satisfied then (H, ◦) is a semihypergroup. The condition
a ◦H = H ◦ a = H for all a of H is called the reproductive law.

A nonempty subset K of H is a subhypergroup if K ◦ K ⊆ K and for all
a ∈ K, K ◦ a = K = a ◦K.

A commutative hypergroup (H, ◦) is a join space iff the following implication
holds: for all a, b, c, d, x of H ,

a ∈ b ◦ x, c ∈ d ◦ x⇒ a ◦ d ∩ b ◦ c 6= ∅.

A semijoin space is a commutative semihypergroup satisfying the join condition.
Hypergroups have been introduced by Marty [5] and join spaces by Prenowitz

[6]. Join spaces are an important tool in the study of graphs and hypergraphs,
binary relations, fuzzy and rough sets and in the reconstruction of several types of
noneuclidean geometries, such as the descriptive, spherical and projective geome-
tries [3], [6]. Several interesting books have been writen on hyperstructures [2],
[3], [4], [6], [8].

2 Emeritus Professor Thomas Vougiouklis and his
contribution to hyperstructures

Professor Thomas Vougiouklis is an author of more than 150 research papers
and seven text books in mathematics. He have over 3000 references. He also
wrote eight books on poetry, one CD music and lyrics.

He participated in Congresses (invited) about 60 congresses, over 20 countries.
His monograph:
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Hyperstructures and their representations, Hadronic Press monograph in Math-
ematics, USA (1994)

is an important book on the theory of algebraic hyperstructures.

Let us mention here some of his main contributions in Hyperstructures, es-
pecially Hv -Structures, Lie Algebras of infinite dimension, ring theory, Mathe-
matical Models.

He first introduced and studied:

• The term hope=hyperoperation (2008)

• P-hypergroups, single-power cyclicity (1981).

• Fundamental relations in hyper-rings (γ∗-relation) and Representations of
hypergroups by generalized permutations and hypermatrices (1985).

• Very Thin hyperstructures, S-construction (1988).

• Uniting elements procedure (1989), with P.Corsini.

• General hyperring, hyperfield (1990).

• The weak properties and the Hv-structures (1990).

• General Hypermodules, hypervector spaces(1990).

• Representation Theory by Hv-matrices (1990).

• Fundamental relations in hyper-modulus and hyper-vector spaces (ε∗ - rela-
tion) (1994).

• The e-hyperstructures, Hv-Lie algebras (1996).

• The h/v-structures (1998).

• ∂ - operations (2005),

• The helix hyperoperations, with S. Vougiouklis,

• n-ary hypergroups (2006), with B.Davvaz.,

• Bar instead of scale, (2008), with P. Vougioukli, etc
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Let us present here some of these notions.

HV - structures

These notions were introduced in 1990 and they satisfy the weak axioms,
where the non-empty intersection replaces the equality.

WASS means weak associativity:

∀x, y, z ∈ H, (xy)z ∩ x(yz) 6= ∅.

COW means weak commutativity:

∀x, y ∈ H, xy ∩ yx 6= ∅.

A hyperstructure (H, ·) is called HV -semigroup if it is WASS and it is called HV -
group if it is a reproductive HV -semigroup, i.e.

xH = Hx = H, ∀x ∈ H.

Similarly, HV -vector spaces, HV -algebras and HV -Lie algebras are defined
and their applications are mentioned in the above books.

Fundamental relations

The fundamental relations β∗, γ∗ and ε∗ are defined in HV -groups, HV -rings
and HV -vector spaces being the smallest equivalences, such that the quotient
structures are a group, a ring or a vector space respectively.

The following theorem holds:

Theorem. Let (H, ·) be an HV -group and denote by U the set of all finite
products of elements of H. We define the relation β in H as follows:

xβy ⇔ ∃u ∈ U : {x, y} ⊆ u

Then β∗ is the transitive closure of β.

In a similar way, relation γ∗ is defined in an HV -ring and relation ε∗ is defined
in an HV -vector space.

An HV -ring (R,+, ·) is called an HV -field if R/γ∗ is a field.
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If (H, ·), (H, ∗) are HV -semigroups defined on the same set H , then the hy-
peroperation (·) is smaller than (∗) (and (∗) is greater than (·) if there exists an
f ∈ Aut(H, ∗), such that

x · y ⊆ f(x ∗ y).
Theorem. Greater hopes than the ones which are WASS or COW are also

WASS or COW, respectively.

This theorem leads to a partial order on HV -structures and mainly to a corre-
spondence between hyperstructures and posets.

The determination of all HV -groups and HV -rings is very interesting, but dif-
ficult. There are many results of R. Bayon and N. Lygeros in this direction.

In paper [1] one can see how many HV -groups and HV -rings there exist, up to
isomorphism, for several chasses of hyperstructures of two, three or four elements.

∂- operations

The hyperoperations, called theta-operations, are motivated from the usual
property, which the derivative has on the derivation of a product of functions.

If H is a set endowed with n operations (or hyperoperations) ◦1, ◦2, ..., ◦n and
with one map or multivalued map f : H → H (or f : H → P(H) respectively),
then n hyperoperations ∂1, ∂2, ..., ∂n on H can be defined as follows:
∀x, y ∈ H,∀i ∈ {1, 2, ..., n},

x∂iy = {f(x) ◦i y, x ◦i f(y)}

or in the case ◦i is a hyperoperation or f is a multivalued map, we have
∀x, y ∈ H,∀i ∈ {1, 2, ..., n},

x∂iy = (f(x) ◦i y) ∪ (x ◦i f(y)).

If ◦i is WASS, then ∂i is WASS too.

n-ary hypergroups

A mapping f : H × · · · ×H︸ ︷︷ ︸
n

−→ P∗(H) is called an n-ary hyperoperation,

where P∗(H) is the set of all the nonempty subsets of H . An algebraic sys-
tem (H, f), where f is an n-ary hyperoperation defined on H , is called an n-
ary hypergroupoid.
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We shall use the following abbreviated notation:
The sequence xi, xi+1, ..., xj will be denoted by xji . For j < i, xji is the empty
symbol. When yi+1 = · · · = yj = y the last expression will be written in the form
f(xi1, y

(j−i), znj+1).

For nonempty subsets A1, ..., An of H we define

f(An1 ) = f(A1, ..., An) =⋃
{f(xn1 ) | xi ∈ Ai, i = 1, ..., n}.

An n-ary hyperoperation f is called associative if

f(xi−11 , f(xn+i−1i ), x2n−1n+i ) =

f(xj−11 , f(xn+j−1j ), x2n−1n+j ),

hold for every 1 ≤ i < j ≤ n and all x1, x2, ..., x2n−1 ∈ H . An n-ary hyper-
groupoid with the associative n-ary hyperoperation is called an

n-ary semihypergroup.

An n-ary hypergroupoid (H, f) in which the equation b ∈ f(ai−11 , xi, a
n
i+1)

has a solution xi ∈ H for every ai−11 , ani+1, b ∈ H and 1 ≤ i ≤ n, is called an
n-ary quasihypergroup.

Moreover, if (H, f) is an n-ary semihypergroup, (H, f) is called an
n-ary hypergroup.

An n-ary hypergroupoid (H, f) is
commutative if for all σ ∈ Sn and for every an1 ∈ H we have
f(a1, ..., an) = f(aσ(1), ..., aσ(n)).

Let (H, f) be an n-ary hypergroup and B be a non-empty subset of H . B
is called an n-ary subhypergroup of (H, f), if f(xn1 ) ⊆ B for xn1 ∈ B, and the
equation b ∈ f(bi−11 , xi, b

n
i+1) has a solution xi ∈ B for every bi−11 , bni+1, b ∈ B

and 1 ≤ i ≤ n.
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1 Introduction
Dealing with classical algebraic structures often leads to the study of the be-

haviours of the elements of these sets with respect to the introduced operation(s).
This study focuses, very often, on looking for elements with similar behaviour.
Therefore, the use of the quotient set is intertwined with the search for regularity
and symmetry between elements of algebraic structures and ’similar’ algebraic
structures too.
It is well known that ”... the most powerful tool in order to obtain a stricter struc-
ture from a given one is the quotient out procedure. To use this method in ordi-
nary algebraic domains, one needs special equivalence relations. If one suggests a
method that can applied for every equivalence relation, has to use the hyperstruc-
tures” [6].
In the commutative algebra, many problems of algebraic structures are not always
visible, resulting in a large number of questions and obstacles appearing in the
non-commutative algebra. For example, in classical theory if G is a group and
H ⊆ G is a subgroup, then G/H quotient is a group only when H is a normal
subgroup. This obstacle [21] is overcome by the definition of Fr. Marty (1934)
[17], since

”If G is a group and H ⊆ G is a subgroup of it, then the quotient G/H is a
hypergroup.”

The previous proposition is generalized by the definition [26] of the weak hyper-
structures by Th. Vougiouklis (1990), as follows:

”If G is a group and S is any partition of G, then the quotient G/H is a
Hv-group”.

In these cases, the quotient set functioned as a process that led to ’looser’ struc-
tures than classic algebraic ones, but increased complexity.
The utility of outmost importance of the quotient set in hyperstructures is its use
as a bridge between classical structures and hyperstructures. In 1970, this con-
nection was achieved by M. Koskas [16] using the β - relation and its transitive
closure. Observing the similar behaviour of elements belonging to the same hy-
perproduct leads to the introduction of the β - relation which, clearly, is reflective,
symmetric but not always transitive. The next step is to use the transitive closure
of β to obtain equivalence relation and partition in equivalence classes. Using
the usual definition of operations between classes, we return to classical algebraic
structures. This relation studied mainly by Corsini [5], Vougiouklis [25], Davvaz
[8], Leoreanou-Fotea [7], Freni [12], Migliorato [19] and many others.
The quotient set not only links the hyperstructures with the classical structures
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as a bridge, but also enhances the view of hyperstructures as a generalization of
the corresponding classical algebraic structures. In this way, as reported in [22],
the algebraic structures are contained in the corresponding hyperstructures as sub-
cases. It seems that Fr. Marty defined the hypergroup replacing the axiom of the
existence of a unitary and inverse element with the axiom of reproduction because
he had ”sensed” this connection and chose the widest possible generalization in
order to create space for the introduction of new types of hypergroups.
In 1988 at a congress in Italy, Th. Vougiouklis presents a paper titled ”How a
hypergroup hides a group” [22], [27] and finds out that
a) Vougiouklis, eighteen years after Koskas worked on the same subject without
having knowledge of his work.
b) Much of the study was completed with the work of Koskas and especially P.
Corsini and his school.
c) Vougiouklis approach was different from that of Koskas and the others.
In the following we will present the two different approaches.

2 Preliminaries
In a set H 6= ∅ equipped with a hyperoperation (·) : H × H → ℘∗(H) we

abbreviate by

WASS the weak associativity: x · (y · z) ∩ (x · y) · z 6= ∅,∀(x, y, z) ∈ H3.
COW the weak commutativity: x · y ∩ y · x 6= ∅, ∀(x, y) ∈ H2.

Definition 2.1. The hyperstructure (H, ·) is called Hv-semigroup if it is WASS
and it is called Hv-group if it is reproductive Hv-semigroup, that is xH = Hx =
H,∀x ∈ H .

Definition 2.2. The hyperstructure (H, ·) is called semihypergroup if x · (y · z) =
(x · y) · z,∀(x, y, z) ∈ H3 and it is called hypergroup if it is reproductive semihy-
pergroup.

Definition 2.3. A Hv-group is called Hb-group if its hyperoperation contains op-
eration which define a group. We define analogously Hb-ring, Hb-vector space.

Definition 2.4. Let (H, ·) be a Hv - structure. An element e ∈ H is called identity
if x ∈ ex ∩ xe, ∀x ∈ H . We define analogously the left (right) identity.

Definition 2.5. Let φ : H → H/β∗ be the fundamental map of a Hv-group then,
the kernel of φ is called core and it is denoted by ωH .

Definition 2.6. A Hv-semigroup or a semihypergroup H is called cyclic if there
exists s ∈ H , called generator, such that: H = s1∪s2∪...∪sn∪..., n ∈ N, n > 0.

For more definitions and applications on Hv-structures, see also the papers [4],
[9], [10], [14], [15], [18], [20], [28].

49



Nikolaos Antampoufis and Sarka Hoskova-Mayerova

3 The two approaches of fundamental relations
Searching for the quotient set, the definition of the relation between the ele-

ments of the hyperstructure plays an important role. The observation of a hyperop-
eration leads to the conclusion that elements belonging to the same hyperproduct
act in a similar way with respect to the hyperoperation. This observation is the
basis for defining the relation β. This definition is common to both approaches.
Another common finding of the two approaches is the fact that the relation β is
reflective, symmetric but not always transitive. The need for an equivalence re-
lation that produces a quotient set such that it is a classical algebraic structure,
makes it necessary to consider the β∗ - relation that is the transitive closure of the
β - relation and is, obviously, an equivalence relation. The last common point of
the two approaches is the search for the smallest (with respect to the inclusion)
equivalence relation having as quotient set the corresponding algebraic structure.

3.1 Koskas approach
Koskas, in his approach, introduces the equivalence relation that obtains as

quotient set the corresponding algebraic structure by using the strongly regular
equivalence relation. It is then shown that the transitive closure of the β - relation
is the smallest strongly regular equivalence relation, i.e. β∗ is the targeted relation.
The proof is completed by the obvious finding that β∗ is the desired equivalence
relation such that the H/β∗ is the corresponding algebraic structure. One can say
that Koskas approach is a deductive way of defining fundamental relation on hy-
perstructures, since he starts considering a general definition and then specifying
the β∗-relation as a subcase.

Taking into consideration the approach, the necessary definitions and theorems
are mentioned, having as main sources the books [5], [7], [8].

Definition 3.1. Let (H, ◦) be a hypergroupoid, a, b elements of H and ρ be an
equivalence relation on H . Then ρ is strongly regular on the left if the following
implication holds:

aρb⇒ ∀u ∈ H,∀x ∈ u ◦ a,∀y ∈ u ◦ b : xρy.

Similarly, the strong regularity on the right can be defined. We call ρ strongly
regular if it is strongly regular on both the left and the right.

Definition 3.2. Let (H, ·) be a semihypergroup and n > 1 be a natural number.
We define the βn relation as follows:

xβny if there exist a1, a2, ..., an elements of H, so subsets {x, y} ⊆
n∏

i=1

ai.
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and let

β =
⋃
n≥1

βn, where β1 = {(x, x)/x ∈ H} is the diagonal relation on H.

Notice that relation β is reflexive and symmetric but, generally, not a transitive
one.

Definition 3.3. We denote β∗ the transitive closure of relation β.

Theorem 3.1. β∗ is the smallest strongly regular equivalence relation on H with
respect to the inclusion.

Theorem 3.2. Let (H, ·) be a semihypergroup (hypergroup), then the transitive
closure of relation β is the smallest equivalence relation such that the quotient
H/β∗is a semigroup (group).

Definition 3.4. β∗ is called the fundamental relation onH and H/β∗ is called the
fundamental semigroup (group).

Notice that [22] the term fundamental, given by Vougiouklis, is subsequent of
Koskas definitions but totally used nowadays.

3.2 Vougiouklis approach
Unlike the previous ones, Vougiouklis approaches the issue in a straightfor-

ward way starting with the acquired question about the appropriate equivalence
relations. He defines the relation that has as quotient set the corresponding al-
gebraic structure. He then defines the relation β in a more general manner than
previously defined. The approach has been completed by proving that the funda-
mental relation is no other than the transitive closure of the relation β. We can
assume that Vougiouklis approach is an inductive way of defining the fundamen-
tal relation in hyperstructures because it starts with the partial and ends in a more
general result.
It is important to note that Vougiouklis definitions were given forHv-groups which
are a wider class than the one of hypergroups. Also, the proof of theorem about
β∗ relation (see below) follows a remarkable strategy [3].

Taking into consideration the approach, the necessary definitions and theorems
are mentioned, having as main source the book [25] and the papers [24], [26].

Definition 3.5. Let (H, ·) be a Hv-group. The relation β∗ on H is called funda-
mental equivalence relation if it is the smallest equivalence relation on H such
that the quotient set H/β∗ is a group, called fundamental group of H .
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Notice that the proof of the fundamental groups existence for any Hv-group is
an obvious result of the following theorem’s proof.

Let us denote by U the set of all finite hyperproducts of elements of H .

Definition 3.6. Let (H, ·) be a Hv-group. We define the relation β on H as fol-
lows:

xβy iff {x, y} ⊆ u, u ∈ U.

Theorem 3.3. The fundamental equivalence relation β∗ is the transitive closure
of the relation β on H .

Definition 3.7. Let (R,+, ·) be a Hv-ring. The relation γ∗ on R is called funda-
mental equivalence relation on R if it is the smallest equivalence relation on R
such that the quotient set R/γ∗ is a ring, called fundamental ring of R.

Let us denote by U the set of all finite polynomials of elements of R, over N .

Definition 3.8. Let (R,+, ·) be a Hv-ring. We define the relation γ on H as
follows:

xγy iff {x, y} ⊆ u, u ∈ U.

Theorem 3.4. The fundamental equivalence relation γ∗ is the transitive closure
of the relation γ on R.

Definition 3.9. [26] A Hv-ring is called Hv-field if its fundamental ring is a field.

Definition 3.10. Let V be a Hv-vector space over a Hv-field R. The relation ε∗

on V is called fundamental equivalence relation if it is the smallest equivalence
relation on V such that the quotient set V/ε∗ is a vector space over the fieldR/γ∗,
called fundamental vector space of V over R.

4 Fundamental classes
Searching for the classes of fundamental equivalence relations is a central

question in studying the fundamental structures derived from hyperstructures.
This quest is intertwined with the exploration of the conditions that must be ac-
complished so that the β relation is transitive, that is, β = β∗. It is clear that the
two different approaches to the fundamental equivalence relation in hyperstruc-
tures settle on two different ways of searching or constructing the fundamental
equivalence classes in a hyperstructure. We could also talk, in a similar way with
3.1 and 3.2, about the deductive and inductive way of finding equivalence classes.
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4.1 Complete Parts
According to the deductive way that Koskas used and Corsini’s school contin-

ued, the equivalence classes, that occur when the equivalence relation is strongly
regular, are used. The notion of complete part of a hyperstructure’s subset plays
a key role in finding the β∗ class of each element. The complete closure C(A) of
the part A is connected with an increasing chain of subsets of the hyperstructure
which, in turn, are related to hyperproducts containing A. It then turns out that
the introduction, in a natural way, of the equivalence relation K is essentially a
consideration of the equivalence β∗. In this way the complete closure coincides to
the fundamental equivalence class.
In particular, the definition of the complete part is used in the case of the singleton
{x}, for each element x of the hyperstructure, so that we find ourselves in the en-
vironment of the fundamental equivalence relation. The increasing chain of sets
created by the set {x} constructs the fundamental class of the arbitrary element x.
It is evident that, as in the introduction of the β∗ - relation [16], a notion is used as
a mediator, which comes in between the questions ”how is the class” and ”what is
the class”. This notion is K relation.
We now present the necessary propositions in order to describe the step by step
approach of the fundamental classes notion. The main references we use are the
books [5], [7], [8] and the papers [13], [19].

Definition 4.1. Let (H, ·) be a semihypergroup and A be a nonempty subset of H .
We say that A is a complete part of H if for any nonzero natural number n and
for all a1, a2, , an elements of H , the following implication holds:

A ∩
n∏

i=1

ai 6= ∅ ⇒
n∏

i=1

ai ⊆ A.

Notice that complete part A absorbs every hyperproduct containing one, at
least, element of A.
According to theorem 3.1, β∗(x) is a complete part of H,∀x ∈ H . (Step 1)

Definition 4.2. Let (H, ·) be a semihypergroup and A be a nonempty subset of H .
The intersection of the complete parts ofH which containA is called the complete
closure of A in H; it will be denoted by C(A).

Denote K1(A) = A and for all n > 0

Kn+1(A) ={
x ∈ H| ∃p ∈ N,∃(h1, h2, ..., hp) ∈ Hp : x ∈

p∏
i=1

(hi), Kn(A) ∩
p∏

i=1

(hi) 6= ∅

}
.
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Obviously, Kn(A), n > 0 is an increasing chain of subsets of H as we mentioned.
If x ∈ H , we denote Kn({x}) = Kn(x). This implies that

Kn(A) =
⋃
a∈A

Kn(a)

In particular, if P is the set of all finite hyperproducts of elements ofH , and x ∈ H
we have:

K1(x) = {x}, K2(x) =
⋃
u∈P

u : x ∈ u, K3(x) =
⋃
u∈P

u : u ∩K2(x) 6= ∅,

..., Kn+1(x) =
⋃
u∈P

u : u ∩Kn(x) 6= ∅ and C(A) =
⋃
a∈A

C(a), A ⊆ H.

Notice that K2(x) = {z ∈ H|zβx} = β(x). (Step 2)

Theorem 4.1. Let (H, ·) be a semihypergroup and K a binary relation defined as
follows:

xKy ⇔ x ∈ C(y), (x, y) ∈ H2.

Then,K is an equivalence relation that coincides with β∗. (Step 3)

Thus, the relation K and the chain of sets Kn behave as a mediator, which
comes in between C(x) and β∗, connecting the construction of the class with the
class itself.
Now we present some propositions mainly about the transitivity of β-relation.

Theorem 4.2. [12] Let (H, ·) be a hypergroup then, β = β∗.

Theorem 4.3. Let (H, ·) be a hypergroupoid. Then,

β = β∗ ⇔ C(x) = K2(x),∀x ∈ H.

Theorem 4.4. [13] Let (H, ·) be a Hv-group having, at least, one identity. Then,

β = β∗.

Theorem 4.5. [13] Let (H, ·) be a Hb-group then, β = β∗.

4.2 Constructing Fundamental Classes
According to the inductive way that Vougiouklis introduced, the direct ap-

proach to the fundamental class is used. Vougiouklis, while studying the funda-
mental classes, follows the same philosophy and strategy as he does in his ap-
proach to the introduction of the fundamental relationship and the corresponding
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structure. He does not attempt to create an environment of desirable definitions
in which he will then place the fundamental class of each element, as Koskas has
chosen to do.
On the contrary, he considers the fundamental class of each element as a set and
tries to specify its elements through their common properties. He prefers, in short,
a straightforward reference to the common behaviour of these elements in the
generation of hyperproducts. Therefore, he develops propositions that relate each
other the elements which behave in a similar way, thus achieving the accumula-
tion of all the equivalent, with respect to β∗, elements which belong to the same
fundamental class. It is clear that this straightforward dealing with the class study
is an inductive type of answer to the question of the nature and form of the funda-
mental classes.
The fundamental class which is a singleton, whenever it exists, plays an essen-
tial role in the study of Hv-groups and Hvrings. The element of each such class is
called single element. Its value lies in the fact that each hyperproduct having a sin-
gle element as a factor, is an entire fundamental class. Thus, finding the classes is
achieved by multiplying a single element with each element of the hyperstructure.
In fact, it is not necessary to perform the hyperoperation with all the elements.
Moreover, the existence of one, at least, single element is a sufficient condition
such that β = β∗ holds in Hv-groups.
Finally, the above mentioned approach also includes the technique of ”transla-
tion” of hyperproducts which allows us to find the fundamental structure of an
Hv-group and its classes using isomorphism between the quotient sets. We now
present the necessary propositions in order to describe the direct approach of fun-
damental classes. The main references we use are the book [25] and the papers
[24], [26].

Theorem 4.6. Let (H, ·) be a Hvgroup, then

xβ∗y iff there exist A,A
′ ⊆ β∗(a), B,B

′ ⊆ β∗(b), (a, b) ∈ H2,

such that xA ∩B 6= ∅ and yA
′ ∩B′ 6= ∅.

Theorem 4.7. Let (H, ·) be a Hv-group, then u ∈ ωH iff there exist A ⊆ β∗(a),
for some a ∈ H , such that uA ∩ A 6= ∅.

Definition 4.3. Let H be a Hv-structure. An element s ∈ H is called single if
β∗(s) = {s}.

We denote by SH the set of singles elements of H

Theorem 4.8. Let (H, ·) be a Hv-group and s ∈ SH . Let (a, v) ∈ H2 such that
s ∈ av, then

β∗(a) = {h ∈ H : hv = s} and the core of H is ωH = {z ∈ H : zs = s}.
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Theorem 4.9. Let (H, ·) be a Hv-group and SH 6= ∅, then β∗ = β.

Definition 4.4. (Translations) [25] Let (H, ·) be a Hv-group and x ∈ H , then
H/β∗ ∼= (H/lx)/β∗, where lx is the translation equivalence relation.

4.3 Using the fundamental equivalence relations

The fundamental equivalence relations on hyperstructures, on the one hand,
connect the theory of hyperstructures to that of the corresponding classical struc-
tures, and on the other hand, are a tool for the introduction of new hyperstructure
classes. The two approaches to the concept of the fundamental equivalence rela-
tions were initially referred to semihypergroups and hypergroups. However, they
form the driving lever to apply similar definitions to other hyperstructures as hy-
perrrings and hyperfields or to study specific behaviour of some hyperstructures
using the quotient set.
Freni [11] and others (P. Corsini, B. Davazz) introduced and studied equivalence
relations that refer to individual properties or characteristics of elements of a hy-
perstructure. As an example, we mention the equivalence relations ∆h∗ and α∗

which are related to the cyclicity and commutativity of a hyperstructure, respec-
tively. Our main reference is [8].
Relation α was introduced by Freni who used the letter γ instead of α. Thus, there
was a confusion on symbolism since Vougiouklis had already used the letter γ for
the fundamental equivalence relation on hyperrings.

Vougiouklis focused on the study of hyperstructures which have a desirable
quotient.(h/v)-structures are a typical example of generalization using the funda-
mental structures. They are a larger class than that of Hv-structures. Also, the use
of the fundamental classes of equivalence as hyperproducts, led to constructions
of new hyperstructure classes. As additional examples of hyperstructures with
desirable quotient we mention the s1, s2, ..., sn-hyperstructures [3], the complete
(in the sense of Corsini) Hv-groups and the constructions S1 and S2 [25].

Definition 4.5. [23] The Hv-semigroup (H, ·) is called h/v-group if H/β∗ is a
group.

Notice that the reproductivity is not necessarily valid. However, the reproduc-
tivity of classes is valid.

Definition 4.6. [1], [2]. We shall say that a hyperstructure is an sn-hyperstructure
if all its fundamental classes are singleton except for n of them, n ∈ N, n > 0.
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5 Conclusions - Findings
The aim of this paper was to present the two different approaches to the con-

cept of the fundamental equivalence relation through a comparison of the choices
and methods applied by Koskas and Vougiouklis, but also through the results they
have achieved. Summarizing our conclusions and findings, we can note that:
a) The approach of Koskas is a deductive way based on the introduction of gen-
eral notions willing to draw conclusions to more specific ones. On the contrary,
Vougiouklis makes the reverse. Beginning with the specific notion leads to propo-
sitions generalizing his conclusions.
b) The directness of Vougiouklis approach allows for the ”transfer” of definitions
and corresponding theorems from theHv-groups toHv-rings,Hv-modules and the
other weak hyperstructures. In essence, it is a widely applied model that imposed,
among other things, on the terminology of the ”fundamental” relations.
c) The nature of the step-by-step approach of Koskas has led to frequent use of
the mathematical induction method in proving many basic theorems. On the other
hand, due to the direct reference of Vougiouklis to the equivalence classes and
their view as sets of elements, the most frequent proving method used is the proof
by contradiction.
d) The Koskas approach raises the question: What is the quotient set of the hyper-
structure that we are studying? That is why increasing chains of relations are the
main study tool. Vougiouklis approach reverses the question with the following
one: Which hyperstructure produces a particular desired fundamental quotient?
In this inversion, there is a trigger for the introduction of weak and h/v-structures.
Finally, we consider that the mathematical value of fundamental equivalence re-
lations in hyperstructures is important and their asynchronized approaches by
Koskas and Vougiouklis is an interesting moment of the short history of algebraic
hyperstructures from their beginning at 1934 until today.
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1 Introduction
One knows that to every fuzzy set (H,µ0) one hypergroup can be associated

(which I proved [9], is a join space) in the following way:
∀(x, y) ∈ H2, one sets

x ◦0 y = {z | min{µ0(x), µ0(y)} ≤ µ0(z) ≤ max{µ0(x), µ0(y)}.

I proved also [18] that to every hypergroupoid (H, ◦) a fuzzy set corresponds,
defined as you can see below:

Set ∀u ∈ H, Q(z) = {(x, y) | u ∈ x ◦ y}, q(u) = |Q(u)|.

A(u) =
∑

(x,y)∈Q(u)

1/|x ◦ y|, µ1(u) = A(u)/q(u).

I proved that H0 = (H, ◦) is a join space.
So, to every hypergroupoid, a sequence of hypergroupoids and fuzzy sets is

associated: (H,µ0), (H,µ1), ...
If |H| < ℵ0, then the sequence is clearly finite.
We call fuzzy grade [20] of (H, ◦) the minimum natural number of k, such that

two consecutive join spaces are isomorphic.
For the Hv-structures, notion introduced by T. Vougiouklis, one can proceed

in a similar way.
So, one defines the fuzzy grade of a Hv-hypergroupoid as

min{k | Hk ' Hk+1}.

Thomas Vougiouklis is author of many papers on Hyperstructures.
Just at the beginnng of his activity he invented and studied a structure, defining

the following hyperoperation: given a hypergroupoid (H; ∗) and a non empty
subset P of H, he set x ◦ y = x ∗ P ∗ y and found several interesting results on
this hyperoperation.

But the most important theory that he introduced is that one of theHv-hyperstructures.
He replaced the notion of associativity with that one of ”weak associativity”. That
is instead of supposing

for every x, y, z ∈ H, (x ∗ y) ∗ z = x ∗ (y ∗ z), one supposes

(x ∗ y) ∗ z ∩ x ∗ (y ∗ z) 6= ∅.

One has considered also weak rings. It is enough to set
for every a, b, c in R, a ◦ (b+ c) ∩ (a ◦ b+ a ◦ c) 6= ∅.
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The idea by Vougiouklis of considering weak Hyperstructures opened a new
branch of Mathematics. Many significant results have been obtained in this field
and probably many others will be found in the future.

A theme which deserves to be considered in this context is that one of HX
structures. HX-groups were born in China, invented by Li Hongxing [81], and
studied by him, Wang and others, see [79], [80], [87], [117], [118], [119]. In Italy,
Corsini extended this notion to Hyperstructures. He and Cristea in Italy, Fotea in
Romania, Kellil and Bouaziz in Saudi Arabia worked in this direction.

Given a group G and the set P∗(G) of all nonempty subsets of G, endowed
with the operation

∀(A,B) ∈ P∗(G)× P∗(G), A ◦B = {xy | x ∈ A, y ∈ B}

a subgroup of P∗(G) is called an HX-group. One has calculated the fuzzy grade
for Z/nZ for n ≤ 16 and also for other structures, for instance for the multiplica-
tive group Z2,2

2 and the direct product of some Z/nZ, see [22], [23], [24].
It would very interesting to consider the same problems in the such general

context of weak structures, that is to calculate the fuzzy grade of HX-hypergroup
Zn.

Given an HX-group F , one considers the set F ′ of all nonempty subsets of
F . Let us suppose that K is a subgroup of F.

We define the following hyperoperation

x⊗ y =
⋃

x∈A, y∈B, {A,B}⊆K

AB

in the set ∪A∈KA.

The structure (H,⊗) is called an HX-hypergroupoid.

One can extend the notion of HX-hypergroup to weak hyperstructures.

Some open problems on weak structures:

• find conditions for an HX-hypergroupoid to be a hypergroup;

• the fuzzy grade ofHX- weak hypergroups already considered in the classic
case.
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2 Hv-hypergroupoids of order 2

The Hv-hypergroupoids of order 2, which are not associative, are 10.

The following [12], [13], [15] have fuzzy grade 1.
The others [9], [10], [11], [14], [16], [17], [18] have fuzzy grade 2.

•
H12 a b
a H H
b b a

We have q1(a) = 3, A1(a) = 2, so µ1(a) = 2/3.

q1(b) = 3, A1(b) = 2, so µ1(b) = 2/3.

Then ∂H12 = 1.

•
H13 a b
a H b
b H a

We have q1(a) = 3, A1(a) = 2, so µ1(a) = 2/3.

q1(b) = 3, A1(b) = 2, so µ1(b) = 2/3.

Then ∂H13 = 1.

•
H15 a b
a H a
b b H

Indeed we find q1(a) = 3, A1(a) = 2, so µ1(a) = 2/3.

q1(b) = 3, A1(b) = 2, so µ1(b) = 2/3.

Hence H1 = T , the total hypergroup. Therefore ∂H15 = 1.
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•
H9 a b
a H b
b b a

We have q1(a) = 2, A1(a) = 3/2, so µ1(a) = 3/4 = 0.75.

q1(b) = 3, A1(b) = 5/2, so µ1(b) = 5/6 = 0.8333.

So we obtain

H1
9 a b
a a H
b H b

Therefore µ2(a) = µ2(b), whence H2
9 is the total hypergroup, whence

∂H9 = 2.

•
H10 a b
a a H
b b a

We find q1(a) = 2, A1(a) = 5/2, so µ1(a) = 0.833.

q1(b) = 2, A1(b) = 3/2, so µ1(b) = 3/4 = 0.75.

We obtain

H1
10 a b
a a H
b H b

so µ2(a) = µ2(b), whence H2
10 is the total hypergroup, whence ∂H10 = 2.

•
H11 a b
a b H
b a b

We find q1(a) = 2, A1(a) = 3/2, so µ1(a) = 0.75.

q1(b) = 3, A1(b) = 5/2, so µ1(b) = 0.833.
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It follows

H1
11 a b
a a H
b H b

so µ2(a) = µ2(b), so ∂H11 = 2.

•
H14 a b
a H a
b a H

We find q1(a) = 4, A1(a) = 3, so µ1(a) = 0.75.

q1(b) = 2, A1(b) = 1, so µ1(b) = 0.50.

whence we hve

H1
14 a b
a a H
b H b

By consequence H2
14 is the total hypergroup, whence ∂H14 = 2.

•
H16 a b
a a H
b H a

We find q1(a) = 4, A1(a) = 3, so µ1(a) = 3/4 = 0.75.

q1(b) = 2, A1(b) = 1, µ1(b) = 0.50.

It follows

H1
16 a b
a a H
b H b

so µ2(a) = µ2(b), whence H2
16 is the total hypergroup, whence ∂H16 = 2.
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•
H17 a b
a H H
b a H

We find q1(a) = 4, A1(a) = 5/2, so µ1(a) = 0.625.

q1(b) = 3, A1(b) = 3/2, so µ1(b) = 0.50.

By cnsequence

H1
17 a b
a a H
b H b

whence H2
17 is the total hypergroup, therefore ∂H17 = 2.

•
H18 a b
a H H
b b H

We find q1(a) = 3, A1(a) = 3/2, so µ1(a) = 0.50.

q1(b) = 4, A1(b) = 5/2, so µ1(b) = 0.625.

We obtain

H1
18 a b
a a H
b H b

By consequence, H2
18 is the total hypergroup, whence ∂H18 = 2.
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1 Semi-direct hyperproduct of two hypergroups

For all natural numbers n > 1, define the relation βn on a semihypergroup
H , as follows: aβnb if and only if there exist x1, . . . , xn ∈ H such that {a, b} ⊆∏n

i=1 xi, and take β =
⋃
n≥1 βn, where β1 = {(x, x) | x ∈ H} is the diagonal

relation on H . Denote by β∗ the transitive closure of β. The relation β∗ is a
strongly regular relation. This relation was introduced by Koskas [10] and studied
mainly by Freni [9], proving the following basic result: If H is hypergroup, then
β = β∗. Note that, in general, for a semihypergroup may be β 6= β∗. Moreover,
the relation β∗ is the smallest equivalence relation on a hypergroup H , such that
the quotient H/β∗ is a group. The heart ωH of a hypergroup H is defined like the
set of all elements x of H , for which the equivalence class β∗(x) is the identity
of the quotient group H/β∗. Vougiouklis in [13] studied the fundamental relation
introduced by Koskas. He used the quotient set in order to define a semi-direct
hyperproduct of two hypergroups. He obtained an extension of hypergroups by
hypergroups. Let A,B be two hypergroups and consider the group AutA. Let̂ : B/β∗ → AutA be an arbitrary homomorphism, where we denote β̂∗(b) by
b̂. Then, in A × B a hyperproduct can be defined as follows: (a, b) � (c, d) =

{(x, y) | x ∈ ab̂(c), y ∈ bd} Then, A × B becomes a hypergroup called semi-
direct hyperproduct of A and B corresponding to ̂ and it is denoted by A×̂B.
Vougiouklis proved that A×̂B/β∗

A×̂B
∼= A/β∗A×̂B/β∗B [13].

2 Representation of hypergroups

Vougiouklis in a sequence of papers studied the representations of hyper-
groups. For instance, in [15], a class of hypermatrices to represent hypergroups
is introduced and application on class of P -hypergroups is given. Hypermatrices
are matrices with entries of a semihyperring. The product of two hypermatri-
ces (aij) and (bij) is the hyperoperation given in the usual manner (aij) · (bij) =
{(cij) | cij ∈

∑n
k=1 aikbkj}.Vougiouklis problem is the following one: For a given

hypergroup H , find a semihyperring R such that to have a representation of H by
hypermatrices with entries from R. Recall that if MR = {(aij) | aij ∈ R}, then
a map T : H → MR is called a representation if T (x) · T (y) = {T (z) | z ∈
xy} = T (xy), for all x, y ∈ H . He obtained an induced representation T ∗ for the
hypergroup algebra of H , see [14].
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3 Fundamental relation in hyperrings
Vougiouklis introduced the notion of fundamental relation in the context of

general hyperrings [16, 17]. A multivalued system (R,+, ·) is a ( general) hyper-
ring if (1) (R,+) is a hypergroup; (2) (R, ·) is a semihypergroup; (3) (·) is (strong)
distributive with respect to (+), i.e., for all x, y, z in R we have x · (y + z) =
x ·y+x ·z and (x+y) ·z = x ·z+y ·z. In this paragraph, we use the term of a hy-
perring, instead of the term of a general hyperring, intending the above definition.
A hyperring may be commutative with respect to (+) or (·). If R is commutative
with respect to both (+) and (·), then it is a commutative hyperring. The above
definition contains the class of multiplicative hyperrings and additive hyperrings
as well. In the above hyperstructures, Vougiouklis introduced the equivalence re-
lation γ∗, which is similar to the relation β∗, defined in every hypergroup. Let
(R,+, ·) be a hyperring. He defined the relation γ as follows: aγb if and only if
{a, b} ⊆ u, where u is a finite sum of finite products of elements of R. Denote the
transitive closure of γ by γ∗. The equivalence relation γ∗ is called the fundamental
equivalence relation in R. According to the distributive law, every set which is the
value of a polynomial in elements of R is a subset of a sum of products in R. Let
U be the set of all finite sums of products of elements of R. We can rewrite the
definition of γ∗ on R as follows: aγ∗b if and only if there exist z1, ..., zn+1 ∈ R
with z1=a, zn+1=b and u1, ..., un ∈ U such that {zi, zi+1} ⊆ ui for i ∈ {1, ..., n}.
Let (R,+, ·) be a hyperring. Then the relation γ∗ is the smallest equivalence rela-
tion in R such that the quotient R/γ∗ is a ring [16]. The both ⊕ and � on R/γ∗

are defined as follows: γ∗(a) ⊕ γ∗(b) = γ∗(c), for all c ∈ γ∗(a) + γ∗(b) and
γ∗(a) � γ∗(b) = γ∗(d), for all d ∈ γ∗(a) · γ∗(b). If u =

∑
j∈J(

∏
i∈Ij xi) ∈ U ,

then for all z ∈ u, we have γ∗(u) = ⊕
∑

j∈J(�
∏

i∈Ij γ
∗(xi)) = γ∗(z), where

⊕
∑

and �
∏

denote the sum and the product of classes.

4 Commutative rings obtained from hyperrings
The commutativity in addition in rings can be related with the existence of the

unit in multiplication. If e is the unit in a ring then for all elements a, b we have
(a + b)(e + e) = (a + b)e + (a + b)e = a + b + a + b and (a + b)(e + e) =
a(e + e) + b(e + e) = a + a + b + b. So a + b + a + b = a + a + b + b
gives b + a = a + b. Therefore, when we say (R,+, ·) is a hyperring, (+) is
not commutative and there is not unit in the multiplication. So the commuta-
tivity, as well as the existence of the unit, it is not assumed in the fundamental
ring. Of course, we know there exist many rings (+ is commutative) while don’t
have unit. Davvaz and Vougiouklis were interested in the fundamental ring to
be commutative with respect to both sum and product, that is, the fundamental
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ring be an ordinary commutative ring. Therefore they introduced the following
definition. Let R be a hyperring. Define the relation α as follows: xαy if and
only if ∃n ∈ N, ∃(k1, . . . , kn) ∈ Nn, ∃σ ∈ Sn and [∃(xi1, . . . , xiki) ∈ Rki ,
∃σi ∈ Ski , (i = 1, . . . , n)] such that x ∈

∑n
i=1(
∏ki

j=1 xij) and y ∈
∑n

i=1Aσ(i),
where Ai =

∏ki
j=1 xiσi(j). The relation α is reflexive and symmetric. Let α∗ be the

transitive closure of α, then α∗ is a strongly regular relation both on (R,+) and
(R, ·) [4]. The quotient R/α∗ is a commutative ring [4]. Notice that they used
the Greek letter α for the relation because of the ‘A’belian. The relation α∗ is the
smallest equivalence relation such that the quotient R/α∗ is a commutative ring
[4].

5 Hv-structures
During the 4th Congress of Algebraic Hyperstructures and Applications (Xan-

thi, 1990), Vougiouklis introduced the concept of the weak hyperstructures which
are now named Hv-structures. Over the last 27 years this class of hyperstructure,
which is the largest, has been studied from several aspects as well as in connection
with many other topics of mathematics. The hyperstructure (H, ·) is called anHv-
group if (1) x ·(y ·z)∩(x ·y) ·z 6= ∅, for all x, y, z ∈ H; (2) a ·H = H ·a = H , for
all a ∈ H . A motivation to obtain the above structures is the following. Let (G, ·)
be a group and R an equivalence relation on G. In G/R consider the hyperopera-
tion� such that x�y = {z| z ∈ x ·y}, where x denotes the class of the element x.
Then (G,�) is an Hv-group which is not always a hypergroup [20]. Let (H1, ·),
(H2, ?) be two Hv-groups. A map f : H1 → H2 is called an Hv-homomorphism
or weak homomorphism if f(x · y) ∩ f(x) ? f(y) 6= ∅, for all x, y ∈ H1. The
map f is called an inclusion homomorphism if f(x · y) ⊆ f(x) ? f(y), for all
x, y ∈ H1. Finally, f is called a strong homomorphism if f(x · y) = f(x) ∗ f(y),
for all x, y ∈ H1. If f is onto, one to one and strong homomorphism, then it
is called isomorphism, if moreover f is defined on the same Hv-group then it is
called automorphism. It is an easy verification that the set of all automorphisms in
H , written AutH , is a group. On a set H several Hv-structures can be defined. A
partial order on those hyperstructures is introduced as follows. Let (H, ·), (H, ?)
be two Hv-groups defined on the same set H . We call · less than or equal to ?,
and write · ≤ ?, if there is f ∈ Aut(H, ∗) such that x · y ⊆ f(x ? y), for all
x, y ∈ H [20]. A quasi-hypergroup is called a hypergroupoid (H, ·) if the repro-
duction axiom is valid. In [20], it is proved that all the quasi-hypergroups with
two elements are Hv-groups. It is also proved that up to the isomorphism there
are exactly 18 different Hv-groups. If a hyperoperation is weak associative then
every greater hyperoperation, defined on the same set is also weak associative.
In [21], using this property, the set of all Hv-groups with a scalar unit defined
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on a set with three elements is determined, also, see [22]. Let (H, ·) be an Hv-
group. The relation β∗ is the smallest equivalence relation on H such that the
quotient H/β∗, the set of all equivalence classes, is a group. β∗ is called the fun-
damental equivalence relation on H . According to [19] if U denotes the set of
all the finite products of elements of H , then a relation β can be defined on H
whose transitive closure is the fundamental relation β∗. The relation β is as fol-
lows: for x and y in H we write xβy if and only if {x, y} ⊆ u for some u ∈ U .
We can rewrite the definition of β∗ on H as follows: aβ∗b if and only if there
exist z1, . . . , zn+1 ∈ H with z1 = a, zn+1 = b and u1, . . . , un ∈ U such that
{zi, zi+1} ⊆ ui (i = 1, . . . , n). The product � on H/β∗ is defined as follows:
β∗(a) � β∗(b) = {β∗(c)| c ∈ β∗(a) · β∗(b)}, for all a, b ∈ H. It is proved in
[19] that β∗(a) � β∗(b) is the singleton {β∗(c)} for all c ∈ β∗(a) · β∗(b). In this
way H/β∗ becomes a hypergroup. If we put β∗(a) � β∗(b) = β∗(c), then H/β∗

becomes a group. A multi-valued system (R,+, ·) is anHv-ring if (1) (R,+) is an
Hv-group; (2) (R, ·) is an Hv-semigroup; (3) (·) is weak distributive with respect
to (+), i.e., for all x, y, z in R we have (x · (y + z)) ∩ (x · y + x · z) 6= ∅ and
((x + y) · z) ∩ (x · z + y · z) 6= ∅. Let (R,+, ·) be an Hv-ring. Define γ∗ as the
smallest equivalence relation such that the quotient R/γ∗ is a ring. Let us denote
the set of all finite polynomials of elements of R over N by U . Define the relation
γ as follows: xγy if and only if {x, y} ⊆ u, where u ∈ U . The fundamental
equivalence relation γ∗ is the transitive closure of the relation γ [12]. Vougiouklis
also introduced Hv-vector spaces in [18].

6 The uniting elements method
In 1989, Corsini and Vougiouklis [1], introduced a method, the uniting ele-

ments method, to obtain stricter algebraic structures, from given ones, through
hyperstructure theory. This method was introduced before the introduction of
the Hv-structures, but in fact the Hv-structures appeared in the procedure. This
method is the following. Let G be a structure and d be a property, which is not
valid, and suppose that d is described by a set of equations. Consider the partition
in G for which it is put together, in the same class, every pair of elements that
causes the non-validity of d. The quotient G/d is an Hv-structure. Then quo-
tient of G/d by the fundamental relation β∗, is a stricter structure (G/d)/β∗ for
which d is valid. An application of the uniting elements is when more than one
properties are desired. The reason for this is some of the properties lead straighter
to the classes than others. The commutativity and the reproductivity are easily
applicable. One can do this because the following statement is valid. Let (G, ·)
be a groupoid, and F = {f1, ..., fm, fm+1, ..., fm+n} a system of equations on G
consisting of two subsystems Fm = {f1, ..., fm} and Fn = fm+1, ..., fm+n}. Let
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σ and σm be the equivalence relations defined by the uniting elements using the
F and Fm respectively, and let σn be the equivalence relation defined using the
induced equations of Fn on the groupoid Gm = (Gm/σn)/β

∗. Then, we have
(G/σ)/β∗ ∼= (Gm/σn)/β

∗[19].

7 The e-hyperstructures
In 1996, Santilli and Vougiouklis point out that in physics the most interesting

hyperstructures are the one called e-hyperstructures. The e-hyperstructures are a
special kind of hyperstructures and, they can be interpreted as a generalization
of two important concepts for physics: Isotopies and Genotopies. On the other
hand, biological systems such as cells or organisms at large are open and irre-
versible because they grow. The representation of more complex systems, such
as neural networks, requires more advances methods, such as hyperstructures. In
this manner, e-hyperstructures can play a significant role for the representation of
complex systems in physics and biology, such as nuclear fusion, the reproduction
of cells or neural systems. They are the most important tools in Lie-Santilli theory
too [2, 11]. A hypergroupoid (H, ·) is called an e-hypergroupoid if H contains a
scalar identity (also called unit) e,which means that for all x ∈ H, x·e = e·x = x.
In an e-hypergroupoid, an element x′ is called inverse of a given element x ∈ H
if e ∈ x · x′ ∩ x′ · x. Clearly, if a hypergroupoid contains a scalar unit, then it
is unique, while the inverses are not necessarily unique. In what follows, we use
some examples which are obtained as follows: Take a set where an operation “·”
is defined, then we “enlarge” the operation putting more elements in the products
of some pairs. Thus a hyperoperation “◦” can be obtained, for which we have
x · y ∈ x ◦ y, ∀x, y ∈ H. Recall that the hyperstructures obtained in this way
are Hb-structures. Consider the usual multiplication on the subset {1, −1, i, −i}
of complex numbers. Then, we can consider the hyperoperation ◦ defined in the
following table:

◦ 1 −1 i −i
1 1 −1 i −i
−1 −1 1 −i i,−i
i i −i −1 1
−i −i i 1, i −1, i

We enlarged the products (−1)·(−i), (−i)·i and (−i)·(−i) by setting

(−1)◦(−i)={i,−i}, (−i)◦i={1, i} and (−i)◦(−i)={−1, i}.

We obtain an e-hypergroupoid, with the scalar unit 1. The inverses of the ele-
ments −1, i,−i are −1,−i, i respectively. Moreover, the above structure is an
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Hv-abelian group, which means that the hyperoperation ◦ is weak associative,
weak commutative and the reproductive axiom holds. The weak associativity is
valid for allHb-structures with associative basic operations [19]. We are interested
now in another kind of an e-hyperstructure, which is the e-hyperfield. A set F , en-
dowed with an operation “+”, which we call addition and a hyperoperation, called
multiplication “·”, is said to be an e-hyperfield if the following axioms are valid:
(1) (F,+) is an abelian group where 0 is the additive unit; (2) the multiplication · is
weak associative; (3) the multiplication · is weak distributive with respect to +,i.e.,
for all x, y, z ∈ F , x(y+z)∩(xy+xz) 6= ∅, (x+y)z∩(xz+yz) 6= ∅; (4) 0 is an ab-
sorbing element, i.e., for all x ∈ F, 0·x = x·0 = 0; (5) there exists a multiplicative
scalar unit 1, i.e., for all x ∈ F, 1·x = x·1 = x; (6) for every element x ∈ F there
exists an inverse x−1, such that 1 ∈ x·x−1∩x−1·x. The elements of an e-hyperfield
(F,+, ·) are called e-hypernumbers. We can define the product of two e-matrices
in an usual manner: the elements of product of two e-matrices (aij), (bij) are
cij =

∑
aik ◦ bkj, where the sum of products is the usual sum of sets. Let (F,+, ·)

be an e-hyperfield. An ordered set a = (a1, a2, . . . , an) of n e-hypernumbers of F
is called an e-hypervector and the e-hypernumbers ai, i ∈ {1, 2, ·, n} are called
components of the e-hypervector a. Two e-hypervectors are equals if they have
equal corresponding components. The hypersums of two e-hypervectors a, b is
defined as follows: a + b = {(c1, c2, . . . , cn) | ci ∈ ai + bi, i ∈ {1, 2, ·, n}}. The
scalar hypermultiplication of an e-hypervector a by an e-hypernumber λ is defined
in a usual manner: λ ◦ a = {(c1, c2, . . . , cn) | ci ∈ λ · ai, i ∈ {1, 2, . . . , n}}. The
set F n of all e-hypervectors with elements of F , endowed with the hypersum and
the scalar hypermultiplication is called n-dimensional e-hypervector space. The
set of m× n hypermatrices is an mn-dimensional e-hypervector space. We refer
the readers to [5, 6, 7, 8] for more details.

8 Helix-hyperoperations
Algebraic hyperstructures are a generalization of the classical algebraic struc-

tures which, among others, are appropriate in two directions: (a) to represent a
lot of application in an algebraic model, (b) to overcome restrictions ordinary
structures usually have. Concerning the second direction the restrictions of the
ordinary matrix algebra can be overcome by the helix-operations. More precisely,
the helix addition and the helix-multiplication can be defined on every type of
matrices [3, 23, 24]. Let A = (aij) ∈ Mm×n be a matrix and s, t ∈ N be
two natural numbers such that 1 ≤ s ≤ m and 1 ≤ t ≤ n. Then we de-
fine the characteristic-like map cst from Mm×n to Ms×t by corresponding to
A the matrix Acst = (aij), where 1 ≤ i ≤ s and 1 ≤ j ≤ t. We call
this map cut-projection of type st. In other words, Acst is a matrix obtained
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from A by cutting the lines and columns greater than s and t respectively. Let
A = (aij) ∈ Mm×n be a matrix and s, t ∈ N be two natural numbers such that
1 ≤ s ≤ m and 1 ≤ t ≤ n. Then we define the mod-like map st from Mm×n
to Ms×t by corresponding to A the matrix Ast = (Aij) which has as entries the
sets Aij = {ai+ks,j+λt | k, λ ∈ N, i + ks ≤ m, j + λt ≤ n}, for 1 ≤ i ≤ s and
1 ≤ j ≤ t. We call this multivalued map helix-projection of type st. Therefore,
Ast is a set of s× t-matrices X = (xij) such that xij ∈ Aij for all i, j. Obviously,
Amn = A. Let us consider the following matrix:

A =


2 1 3 4 2
3 2 0 1 2
2 4 5 1 −1
1 −1 0 0 8

 .
Suppose that s = 3 and t = 2. Then

Ac32 =

 2 1
3 2
2 4


and A32 = (Aij), where

A11 = {a11, a13, a15, a41, a43, a45} = {2, 3, 2, 1, 0, 8},
A12 = {a12, a14, a42, a44} = {1, 4,−1, 0},
A21 = {a21, a23, a25} = {3, 0, 2},
A22 = {a22, a24} = {2, 1},
A31 = {a31, a33, a35} = {2, 5,−1},
A32 = {a32, a34} = {4, 1}.

Therefore,

A32 = (Aij) =

 {2, 3, 1, 0, 8} {1, 4,−1, 0}{3, 0, 2} {2, 1}
{2, 5,−1} {4, 1}


= {(xij) | x11 ∈ {0, 1, 2, 3, 8}, x12 ∈ {−1, 0, 1, 4}, x21 ∈ {0, 2, 3},

x22 ∈ {1, 2}, x31 ∈ {−1, 2, 5}, x32 ∈ {1, 4}}.

Therefore |A32| = 720.
Let A = (aij) ∈ Mm×n and B = (aij) ∈ Mu×v be two matrices and s =

min(m,u), t = min(n, u). We define an addition, which we call cut-addition, as
follows:

⊕c : Mm×n ×Mu×v −→Ms×t
(A,B) 7→ A⊕c B = Acst+Bcst.
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Let A = (aij) ∈ Mm×n and B = (aij) ∈ Mu×v be two matrices and s =
min(n, u). Then we define a multiplication, which we call cut-multiplication, as
follows:

⊗c : Mm×n ×Mu×v −→Mm×v
(A,B) 7→ A⊗c B = Acms ·Bcsv.

The cut-addition is associative and commutative.
Let A = (aij) ∈ Mm×n and B = (aij) ∈ Mu×v be two matrices and s =

min(m,u), t = min(n, v). We define a hyper-addition, which we call helix-
addition or helix-sum, as follows:

⊕ : Mm×n ×Mu×v −→ P(Ms×t)
(A,B) 7→ A⊕B = Ast+h Bst,

where Ast+h Bst = {(cij) = (aij + bij) | aij ∈ Aij, bij ∈ Bij} . For illustration,
suppose that

A =

 2 1
0 1
2 3

 and B =

[
1 4 0
2 0 1

]
.

Then

A22 =

[
A11 A12

A21 A22

]
and B22 =

[
B11 B12

B21 B22

]
,

where
A11 = {a11, a31} = {2}, B11 = {b11, b13} = {1, 0},
A12 = {a12, a32} = {1, 3}, B12 = {b12} = {4},
A21 = {a21} = {0}, B21 = {b21, b23} = {2, 1},
A22 = {a22} = {1}, B22 = {b22} = {0}.

So

A22 =

{[
2 1
0 1

]
,

[
2 3
0 1

]}
,

and

B22 =

{[
1 4
2 0

]
,

[
1 4
1 0

]
,

[
0 4
2 0

]
,

[
0 4
1 0

]}
.

Therefore, we have

A22 +h B22 =

{[
3 5
2 1

]
,

[
3 5
1 1

]
,

[
2 5
2 1

]
,

[
2 5
1 1

]
,

[
3 7
2 1

]
,[

3 7
1 1

]
,

[
2 7
2 1

]
,

[
2 7
1 1

]}
.

The helix-addition is commutative. Let A = (aij) ∈ Mm×n and B = (aij) ∈
Mu×v be two matrices and s = min(n, u). Then we define a hyper-multiplication,
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which we call helix hyperoperation, as follows:

⊗ : Mm×n ×Mu×v −→ P(Mm×v)
(A,B) 7→ A⊗B = Ams ·h Bsv,

where Ams ·h Bsv = {(cij) = (
∑
aitbtj) | aij ∈ Aij, bij ∈ Bij}. We consider the

matrices A and B as follows:

A =

[
1 0 2 0
3 1 3 2

]
and B =

[
−1 1
0 2

]
.

Then

A22 =

[
{1, 2} 0
3 {1, 2}

]
.

Therefore,

A⊗B =

[
{−1,−2} {1, 2}
−3 {5, 7}

]
The cut-multiplication ⊗c is associative, and the helix-multiplication ⊗ is weak
associative [23]. Note that the helix-multiplication is not distributive (not even
weak) with respect to the helix-addition [23]. But if all matrices which are used
in the distributivity are of the same type Mm×n, then we have A ⊗ (B ⊕ C) =
A⊗ (B+C) and (A⊗B)⊕ (A⊗C) = (A⊗B)+ (A⊗C). Therefore, the weak
distributivity is valid and more precisely the inclusion distributivity is valid.
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1 Introduction
F. Marty, in 1934 [13], introduced the hypergroup as a set H equipped with a

hyperoperation · : H × H → P(H) − {∅} which satisfies the associative law:
(xy)z = x(yz), for all x, y, z ∈ H and the reproduction axiom: xH = Hx = H, for
all x ∈ H . In that case, the reproduction axiom is not valid, the (H, ·) is called
semihypergroup.
In 1990, T. Vougiouklis [19] in the Fourth AHA Congress, introduced the Hv-
structures, a larger class than the known hyperstructures, which satisfy the weak
axioms where the non-empty intersection replaces the equality.

Definition 1.1. [21], The (·) in H is called weak associative, we write WASS, if

(xy)z ∩ x(yz) 6= ∅,∀x, y, z ∈ H.

The (·) is called weak commutative, we write COW, if

xy ∩ yx 6= ∅,∀x, y ∈ H.

The hyperstructure (H, ·) is called Hv-semigroup if (·) is WASS. It is called Hv-
group if it is Hv-semigroup and the reproduction axiom is valid.
Further more, it is called Hv-commutative group if it is an Hv-group and a COW.
If the commutativity is valid, then H is called commutative Hv-group.
Analogous definitions for otherHv-structures, asHv-rings,Hv-module,Hv-vector
spaces and so on can be given.

For more definitions and applications on hyperstructures one can see books
[3], [4], [5], [6], [21] and papers as [2], [7], [9], [10], [12], [14], [20], [22], [23],
[24], [26], [27].
An element e ∈ H is called left unit if x ∈ ex,∀x ∈ H and it is called right unit
if x ∈ xe, ∀x ∈ H . It is called unit if x ∈ ex ∩ xe,∀x ∈ H . The set of left units
is denoted by E` [8]. The set of right units is denoted by Er and by E = E` ∩Er

the set of units [8].
The element a′ ∈ H is called left inverse of the element a ∈ H if e ∈ a′a,
where e unit element (left or right) and it is called right inverse if e ∈ aa′. If
e ∈ a′a∩aa′ then it is called inverse element of a ∈ H . The set of the left inverses
is denoted by I`(a, e) and the set of the right inverses is denoted by Ir(a, e)[8]. By
I(a, e) = I`(a, e) ∩ Ir(a, e), the set of inverses of the element a ∈ H , is denoted.
In anHv-semigroup the powers are defined by: h1 = {h}, h2 = h·h, · · · , hn = h◦
h◦ · · · ◦h, where (◦) is the n-ary circle hope, i.e. take the union of hyperproducts,
n times, with all possible patterns of parentheses put on them. An Hv-semigroup
(H, ·) is cyclic of period s, if there is an h, called generator and a natural s, the
minimum: H = h1∪h2∪· · ·∪hs. Analogously the cyclicity for the infinite period
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is defined [17],[21]. If there is an h and s, the minimum: H = hs, then (H, ·), is
called single-power cyclic of period s.

Definition 1.2. The fundamental relations β∗, γ∗ and ε∗, are defined, inHv-groups,
Hv-rings and Hv-vector spaces, respectively, as the smallest equivalences so that
the quotient would be group, ring and vector spaces, respectively [18],[19],[21],[22],
(see also [1],[3],[4]).

More general structures can be defined by using the fundamental structures.
An application in this direction is the general hyperfield. There was no general
definition of a hyperfield, but from 1990 [19] there is the following [20], [21]:

Definition 1.3. An Hv-ring (R,+, ·) is called Hv-field if R/γ∗ is a field.

Hv-matrix is a matrix with entries of an Hv-ring or Hv-field. The hyperprod-
uct of two Hv-matrices (aij) and (bij), of type m × n and n × r respectively, is
defined in the usual manner and it is a set of m × r Hv-matrices. The sum of
products of elements of the Hv-ring is considered to be the n-ary circle hope on
the hyperaddition. The hyperproduct of Hv-matrices is not necessarily WASS.
Hv-matrices is a very useful tool in Representation Theory ofHv-groups [15],[16],
[25],[28] (see also [11], [29]).

2 Constructions of 2× 2Hb-matrices with entries of
an Hv-field on Z2

Consider the field (Z2,+, ·). On the set Z2 also consider the hyperoperation
(�) defined by setting:

1� 1 = {0, 1} and x� y = x · y for all (x, y) ∈ Z2 × Z2 − {(0, 1)}.

Then (Z2,+,�) becomes an Hb-field.
All the 2×2Hb-matrices with entries of the Hb-field (Z2,+,�), are 24 = 16. Let
us denote them by:

0 =

(
0 0
0 0

)
, a1 =

(
1 0
0 0

)
, a2 =

(
0 1
0 0

)
, a3 =

(
0 0
1 0

)
,

a4 =

(
0 0
0 1

)
, a5 =

(
1 1
0 0

)
, a6 =

(
1 0
1 0

)
, a7 =

(
1 0
0 1

)
,

a8 =

(
0 1
1 0

)
, a9 =

(
0 1
0 1

)
, a10 =

(
0 0
1 1

)
, a11 =

(
1 1
1 0

)
,
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a12 =

(
1 1
0 1

)
, a13 =

(
1 0
1 1

)
, a14 =

(
0 1
1 1

)
, a15 =

(
1 1
1 1

)
.

By taking a2i , i = 1, · · · , 15 there exist 15 closed sets, let us say Hi , i =
1, · · · , 15. Two of them are singletons, H2 = H3 = {0}. Also, H7 = H8

and H11 = H14 = H15.
So, we shall study, according to the hyperproduct (·) of two Hb-matrices, the fol-
lowing sets:

H1 = {0, a1}, H4 = {0, a4}, H5 = {0, a1, a2, a5}, H6 = {0, a1, a3, a6},

H7 = {0, a1, a4, a7}, H9 = {0, a2, a4, a9}, H10 = {0, a3, a4, a10},

H12 = {0, a1, a2, a4, a5, a7, a9, a12}, H13 = {0, a1, a3, a4, a6, a7, a10, a13},

H15 = {0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10a11, a12, a13, a14, a15}.

2.1 The case of diagonal 2× 2 Hb-matrices
Every set of H1, H4, H7 consists of diagonal 2 × 2 Hb-matrices. Then, the

multiplicative tables of the hyperproduct, are the following:

· 0 a1

0 0 0
a1 0 H1

,
· 0 a4

0 0 0
a4 0 H4

· 0 a1 a4 a7

0 0 0 0 0
a1 0 0, a1 0 0, a1
a4 0 0 0, a4 0, a4
a7 0 0, a1 0, a4 H7

In all cases:
x · y = y · x, ∀x, y ∈ Hi, i = 1, 4, 7

(x · y) · z = x · (y · z), ∀x, y, z ∈ Hi, i = 1, 4, 7

So, we get the next propositions:

Proposition 2.1. Every set H, consisting of diagonal 2 × 2 Hb-matrices with en-
tries of the Hb-field (Z2,+,�), equipped with the usual hyperproduct (·) of ma-
trices, is a commutative semihypergroup.
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Notice that H1, H4 ⊂ H7 and since H1 ·H1 ⊆ H1 , H4 ·H4 ⊆ H4 then H1, H4

are sub-semihypergroups of (H7, ·).

Proposition 2.2. For all commutative semihypergroups (H, ·), consisting of diag-
onal 2× 2 Hb-matrices with entries of the Hb-field (Z2,+,�):

E = {ai}, I(ai, ai) = {ai}, where a2i = H.

Remark 2.1. According to the above construction, the commutative semihyper-
groups (H1, ·), (H4, ·) and (H7, ·), are single-power cyclic commutative semihy-
pergroups with generators the elements a1, a4 and a7, respectively, with single-
power period 2.

2.2 The case of upper- and lower- triangular 2×2Hb-matrices

Every set of H5, H9, H12 consists of upper-triangular 2 × 2 Hb-matrices and
every set of H6, H10, H13 consists of lower-triangular 2 × 2 Hb-matrices. Then,
the multiplicative tables of the hyperproduct, are the following:

· 0 a1 a2 a5

0 0 0 0 0
a1 0 0, a1 0, a2 H5

a2 0 0 0 0
a5 0 0, a1 0, a2 H5

,

· 0 a2 a4 a9

0 0 0 0 0
a2 0 0 0, a2 0, a2
a4 0 0 0, a4 0, a4
a9 0 0 H9 H9

· 0 a1 a2 a4 a5 a7 a9 a12

0 0 0 0 0 0 0 0 0
a1 0 0, a1 0, a2 0 0, a1, 0, a1 0, a2 0, a1,

a2, a5 a2, a5
a2 0 0 0 0, a2 0 0, a2 0, a2 0, a2
a4 0 0 0 0, a4 0 0, a4 0, a4 0, a4
a5 0 0, a1 0, a2 0, a2 0, a1, 0, a1, 0, a2 0, a1,

a2, a5 a2, a5 a2, a5
a7 0 0, a1 0, a2 0, a4 0, a1, 0, a1, 0, a2, H12

a2, a5 a4, a7 a4, a9
a9 0 0 0 0, a2, 0 0, a2, 0, a2, 0, a2,

a4, a9 a4, a9 a4, a9 a4, a9
a12 0 0, a1 0, a2 0, a2, 0, a1, H12 0, a2, H12

a4, a9 a2, a5 a4, a9
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· 0 a1 a3 a6

0 0 0 0 0
a1 0 0, a1 0 0, a1
a3 0 0, a3 0 0, a3
a6 0 H6 0 H6

,

· 0 a3 a4 a10

0 0 0 0 0
a3 0 0 0 0
a4 0 0, a3 0, a4 H10

a10 0 0, a3 0, a4 H10

· 0 a1 a3 a4 a6 a7 a10 a13

0 0 0 0 0 0 0 0 0
a1 0 0, a1 0 0 0, a1 0, a1 0 0, a1
a3 0 0, a3 0 0 0, a3 0, a3 0 0, a3
a4 0 0 0, a3 0, a4 0, a3 0, a4 0, a3, 0, a3,

a4, a10 a4, a10
a6 0 0, a1, 0 0 0, a1, 0, a1, 0 0, a1,

a3, a6 a3, a6 a3, a6 a3, a6
a7 0 0, a1 0, a3 0, a4 0, a1, 0, a1, 0, a3, H13

a3, a6 a4, a7 a4, a10
a10 0 0, a3 0, a3 0, a4 0, a3 0, a3, 0, a3, 0, a3,

a4, a10 a4, a10 a4, a10
a13 0 0, a1, 0, a3 0, a4 0, a1, H13 0, a3, H13

a3, a6 a3, a6 a4, a10

In all cases:

(x · y) ∩ (y · x) 6= ∅, ∀x, y ∈ Hi, i = 5, 6, 9, 10, 12, 13

(x · y) · z = x · (y · z), ∀x, y, z ∈ Hi, i = 5, 6, 9, 10, 12, 13

So, we get the next proposition:

Proposition 2.3. Every set H, consisting either of upper-triangular or lower-
triangular 2 × 2 Hb-matrices with entries of the Hb-field (Z2,+,�), equipped
with the usual hyperproduct (·) of matrices, is a weak commutative semihyper-
group.

Notice thatH5, H9 ⊂ H12 andH6, H10 ⊂ H13. SinceH5·H5 ⊆ H5 ,H9·H9 ⊆
H9 , H6 ·H6 ⊆ H6 , H10 ·H10 ⊆ H10 , then H5, H9 are sub-semihypergroups of
(H12, ·) and H6, H10 are sub-semihypergroups of (H13, ·).

Proposition 2.4. For all weak commutative semihypergroups (H, ·), consisting
either of upper-triangular or lower-triangular 2 × 2 Hb-matrices with entries of
the Hb-field (Z2,+,�), the following assertions hold
i) If ai, aj ∈ H : ai · aj = H, ai ∈ a2i , a2j = H, ai ∈ aj · ai , then

a)E` = {ai, aj}, b)I(ai, ai) = I(aj, ai) = {ai, aj}
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c)I(aj, aj) = Ir(ai, aj) = {aj}, d)I`(ai, aj) = ∅

ii) If ai, aj ∈ H : aj · ai = H, ai ∈ a2i , a2j = H, ai ∈ ai · aj, then

a)Er = {ai, aj}, b)I(ai, ai) = I(aj, ai) = {ai, aj}

c)I(aj, aj) = I`(ai, aj) = {aj}, d)Ir(ai, aj) = ∅

iii) If ai, aj ∈ H : ai · aj = aj · ai = H, ai ∈ a2i , a2j = H, then

a)E = {ai, aj}, b)I(ai, ai) = I(aj, ai) = I(aj, aj) = {ai, aj}, c)I(ai, aj) = {aj}

Remark 2.2. According to the above construction, the weak commutative semi-
hypergroups (Hi, ·), i=5,6,9,10,12,13 are single-power cyclic weak commutative
semihypergroups with generators the elements a5, a6, a9, a10, a12, a13 respectively,
with single-power period 2.

3 Constructions of 2× 2Hb-matrices with entries of
an Hb-field on Z3

Consider the field (Z3,+, ·). On the set Z3, we consider four cases for the
hyperoperation (�i), i = 1, 2, 3, 4 defined, each time, by setting:

1) 1�1 2 = {1, 2} and x�1 y = x · y for all (x, y) ∈ Z3 × Z3 − {(1, 2)}.

2) 2�2 1 = {1, 2} and x�2 y = x · y for all (x, y) ∈ Z3 × Z3 − {(1, 2)}.

3) 1�3 1 = {1, 2} and x�3 y = x · y for all (x, y) ∈ Z3 × Z3 − {(1, 2)}.

4) 2�4 2 = {1, 2} and x�4 y = x · y for all (x, y) ∈ Z3 × Z3 − {(1, 2)}.

Then, each time, (Z3,+,�i), i = 1, 2, 3, 4 becomes an Hb-field.

Now, consider the set H of the diag(b11, b22), b11, b22 ∈ Z3 with b11b22 6= 0 Hb-
matrices, with entries of the Hb-field (Z3,+,�i). Let us denote them by:

a11 =

(
1 0
0 1

)
, a12 =

(
1 0
0 2

)
, a21 =

(
2 0
0 1

)
, a22 =

(
2 0
0 2

)
.

So, H = {a11, a12, a21, a22}.

95



Achilles Dramalidis

3.1 The case of 1�1 2 = {1, 2}
The multiplicative table of the hyperproduct, is the following:

· a11 a12 a21 a22

a11 a11 a11, a12 a11, a21 H
a12 a12 a11 a12, a22 a11, a21
a21 a21 a21, a22 a11 a11, a12
a22 a22 a21 a12 a11

Notice that in the above multiplicative table:
i) x ·H = H · x = H,∀x ∈ H
ii) (x · y) ∩ (y · x) 6= ∅, ∀x, y ∈ H
iii) (x · y) · z ∩ x · (y · z) 6= ∅, ∀x, y, z ∈ H

So, we get the next proposition:

Proposition 3.1. The set H, consisting of the diag(b11, b22), b11, b22 ∈ Z3 with
b11b22 6= 0 Hb-matrices, with entries of the Hb-field (Z3,+,�1), equipped with
the usual hyperproduct (·) of matrices, is an Hv-commutative group.

Proposition 3.2. For theHv-commutative group (H, ·), consisting of the diag(b11, b22),
b11, b22 ∈ Z3 with b11b22 6= 0Hb-matrices, with entries of theHb-field (Z3,+,�1) :

i) E = {a11} ii) Ir(x, a11) = {a22},∀x ∈ H iii) I`(x, a11) = {a11},∀x ∈ H

Proposition 3.3. TheHv-commutative group (H, ·), consisting of the diag(b11, b22),
b11, b22 ∈ Z3 with b11b22 6= 0Hb-matrices, with entries of theHb-field (Z3,+,�1),
is a single-power cyclic Hv-commutative group with generator the element a22,
with single-power period 3.

3.2 The case of 2�2 1 = {1, 2}
The multiplicative table of the hyperproduct, is the following:

· a11 a12 a21 a22

a11 a11 a12 a21 a22
a12 a11, a12 a11 a21, a22 a21
a21 a11, a21 a12, a22 a11 a12
a22 H a11, a21 a11, a12 a11

As in the paragraph 3.1:

Proposition 3.4. The set H, consisting of the diag(b11, b22), b11, b22 ∈ Z3 with
b11b22 6= 0 Hb-matrices, with entries of the Hb-field (Z3,+,�2), equipped with
the usual hyperproduct (·) of matrices, is an Hv-commutative group.
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Now, take a map f onto and 1:1, f : H → H , such that

f(a11) = a22, f(a12) = a21, f(a21) = a12, f(a22) = a11

Then, the successive transformations of the above multiplicative table are:

· a22 a21 a12 a11

a22 a11 a12 a21 a22
a21 a11, a12 a11 a21, a22 a21
a12 a11, a21 a12, a22 a11 a12
a11 H a11, a21 a11, a12 a11

· a22 a21 a12 a11

a11 H a11, a21 a11, a12 a11
a12 a11, a21 a12, a22 a11 a12
a21 a11, a12 a11 a21, a22 a21
a22 a11 a12 a21 a22

· a11 a12 a21 a22

a11 a11 a11, a12 a11, a21 H
a12 a12 a11 a12, a22 a11, a21
a21 a21 a21, a22 a11 a11, a12
a22 a22 a21 a12 a11

Then, the last multiplicative table is the table of the paragraph 3.1. So, we get:

Proposition 3.5. TheHv-commutative group (H, ·) consisting of the diag(b11, b22),
b11, b22 ∈ Z3 with b11b22 6= 0Hb-matrices, with entries of theHb-field (Z3,+,�2),
is isomorphic to Hv-commutative group (H, ·) consisting of the diag(b11, b22) ,
b11, b22 ∈ Z3 with b11b22 6= 0Hb-matrices, with entries of theHb-field (Z3,+,�1).

3.3 The case of 1�3 1 = {1, 2}
The multiplicative table of the hyperproduct, is the following:

· a11 a12 a21 a22

a11 H a12, a22 a21, a22 a22
a12 a12, a22 a11, a21 a22 a21
a21 a21, a22 a22 a11, a12 a12
a22 a22 a21 a12 a11

Notice that in the above multiplicative table:
i) x ·H = H · x = H, ∀x ∈ H
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ii) x · y = y · x, ∀x, y ∈ H
iii) (x · y) · z ∩ x · (y · z) 6= ∅, ∀x, y, z ∈ H

So, we get the next proposition:

Proposition 3.6. The set H, consisting of the diag(b11, b22), b11, b22 ∈ Z3 with
b11b22 6= 0 Hb-matrices, with entries of the Hb-field (Z3,+,�3), equipped with
the usual hyperproduct (·) of matrices, is a commutative Hv- group.

Proposition 3.7. For the commutativeHv-group (H, ·), consisting of the diag(b11, b22),
b11, b22 ∈ Z3 with b11b22 6= 0Hb-matrices, with entries of theHb-field (Z3,+,�3) :

i) E = Er = E` = {a11} ii) I(x, a11) = Ir(x, a11) = I`(x, a11) = {x},∀x ∈ H

Proposition 3.8. The commutativeHv-group (H, ·), consisting of the diag(b11, b22),
b11, b22 ∈ Z3 with b11b22 6= 0Hb-matrices, with entries of theHb-field (Z3,+,�3) :
i) is a single-power cyclic commutative Hv-group with generator the element a11,
with single-power period 2.
ii) is a single-power cyclic commutativeHv-group with generator the element a22,
with single-power period 4.
iii) is a cyclic commutativeHv-group of period 3 to each of the generators a12 and
a21.

3.4 The case of 2�4 2 = {1, 2}
The multiplicative table of the hyperproduct, is the following:

· a11 a12 a21 a22

a11 a11 a12 a21 a22
a12 a12 a11, a12 a22 a21, a22
a21 a21 a22 a11, a21 a12, a22
a22 a22 a21, a22 a12, a22 H

Notice that in the above multiplicative table:
i) x ·H = H · x = H, ∀x ∈ H
ii) x · y = y · x, ∀x, y ∈ H
iii) (x · y) · z = x · (y · z), ∀x, y, z ∈ H

So, we get the next proposition:

Proposition 3.9. The set H, consisting of the diag(b11, b22), b11, b22 ∈ Z3 with
b11b22 6= 0 Hb-matrices, with entries of the Hb-field (Z3,+,�4), equipped with
the usual hyperproduct (·) of matrices, is a commutative hypergroup.
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Proposition 3.10. For the commutative hypergroup (H, ·), consisting of the diag(b11, b22),
b11, b22 ∈ Z3 with b11b22 6= 0Hb-matrices, with entries of theHb-field (Z3,+,�4) :

i) E = {a11} ii) I(x, a11) = {x},∀x ∈ H

Proposition 3.11. The commutative hypergroup (H, ·), consisting of the diag(b11, b22),
b11, b22 ∈ Z3 with b11b22 6= 0Hb-matrices, with entries of the Hb-field (Z3,+,�4)
is a single-power cyclic commutative hypergroup with generator the element a22,
with single-power period 2.

4 Construction of 2×2 upper-triangularHb-matrices
with entries of an Hb-field on Z3

On the set Z3, consider the hyperoperation (�1) defined, by setting:

1�1 2 = {1, 2} and x�1 y = x · y for all (x, y) ∈ Z3 × Z3 − {(1, 2)}

Now, consider the set H of the 2× 2 upper-triangular Hb-matrices with b11, b22 ∈
Z3 and b11b22 6= 0, with entries of the Hb-field (Z3,+,�1). Let us denote the
elements of H by:

a1 =

(
1 0
0 1

)
, a2 =

(
1 0
0 2

)
, a3 =

(
1 1
0 1

)
, a4 =

(
1 1
0 2

)
,

a5 =

(
1 2
0 1

)
, a6 =

(
1 2
0 2

)
, a7 =

(
2 0
0 1

)
, a8 =

(
2 0
0 2

)
,

a9 =

(
2 1
0 1

)
, a10 =

(
2 1
0 2

)
, a11 =

(
2 2
0 1

)
, a12 =

(
2 2
0 2

)
So, H = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12}.
Since the multiplicative table is long enough, it is omitted. From this table we get:
i) x ·H = H · x = H, ∀x ∈ H
ii) (·) is non-commutative
iii) (x · y) · z ∩ x · (y · z) 6= ∅, ∀x, y, z ∈ H

So, we get the next proposition:

Proposition 4.1. The set H, consisting of the 2× 2 upper-triangular Hb-matrices
with b11, b22 ∈ Z3 and b11b22 6= 0, with entries of the Hb-field (Z3,+,�1),
equipped with the usual hyperproduct (·) of matrices, is a non-commtative Hv-
group.
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Proposition 4.2. For the non-commtative Hv-group (H, ·), consisting of the 2×2
upper-triangular Hb-matrices with b11, b22 ∈ Z3 and b11b22 6= 0, with entries of
the Hb-field (Z3,+,�1) : E = E` = Er = {a1}, ∀x ∈ H .

Proposition 4.3. The non-commtative Hv-group (H, ·), consisting of the 2 × 2
upper-triangular Hb-matrices with b11, b22 ∈ Z3 and b11b22 6= 0, with entries of
the Hb-field (Z3,+,�1) :
i) is a single-power cyclic non-commutative Hv-group with generator the element
a12, with single-power period 4.
ii) is a single-power cyclic non-commutativeHv-group with generator the element
a10, with single-power period 3.

Now, take anyHb-field (Zp,+,�1) , p = prime 6= 2 and then consider a set H
consisting of the 2× 2 upper-triangular Hb-matrices with entries of this Hb-field,
with b11b22 6= 0 , b11, b22 ∈ Zp.
Then, for any such a set Zp, take for example the elements a3, a7 ∈ H , then:

a7 · a3 = a11 and a3 · a7 = {a1, a7}

So, we get the next general proposition:

Proposition 4.4. Any set H, consisting of the 2× 2 upper-triangular Hb-matrices
with b11b22 6= 0 , b11, b22 ∈ Zp, p = prime 6= 2, with entries of the Hb-
field (Zp,+,�1), equipped with the usual hyperproduct (·) of matrices, is a non-
commutative hyperstructure.

Remark 4.1. The above proposition means that, the minimum non-commutative
Hv- group, equipped with the usual hyperproduct (·) of matrices and consisting
of the 2 × 2 upper-triangular Hb-matrices with b11b22 6= 0, is that with entries of
the Hb-field (Zp,+,�1), where 1�1 2 = {1, 2} and x�1 y = x · y for all (x, y) ∈
Z3 × Z3 − {(1, 2)}.
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1 Introduction
In a set H 6= ∅, a hyperoperation (abbr. hyperoperation=hope) (·) is defined:

· : H ×H → P(H)− {∅} : (x, y) 7→ x · y ⊂ H

and the (H, ·) is called hyperstructure.
It is abbreviated by WASS the weak associativity: (xy)z∩x(yz) 6= ∅,∀x, y, z ∈ H
and by COW the weak commutativity: xy ∩ yx 6= ∅,∀x, y ∈ H.

The largest class of hyperstructures is the one which satisfy the weak proper-
ties. These are called Hv-structures introduced by T. Vougiouklis in 1990 [13],
[14] and they proved to have a lot of applications on several applied sciences such
as linguistics, biology, chemistry, physics, and so on. The Hv-structures satisfy
the weak axioms where the non-empty intersection replaces the equality. The
Hv-structures can be used in models as an organized devise.

The hyperstructure (H, ·) is called Hv -group if it is WASS and the reproduc-
tion axiom is valid, i.e., xH = Hx = H, ∀x ∈ H.
It is called commutative Hv-group if the commutativity is valid and it is called
Hv- commutative group if it is COW.

The motivation for the Hv-structures [13] is that the quotient of a group with
respect to any partition (or equivalently to any equivalence relation), is an Hv-
group. The fundamental relation β* is defined inHv-groups as the smallest equiv-
alence so that the quotient is a group [14].

In a similar way more complicated hyperstructures are defined [14].
One can see basic definitions, results, applications and generalizations on both

hyperstructure and Hv-structure theory in the books and papers [1], [2], [3], [10],
[12], [14], [18].

The element e ∈ H , is called left unit element if x ∈ ex,∀x ∈ H , right unit
element if x ∈ xe, ∀x ∈ H and unit element if x ∈ xe ∩ x ∈ ex,∀x ∈ h.
An element x′ ∈ H is called left inverse of x ∈ H if there exists a unit e ∈ H ,
such that e ∈ x′x, right inverse of x ∈ H if e ∈ xx′ and inverse of x ∈ H if
e ∈ x′x ∩ xx′.
By El

∗ is denoted the set of the left unit elements, by Er
∗ the set of the right unit

elements and by E∗ the set of the unit elements with respect to hope (*) [7].
By I l∗(x, e) is denoted the set of the left inverses, by Ir∗(x, e) the set of the right
inverses and by I∗(x, e) the set of the inverses of the element x ∈ H associated
with the unit e ∈ H with respect to hope (*) [7].

The class of P-hyperstructures was appeared in 80’s to represent hopes of con-
stant length [16], [18]. Then many applications appeared [1], [2], [4], [5], [6], [8],
[9], [15].
Vougiouklis introduced the following definition:
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Definition 1.1. Let (G, ·) be a semigroup and P ⊂ GP 6= ∅. Then the following
hyperoperations can be defined and they are called P-hyperoperations: ∀x, y ∈ G

P ∗ : xP ∗y = xPy,

P ∗r : xP ∗r y = (xy)P

P ∗l : xP ∗l y = P (xy).

The (G,P ∗),(G,P ∗r ), (G,P
∗
l ) are called P-hyperstructures.

One, combining the above definitions gets that the most usual case is if (G, ·) is
semigroup, then xPy = xP ∗y = xPy and (G,P ) is a semihypergroup, but we do
not know about (G,P r) and (G,P l). In some cases, depending on the choice of
P, (G,P r) and (G,P l) can be associative or WASS. (G,P ), (G,P r) and (G,P l)
can be associative or WASS.

In this paper we define in the IR2 a hope which is originated from geometry.
This geometrically motivated hope in IR2 constructs Hv-structures and P-HV-
structures in which the existence of units and inverses are studied. One using
the above Hv-structures and P-Hv-structures into the plane can easily combine
abstract algebraic properties with geometrical figures [11].

2 P-Hv-structures on IR2

Let us introduce a coordinate system into the IR2. We place a given vector −→p
so that its initial point P determines an ordered pair (a1, a2). Conversely, a point
P with coordinates (a1, a2) determines the vector −→p =

−→
OP , where O the origin

of the coordinate system. We shall refer to the elements x, y, z, . . . of the set IR2,
as vectors whose initial point is the origin. These vectors are very well known as
position vectors.
In [7] Dramalidis introduced and studied a number of hyperoperations originated
from geometry. Among them he introduced in IR2 the hyperoperation (⊕) as
follows:

Definition 2.1. For every x, y ∈ IR2

⊕ : IR2 × IR2 → P(IR2)− {∅} : (x, y) 7→ x⊕ y =

= [0, x+ y] = {µ(x+ y)/µ ∈ [0, 1]} ⊂ IR2

From geometrical point of view and for x, y linearly independent position vectors,
the set x⊕y is the main diagonal of the parallelogram having vertices 0, x, x+y, y.
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Proposition 2.1. The hyperstructure (IR2,⊕) is a commutative Hv-group.

Now, let P be the set P = [0, p] = {λp/λ ∈ [0, 1]} ⊂ IR2, where p is a fixed
point of the plane. Geometrically, P is a line segment.

Consider the P-hyperoperation (P ∗r(⊕)):

Definition 2.2. For every x, y ∈ IR2

P ∗r(⊕) : IR2 × IR2 → P(IR2)− {∅} : (x, y) 7→ xP ∗r(⊕)y = (x⊕ y)⊕ P ⊂ IR2

Obviously, (P ∗r(⊕)) is commutative and geometrically, for x,y linearly independent
position vectors, the set xP ∗r(⊕)y is the closed region of the parallelogram with
vertices 0, x+ y, x+ y + p, p.

Proposition 2.2. The hyperstructure (R2, P ∗r(⊕)) is a commutative P-Hv-group.
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Proof. Obviously, xP ∗r(⊕)R2 = R2P ∗r(⊕)x = R2,∀x ∈ R2.

For x, y, z ∈ R2

(xP ∗r(⊕)y)P
∗
r(⊕)z = {[(x⊕ y)P ]⊕ z} ⊕ P = [0, z, x+ y + z, x+ y + z + 2p, p]

xP ∗r(⊕)(yP
∗
r(⊕)z) = {x⊕ [(y ⊕ z)⊕ P ]} ⊕ P =

= [0, x+ y + z, x+ y + z + 2p, x+ y + 2p, x+ 2p, p]

So,

(xP ∗r(⊕)y)P
∗
r(⊕)z ∩ xP ∗r(⊕)(yP ∗r(⊕)z) 6= ∅,∀x, y, z ∈ R2.2

Proposition 2.3. EP ∗
r(⊕)

= [−p, 0] = {−λp/λ ∈ [0, 1]}

Proof. Let e ∈ El
P ∗
r(⊕)
⇔ xeP ∗r(⊕)x,∀x ∈ R2 ⇔ x{µλe+µλx+µνp/µ, ν, λ[0, 1]}.

That means that,
µλ = 1 and µλe + µνp = 0 ⇔ e + µνp = 0 ⇔ e = −µνp,−1 ≤ −µν ≤ 0,
then e ∈ [−p, 0]. So, El

P ∗
r(⊕)

= [−p, 0] and according to commutativity Er
P ∗
r(⊕)

=

[−p, 0] = EP ∗
r(⊕)

= [−p, 0].
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Proposition 2.4. I(P ∗r(⊕))(x, e) = {
1
µλ
e−x− ν

λ
p/µ, λ ∈ (0, 1], ν ∈ [0, 1]}, where

e ∈ EP ∗
r(⊕)

.

Proof. Let e ∈ EP ∗
r(⊕)

and x′ ∈ I lP ∗
r(⊕)

(x, e) ⇔ e ∈ x′P ∗r(⊕)x ⇔ e{µλx′ +
µλx+ µνp/λ, µ, ν[0, 1]}.
That means there exist λ1, µ1, ν1[0, 1] :

e = µ1λ1x
′ + µ1λ1x+ µ1ν1p⇒ x′ =

1

µ1λ1
e− x− ν1

λ1
p, µ1, λ1 6= 0.

So, x′ ∈ { 1
µλ
e− x− ν

λ
p/µ, λ ∈ (0, 1], ν ∈ [0, 1]}.

Since (P ∗r(⊕)) is commutative, we get I(P ∗r(⊕))(x, e) = { 1
µλ
e − x − ν

λ
p/µ, λ ∈

(0, 1], ν ∈ [0, 1]}.

The P-hyperoperation P ∗l(⊕) = P ⊕ (x ⊕ y) is identical to (P ∗r(⊕)). But the P-
hyperoperation P ∗(⊕) = x⊕P⊕y is different and even more P ∗l(⊕) = (x⊕P )⊕y 6=
x⊕ (P ⊕ y) = xP ∗r(⊕)y, since (⊕) is not associative.2
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Definition 2.3. For every x, y ∈ IR2

P ∗l(⊕) : R2 × R2 → (R2) : (x, y) 7→ xP ∗l(⊕)y = (x⊕ P )⊕ y

More specifically,

xP ∗l(⊕)y = {λκx+ λy + λκµp/λ, κ, µ ∈ [0, 1]},∀x, y ∈ R2.

Geometrically, for x,y linearly independent position vectors, the set xP ∗l(⊕) y is the
closed region of the quadrilateral with vertices 0, x + y, x + y + p, y. On the
other hand the set yP ∗l(⊕)x is the closed region of the quadrilateral with vertices
0, x, x+ y, x+ y + p. So,

(xP ∗l(⊕)y) ∩ (yP ∗l(⊕)x) = [0, x+ y, x+ y + p] 6= ∅,∀x, y ∈ R2.

Proposition 2.5. The hyperstructure (R2, P ∗l(⊕)) is a P-Hv- commutative group.

Proof. Obviously, xP ∗l(⊕)R2 = R2P ∗l(⊕)x = R2,∀x ∈ R2.

For x, y, zR2

(xP ∗l(⊕)y)P
∗l
(⊕)z = {[(x⊕P )⊕y]P}⊕z ≡ [O, z, x+y+z, x+2p+y+z, y+p+z]

xP ∗l(⊕)(yP
∗l
(⊕)z) = (x⊕P )⊕[(y⊕P )⊕z] ≡ [O, x, x+y+z, x+2p+y+z, y+p+z]
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So,
(xP ∗l(⊕)y)P

∗l
(⊕)z ∩ xP ∗l(⊕)(yP ∗l(⊕)z) 6= ∅, x, y, z ∈ R2.

2

Proposition 2.6. i) El
P ∗l
(⊕)

= R2

ii) Er
P ∗l
(⊕)

= [0,−p] = {−νp/ν ∈ [0, 1]} = EP ∗l
(⊕)

Proof.

i) Notice that x ∈ eP ∗l(⊕)x = [0, e+x, e+x+p, x],∀x, e ∈ R2. So,El
P ∗l
(⊕)

= R2.

ii) Let e ∈ Er
P ∗l
(⊕)

⇔ x ∈ xP ∗l(⊕)e,∀x ∈ R2 ⇔ x ∈ {λκx+λe+λκµp/λ, κ, µ ∈
[0, 1]}. Then, there exist µ1, λ1, κ1 ∈ [0, 1] : x = λ1κ1x+ λ1e+ λ11µ1p⇔
e = 1

/
λ1[(1 − λ11)x − λ1κ1µ1p], λ1 6= 0. The last one is valid ∀x ∈ R2,

so by setting x = 0 we get e = −κ1µ1p. Since µ1, κ1 ∈ [0, 1] there exists
ν1 ∈ [0, 1] : ν1 = κ1µ1 ⇒ e = −ν1p⇒

e ∈ {−νp/ν ∈ [0, 1]} = [0,−p].

Since Er
P ∗l
(⊕)

⊂ R2 = El
P ∗l
(⊕)

we get El
P ∗l
(⊕)

∩ Er
P ∗l
(⊕)

= {−νp/ν[0, 1]} =

EP ∗l
(⊕)
.2

Proposition 2.7. α) Ir
P ∗l
(⊕)

(x, e) = {−κx − ( ν
λ
+ κµ)p/κ, µ, ν ∈ [0, 1], λ ∈

(0, 1]}, e ∈ Er
P ∗l
(⊕)

.

β) Ir
P ∗l
(⊕)

(x, e) = { e
λ
− κx− κµp/κ, µ ∈ [0, 1], λ ∈ (0, 1]}, e ∈ El

P ∗l
(⊕)

γ) I l
P ∗l
(⊕)

(x, e) = {−x
κ
− ( ν

λκ
+ µ)p/κ, λ ∈ (0, 1], µ ∈ (0, 1]}, e ∈ Er

P ∗l
(⊕)

.
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δ) I l
P ∗l
(⊕)

(x, e) = { 1
κ
( e
λ
− x)− µp/κ, λ ∈ (0, 1], µ ∈ [0, 1]}, e ∈ El

P ∗l
(⊕)

Proof.
α) Let e ∈ Er

P ∗l
(⊕)

= [0,−p] and x′ ∈ Ir
P ∗l
(⊕)

(x, e), then

e ∈ xP ∗l(⊕)x′ ⇒ e ∈ {λκx+λx′+λκµp/κ, λ, µ ∈ [0, 1]}. That means there
exist κ1, λ1, µ1 ∈ [0, 1] :
e = λ1κ1x+ λ1x

′ + λ1κ1µ1p⇒ x′ = e
λ1
− κ1x− κ1µ1p, λ1 6= 0.

But, e ∈ {−νp/ν[0, 1]} ⇒3 ν1 ∈ [0, 1] : e = −ν1p.
So, x′ = − ν1

λ1
p− κ1x− κ1µ1p, λ1 6= 0⇒ x′ = −κ1x( ν1λ1 + κ1µ1)p, λ1 6= 0.

Then we get x′ ∈ {−κx− ( ν
λ
+ κµ)p/κ, µ, ν ∈ [0, 1], λ ∈ (0, 1]}.

β) Similarly as above.

γ) Similarly as above.

δ) Similarly as above.

2

Definition 2.4. For every x, y ∈ IR2

∗r
(⊕) : R2 × R2 → (R2) : (x, y) 7→ x∗r(⊕))y = x⊕ (P ⊕ y)

More specifically,

x∗r(⊕)y = {λx+ λκy + λκµp/λ, κ, µ ∈ [0, 1]},∀x, y ∈ R2

Geometrically, for x,y linearly independent position vectors, the set xP ∗r(⊕)y is the
closed region of the quadrilateral with vertices 0, x, x + y, x + y + p. On the
other hand the set yP ∗r(⊕)x is the closed region of the quadrilateral with vertices
0, x+ y, x+ y + p, y. So,

(xP ∗r(⊕)y) ∩ (yP ∗r(⊕)x) = [0, x+ y, x+ y + p] 6= ∅,∀x, y ∈ R2.
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Proposition 2.8. The hyperstructure (R2, P ∗r(⊕)) is a P-Hv- commutative group.

Proof. Obviously, xP ∗r(⊕)R2 = R2P ∗r(⊕)x = R2,∀x ∈ R2.

For x, y, z ∈ R2

(xP ∗r(⊕)y)P
∗r
(⊕)z = [(x⊕(P⊕y)]⊕(P⊕z) ≡ [O, x, x+z, x+y+z, x+y+z+2p]

xP ∗r(⊕)(yP
∗r
(⊕)z) = x⊕{P⊕[y⊕(P⊕z)]} ≡ [O, x, x+y+z, x+y+z+2p, y+p+x]

So,
[(xP ∗r(⊕)y)P

∗r
(⊕)z] ∩ [xP ∗r(⊕)(yP

∗r
(⊕)z)] 6= ∅,∀x, y, z ∈ R2.2

The following, are respective propositions of the Propositions 2.6. and 2.7. :

Proposition 2.9. i) Er
P ∗r
(⊕)

= R2

ii) El
P ∗r
(⊕)

= [0,−p] = {−νp/ν ∈ [0, 1]} = EP ∗r
(⊕)
.

Proposition 2.10. α) IrP ∗r
(⊕)

(x, e) = { 1
κ
( e
λ
−x)−µp/κ, λ ∈ (0, 1], µ ∈ [0, 1]}, e ∈

Er
P ∗r
(⊕)

β) IrP ∗r
(⊕)

(x, e) = {−x
κ
− ( ν

λκ
+ µ)p/κ, λ ∈ (0, 1], µ ∈ (0, 1]}, e ∈ El

P ∗r
(⊕)
.

γ) I lP ∗r
(⊕)

(x, e) = { e
λ
− κx− κµp/κ, µ ∈ [0, 1], λ ∈ (0, 1]}, e ∈ Er

P ∗r
(⊕)

δ) I lP ∗r
(⊕)

(x, e) = {−κx− ( ν
λ
+ κµ)p/κ, µ, ν ∈ [0, 1], λ ∈ (0, 1]}, e ∈ El

P ∗r
(⊕)
.

Remark 2.1. Notice that,

α)x∗l(⊕)y = y∗r(⊕)x,∀x, y ∈ R2

β)x∗r(⊕)y = y∗l(⊕)x,∀x, y ∈ R2
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1 Introduction
First we present some basic definitions on hyperstructures, mainly on the weak

hyperstructures introduced in 1990 [7].

Definition 1.1. Hyperstructures are called the algebraic structures equipped with,
at least, one hyperoperation. Abbreviate: hyperoperation=hope. The weak hy-
perstructures are called Hv-structures and they are defined as follows:
In a set H equipped with a hope · : H ×H → ℘(H)− {∅}, we abbreviate by

WASS the weak associativity: (xy)z ∩ x(yz) 6= ∅,∀x, y, z ∈ H and by
COW the weak commutativity: xy ∩ yx 6= ∅,∀x, y ∈ H .
The hyperstructure (H, ·) is called an Hv-semigroup if it is WASS, is called

Hv-group if it is reproductive Hv-semigroup:

xH = Hx = H,∀x ∈ H.

(R,+, ·) is called Hv-ring if the hopes (+) and (·) are WASS, the reproduction
axiom is valid for (+), and (·) is weak distributive with respect to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

An Hv-group is called cyclic [6], [8], if there is an element, called generator,
which the powers have union the underline set. The minimal power with this
property is called the period of the generator. If there is an element and a special
power, the minimum one, is the underline set, then the Hv-group is called single-
power cyclic.

For more definitions, results and applications on hyperstructures and mainly
on the Hv-structures, see books as [1], [2], [8] and papers as [6], [9], [8], [10],
[11], [12], to mention but a few of them. An extreme class of hyperstructures is
the following: An Hv-structure is called very thin if and only if, all hopes are
operations except one, with all hyperproducts to be singletons except only one,
which is a subset with cardinality more than one.

The fundamental relations β* and γ* are defined, in Hv-groups and Hv-
rings, respectively, as the smallest equivalences so that the quotient would be
group and ring, respectively. Normally to find the fundamental classes is very
hard job. The basic theorems on the fundamental classes are analogous to the
following:

Theorem 1.1. [8] Let (H, ·) be an Hv-group and let us denote by U the set of all
finite products of elements of H. We define the relation β in H as follows: xβy
iff {x, y} ⊂ u where u ∈ U . Then the fundamental relation β* is the transitive
closure of the relation β.
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Proof. See [7], [8].
An element of a hyperstructure is called single if its fundamental class is a

singleton.
Motivation for Hv-structures:
The quotient of a group with respect to an invariant subgroup is a group.
F. Marty states that, the quotient of a group by any subgroup is a hypergroup.
Now, the quotient of a group with respect to any partition is an Hv-group.
We remark that inHv-groups (or even in hypergroups in the sense of F. Marty)

we do not have necessarily any ’unit’ element, consequently neither ’inverses’.
However, we may have more than one unit elements and for each element of an
Hv-group we may have one inverse element or more than one inverse element. 2

Definition 1.2. Let (H, ·) be an Hv-semigroup. An element e, is called left unit
if ex 3 x,∀x ∈ H , it is called right unit if xe 3 x,∀x ∈ H and it is called
unit element if it is both left and right unit element. For given unit e, an element
x ∈ H , has a left inverse with respect to e, any element xle if xle · x 3 e, it has a
right inverse element xre if x · xre 3 e, and it has an inverse xe with respect to e,
if e ∈ xe · x∩ x · xe. Denote by El the set of all left unit elements, by Er the set of
all right unit elements, and by E the set of unit elements.

Definition 1.3. [16], [5] Let (H, ·) be an Hv-semigroup. An element is called
strong-inverse if it is an inverse to x with respect to all unit elements.

Remark 1.1. We remark that an element xs is a strong-inverse to x, if E ⊂ xs ·
x ∩ x · xs. Therefore the strong-inverse property it is not exists in the classical
structures.

Definition 1.4. Let (H, ·), (H,⊗) be Hv-semigroups defined on the same H. (·)
is smaller than (⊗), and (⊗) greater than (·), if and only if, there exists an au-
tomorphism f ∈ Aut(H,⊗) such that xy ⊂ f(x ⊗ y), ∀x, y ∈ H. Then (H,⊗)
contains (H, ·) and write · ≤ ⊗. If (H, ·) is a structure, then it is basic and (H,⊗)
is an Hb-structure.

The Little Theorem. In a set, greater hopes of the ones which are WASS or
COW, are also WASS or COW, respectively.

The fundamental relations are used for general definitions, thus, for example,
in order to define the general Hv-field one uses the fundamental relation γ*:

Definition 1.5. [7], [8], [9] The Hv-ring (R,+, ·) is an Hv-field if the quotient
R/γ* is a field. The definition of the Hv-field introduced a new class of hyper-
structures [12]: The Hv-semigroup (H, ·) is h/v-group if the quotient H/β* is a
group.

More complicated hyperstructures can be defined as well:
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Definition 1.6. Let [8] (R,+, ·) be an Hv-ring, (M,+) be a COW Hv-group and
there exists an external hope

· : R×M→ ℘(M) : (a, x)→ ax

such that ∀a, b ∈ R and ∀x, y ∈M we have

a(x+ y) ∩ (ax+ ay) 6= ∅, (a+ b)x ∩ (ax+ bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

thenM is called an Hv -module over F. In the case of an Hv-field F instead of an
Hv-ring R, then the Hv-vector space is defined.

In the above cases the fundamental relation ε* is defined to be the smallest
equivalence relation such that the quotientM/ε* is a module (resp. vector space)
over the fundamental ring R/γ* (resp. fundamental field F/γ*).

The general definition of an Hv-Lie algebra was given in [14] as follows:

Definition 1.7. Let (L,+) be an Hv-vector space over the Hv-field (F,+, ·), φ :
F→ F/γ* the canonical map and ωF = {x ∈ F : φ(x) = 0}, where 0 is the zero
of the fundamental field F/γ*. Similarly, let ωL be the core of the canonical map
φ′ : L → L/ε* and denote by the same symbol 0 the zero of L/ε*. Consider the
bracket (commutator) hope:

[, ] : L× L→ ℘(L) : (x, y)→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.
[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,
∀x, x1, x2, y, y1, y2 ∈ L, λ1, λ2 ∈ F

(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅, ∀x, y ∈ L

Definition 1.8. [10] Let (H, ·) be a hypergroupoid. We say that we remove the
element h ∈ H , if we simply consider the restriction of (·) on H − {h}. We say
that the element h ∈ H absorbs the element h ∈ H if we replace h, whenever it
appears, by h. We say that the element h ∈ H merges with the element h ∈ H , if
we take as product of x ∈ H by h, the union of the results of x with both h and h,
and consider h and h as one class, with representative the element h.
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2 Large classes of Hv-structures and applications
The large class of, so called, P-hyperstructures was appeared in 80’s to rep-

resent hopes of constant length [6]. Since then several classes of P-hopes were
introduced and studied [8], [4], [11].

Definition 2.1. Let (G, ·) be a groupoid, then for all P such that ∅ 6= P ⊂ G, we
define the following hopes called P-hopes: ∀x, y ∈ G

P : xPy = (xP )y ∪ x(Py),

P r : xP ry = (xy)P ∪ x(yP ),

P l : xP ly = (Px)y ∪ P (xy).

The (G,P ),(G,P r), (G,P l) are called P-hyperstructures. The most usual case is
when (G, ·) is semigroup, then we have

xPy = (xP )y ∪ x(Py) = xPy

and (G,P ) is a semihypergroup.

It is immediate the following: Let (G, ·) be a group, then for all subsets P
such that ∅ 6= P ⊂ G, the hyperstructure (G,P), where the P-hope is xPy =
xPy, becomes a hypergoup in the sense of Marty, i.e. the strong associativity is
valid. The P-hope is of constant length, i.e. we have |xPy| = |P |. We call the
hyperstructure (G,P), P-hypergroup.

In [4], [15] a modified P-hope was introduced which is appropriate for the
e-hyperstructures:

Construction 2.1. Let (G, ·) be abelian group and P any subset of G with more
than one elements. We define the hyperoperation ×P as follows:

x×p y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and c 6= e

x · y if x = e or y = e

we call this hope Pe-hope. The hyperstructure (G,×p) is an abelian Hv-group.

Another large class is the one on which a new hope (∂) in a groupoid is defined.

Definition 2.2. [13]. Let (G, ·) be groupoid (resp. hypergroupoid) and f : G →
G be a map. We define a hope (∂), called theta-hope or simply ∂-hope, on G as
follows

x∂y = {f(x)·y, x·f(y)}, ∀x, y ∈ G. (resp. x∂y = (f(x)·y)∪(x·f(y)), ∀x, y ∈ G)
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If (·) is commutative then (∂) is commutative. If (·) is COW, then (∂) is COW.
Let (G, ·) be groupoid (resp. hypergroupoid) and f : G → P(G) − {∅} be

multivalued map. We define the hope (∂), on G as follows

x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G

Properties. If (G, ·) is a semigroup then:

(a) For every f, the hope (∂) is WASS.

(b) If f is homomorphism and projection, or idempotent: f 2 = f , then (∂) is
associative.

Let (G, ·) be a groupoid and fi : G → G, i ∈ I , be a set of maps on G. We
consider the map f∪ : G → P(G) such that f∪(x) = {fi(x)|i ∈ I, } called the
the union of the fi(x). We define the union ∂-hope, on G if we consider as map
the f∪(x). A special case for a given map f, is to take the union of this with the
identity map. We consider the map f ≡ f ∪ (id), so f(x) = {x, f(x)},∀x ∈ G,
which we call b−∂−hope. Then we have

x∂y = {xy, f(x) · y, x · f(y)},∀x, y ∈ G

Motivation for the definition of the ∂-hope is the map derivative where only the
multiplication of functions can be used. Therefore, in these terms, for given func-
tions s(x), t(x), we have s∂t = {s′t, st′} where (′) denotes the derivative.

Proposition 2.1. Let (G, ·) be group and f(x) = a, a constant map. Then
(G, ∂)/β* is a singleton.

Proof. For all x in G we can take the hyperproduct of the elements, a−1 and
a−1x

a−1∂(a−1 · x) = {f(a−1) · a−1 · x, a−1 · f(a−1 · x)} = {x, a}.

thus xβa, ∀x ∈ G, so β∗(x) = β∗(a) and (G, ∂)/β* is singleton. 2
Special case if (G, ·) be a group and f(x) = e, then x∂y = {x, y}, is the

incidence hope.
Taking the application on the derivative, consider all polynomials of the first

degree gi(x) = aix + bi. We have g1∂g2 = {a1a2x + a1b2, a1a2x + b1a2}, so it
is a hope on the set of first degree polynomials. Moreover all polynomials x + c,
where c be a constant, are units.

The Lie-Santilli isotopies born to solve Hadronic Mechanics problems. San-
tilli [4], [15], proposed a ’lifting’ of the trivial unit matrix of a normal theory into
a nowhere singular, symmetric, real-valued, new matrix. The original theory is
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reconstructed such as to admit the new matrix as left and right unit. The isofields
needed correspond toHv-structures called e-hyperfields which are used in physics
or biology. Therefore, in this theory the units and the inverses are playing very
important role. The Construction 2.1, is used, last years, in this theory.

Example 2.1. Consider the ’small’ ring (Z4,+, ·), suppose that we want to con-
struct non-degenerate Hv-field where 0 and 1 are scalars with respect for both
addition and multiplication, and moreover every element of Z4 has a unique oppo-
site and every non-zero element has a unique inverse. Then on the multiplication
tables o these operations the lines and columns of the elements 0 and 1 remain the
same. The sum 2+2=0 and the product 3 · 3 = 1, remain the same. In the results
of the sums 2+3=1, 3+2=1 and 3+3=2 one can put respectively, the elements 3,
3 and 0. In the results of the products 2 · 2 = 0, 2 · 3 = 2 and 3 · 2 = 2 one can put
respectively, the elements 2, 0 and 0. Then in all those enlargements, even only
one enlargement is used, we obtain

(Z4,+, ·)/β∗ ∼= Z2

Therefore this construction gives 49 Hv-fields.

3 Strong-inverse elements.

We present now some hyperstructures, results and examples of hyperstructures
with strong-inverse elements.

Properties 3.1. Let (G, ·) be a group, take P such that ∅ 6= P ⊂ G and the
P-hypergroup (G,P ), where xPy = xPy. We have the following

Units: In order an element u to be right unit of the P-hypergroup (G,P ), we
must have xPu = xPu 3 x,∀x ∈ G. In fact the set Pu must contain the unit
element e of the group (G, ·). Thus, all the elements of the set P−1, are right units.
The same is valid for the left units, therefore, the set of all units is the P−1.

Inverses: Let u be a unit in (G,P ), then, for given x in order to have an inverse
element x′ with respect to u, we must have xPx′ = xPx′ 3 u, so taking xpx′ = u,
we obtain that all the elements of the form x′ = p−1x−1u are inverses to x with
respect to the unit u.

Theorem 3.1. [16] Let (G, ·) be a group, then for all normal subgroups P of G,
the hyperstructure (G,P ), where xPy = xPy,∀x, y ∈ G, is a hypergoup with
strong inverses. Moreover, for any inverse x′ of x ∈ G, with respect to any unit,
we have xPx′ = P.

121



Theodora Kaplani and Thomas Vougiouklis

Proof. Let x ∈ G, take an inverse x′ = p−1x−1u with respect to the unit
u = p−1k , for any p. Then we have xPx′ = xPx′. But, since P is normal subgroup,
we have

xPx′ = xp−1x−1p−1k P = xp−1x−1P = xp−1Px−1 = xPx−1 = P

Remark that in this case, P−1 = P , is the set of all units, thus all inverses are
strong. 2

Properties 3.2. Let (G, ·) be groupoid and f : G → G be a map and (G, ∂) the
corresponding ∂-structure, then we have the following:
Units: In order an element u to be right unit, we must have

x∂u = {f(x) · u, x · f(u)} 3 x.

But, the unit must not depend on the f(x), so f(u) = e, where e be unit in (G, ·)
which must be a monoid. The same it is obtained for the left units. So the elements
of kernf = {u : f(u) = e}, are the units of (G, ∂).
Inverses: Let u be a unit in (G, ∂) , then (G, ·) is a monoid with unit e and f(u) =
e. For given x in order to have an inverse element x′ with respect to u, we must
have

x∂x′ = {f(x) · x′, x · f(x′)} 3 u and x′∂x = {f(x′) · x, x′ · f(x)} 3 u.

So the only cases, which do not depend on the image f(x′), are

x′ = (f(x))−1u and x′ = u(f(x))−1

the right and left inverses, respectively. We have two-sided inverses iff f(x)u =
uf(x).

Remark [16]: Since the inverses are depending on the units, therefore they are
not strong.

The following constructions, originated from the properties the strong-inverse
elements have, gives a minimal hyperstructure which have strong-inverse ele-
ments. This is a necessary enlargement in order all the elements to be strong-
inverses.

Construction 3.1. Let (G, ·) be a group with unit e. Consider a finite set E =
{ei|i ∈ I}. On the set G = (G− {e}) ∪ E we define a hope (×) as follows:

ei × ej = {ei, ej}, ∀ei, ej ∈ E
ei × x = x× ej = x, ∀ei ∈ E, x ∈ G− {e}
x× y = x · y if x · y ∈ G− {e} and x× y = E if x · y = e

Then the hyperstructure (G,×) is a hypergroup. The set of unit elements is E and
all the elements are strong-inverse. Moreover we have (G,×)/β∗ ∼= (G, ·).
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Proof. For the associativity we have the cases
(ei × ej)× ek = ei × (ej × ek) = {ei, ej, ek},∀ei, ej, ek ∈ E
(x× y)× z = x× (y× z) = x · y · z or E, ∀x, y, z ∈ G and not all of them belong
to E.

In the second case there is no matter if the product of two inverse elements
appears. The only difference is that the result is singleton and in some cases the
result is equal to the set E.

Therefore the strong associativity is valid. Moreover the reproductivity is valid
and the set E is the set of units in (G,×).

Two elements of G are β* equivalent if they belong to any finite ×-product of
elements of G. Thus all fundamental classes are singletons except the set of units
E. That means that we have (G,×)/β∗ ∼= (G, ·). 2

Construction 3.2. Let (G, ·) be an Hv-group with only one unit element e and
every element has a unique inverse. Consider a finite set E = {ei|i ∈ I}. On the
set G = (G− {e}) ∪ E we define a hope (×) as follows:

ei × ej = {ei, ej}, ∀ei, ej ∈ E
ei × x = x× ej = x, ∀ei ∈ E, x ∈ G− {e}
x× y = x · y if x · y ∈ G− {e} and x× y = E if x · y = e

Then the hyperstructure (G,×) is an Hv-group. The set of unit elements is E and
all the elements are strong-inverse. Moreover we have

(G,×)/β∗ ∼= (G, ·)/β∗.

Proof. For the associativity we have the cases
(ei × ej)× ek = ei × (ej × ek) = {ei, ej, ek}, ∀ei, ej, ek ∈ E
(x× y)× z = x× (y× z) = x · y · z or E, ∀x, y, z ∈ G and not all of them belong
to E.

Therefore the WASS is valid. Moreover the reproductivity is valid and the set
E is the set of units in (G,×).

Two elements of G are β* equivalent if they belong to any finite ×-product
of elements of G. So, all fundamental classes correspond to the fundamental
classes of (G, ·), with an enlargement of the class of e into E. Thus, we have
(G,×)/β∗ ∼= (G, ·)/β∗.2

We remark that the above constructions give a great number of hyperstructures
with strong-inverses because we can enlarge then in any result except if the result
is E.

Now we present a result on strong-inverses on a general finite case.
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Theorem 3.2. The minimum non-degenerate, i.e. have non-degenerate funda-
mental field, h/v-fields with strong-inverses with respect to both sum-hope and
product-hope, obtained by enlarging the ring (Z2p,+, ·), where p > 2 is prime
number, and which has fundamental field isomorphic to (Zp,+, ·), is defined as
follows:

The sum-hope (⊕) is enlarged from (+) by setting

(1). p(⊕)κ = κ(⊕)p = κ+ E,∀κ ∈ Z2p, where E = {0, p} be the set of zeros

(2). whenever the result is 0 and p we enlarge it by setting p and 0, respectively.

The product-hope (⊗) is enlarged from (·) by setting

(3). (p + 1) ⊗ κ = κ ⊗ (p + 1) = κU,∀κ ∈ Z2p, where U = {1, p + 1} be the
set of units

(4). whenever the result is 1 and p+1 we enlarge it by setting p+1 and 1, respec-
tively.

The fundamental classes are of the form κ = {κ, κ+ p},∀κ ∈ Z2p

Proof. In order to have non degenerate case, since we have 2p elements, in
both, sum-hope and product-hope, is to take the zero-set E = {0, p} and unit-set
U = {1, p+ 1}. In order to have strong-opposites, we have to enlarge, according
to Remark 1.1, as in (2). Moreover, in order to have strong-inverses, we have to
enlarge, again according to Remark 1.1, as in (4).

From the above definition of the sum-hope it is to see that the fundamental
classes are of the form κ = {κ, κ+ p},∀κ ∈ Z2p.

For the above classes for the product-hope mod(2p), we have ∀κ, λ ∈ Z2p,

κ⊗ λ = {κ, κ+ p} · {λ, λ+ p} = {κλ, κ(λ+ p), (κ+ p)λ, (κ+ p)(λ+ p)} =

= {κλ, κλ+ κp, κλ+ pλ, κλ+ κp+ pλ+ pp} = {κλ, κλ+ p}

Because, if κ or λ are odd numbers then κλ + κp or κλ + pλ, respectively, are
equal mod2p to κλ+p. Moreover, if both κ and λ are even numbers then we have,
κλ+ κp+ pλ+ pp = κλ+ p.

From the above we remark that the fundamental classes κ = {κ, κ+ p},∀κ ∈
Z2p, are formed from sum-hope and they are remain the same in the product-hope.
Finally the fundamental field is isomorphic to (Zp,+, ·). 2

As example of the above Theorem we present the case for p=5.

Example 3.1. In the case of the h/v-field (Z10,⊕,⊗), i.e. p=5, we have the fol-
lowing multiplicative tables:
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⊕ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5,0 6 7 8 9
1 1 2 3 4 5,0 6,1 7 8 9 0,5
2 2 3 4 5,0 6 7,2 8 9 0,5 1
3 3 4 5,0 6 7 8,3 9 0,5 1 2
4 4 5,0 6 7 8 9,4 0,5 1 2 3
5 5,0 6,1 7,2 8,3 9,4 0,5 1,6 2,7 3,8 4,9
6 6 7 8 9 0,5 1,6 2 3 4 5,0
7 7 8 9 0,5 1 2,7 3 4 5,0 6
8 8 9 0,5 1 2 3,8 4 5,0 6 7
9 9 0,5 1 2 3 4,9 5,0 6 7 8

and

⊗ 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1,6 2 3 4 5 6,1 7 8 9
2 0 2 4 6,1 8 0 2 4 6,1 8
3 0 3 6,1 9 2 5 8,3 1,6 4 7
4 0 4 8 2 6,1 0 4 8 2 6,1
5 0 5 0 5 0 5 0,5 5 0 5
6 0 6,1 2 8,3 4 0,5 6,1 2,7 8 4,9
7 0 7 4 1,6 8 5 2,7 9 6,1 3
8 0 8 6,1 4 2 0 8 6,1 4 2
9 0 9 8 7 6,1 5 4,9 3 2 1,6

Moreover, it is easy to see that the fundamental field is isomorphic to (Z5,+, ·).
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Abstract

The bar is an alternative to Likert-type scale as a response format option
used in closed-form questionnaires. An important advantage of using the
bar is that it provides a variety of data post-processing options (i.e., ways of
partitioning the values of a continuous variable into discrete groups). In this
context, continuous variables are usually divided into equal-length or equal-
area intervals according to a user-specified distribution (e.g. the Gaussian).
However, this transition from continuous into discrete can lead to a signif-
icant loss of information. In this work, we present a fuzzy coding of the
original variables which exploits linear and invertible triangular member-
ship functions. The proposed coding scheme retains all of the information
in the data and can be naturally combined with an exploratory data analysis
technique, Correspondence Analysis, in order to visually investigate both
linear and non-linear variable associations. The proposed approach is illus-
trated with a real-world application to a student course evaluation dataset.
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1 Introduction
The closed-form questionnaire is the most commonly used data collection tool

or instrument in quantitative studies. Likert scales are commonly used to measure
attitude, providing a range of responses to a given question or statement (see e.g.,
[5]). Typically, Likert scales have an odd number of response categories, 3, 5
or 7, representing the degree of agreement with the corresponding statements.
For example, a five-point scale ranges from 1 = strongly disagree to 5 = strongly
agree. Although the response categories have a rank order, the invervals between
values are frequently presumed equal. This assumption is often convenient in
that it permits the calculation of descriptive and inferential statistics suitable for
continuous variables.

The processing of questionnaire data obtained via Likert scales has certain ad-
vantages, but there are also major shortcomings [4, 5, 13, 27]. Firstly, the desicion
on the number of categories of a Likert-type scale may affect the outcome of sta-
tistical analysis. Too many or too few response categories, may cause respondent
fatigue with a corresponding drop-off in response rate and reliability [3]. Second,
there is evidence that participants would give different ratings when using differ-
ent versions of the same Likert-type scale [12]. This indicates that the decision
on the verbal labels that will be used to describe the numerical values of a Likert
scale is not a trivial one. Such a problem also involves a number of social and
psychologica factors. [27]. A third issue is related to the legitimacy of assuming a
continuous or interval scale for Likert-type categories, instead of an ordinal level
of measurement. In fact, many authors advocate against this practice, given that
the appropriate descriptive and inferential statistics differ for ordinal and interval
variables [13]. Therefore, if the wrong statistical technique is used, researchers
increase the chance of coming to the wrong conclusions about their findings. Fi-
nally, the fixed number of response categories limits the options for data process-
ing and does not allow the direct comparison with the results of similar studies,
where the same questions but with a different number of response categories were
used [27].

Kambaki-Vougioukli & Vougiouklis [14] introduced the “bar”, an alternative
to the Likert scale as a measurement instrument of a characteristic or attitude that
is believed to range across a continuum of values. The bar is a straight horizontal
line of fixed length, usually 62mm. The ends are defined as the extreme limits
of the characteristic to be measured, orientated from the left (0) to the right (62).
The study participants are asked to mark the bar at any point that expresses their
answer to the specific question. Although similar to other concepts in the field
of psychology, such as the Visual Analogue Scale [6], the idea of the bar origi-
nates from hyperstructure theory, a branch of mathematics that has recently found
a wide range of applications in the social sciences (see e.g., [2, 7, 8, 21]). Conse-
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quently, the bar marks a transition from discrete into continuous and from single
valued into fuzzy or multivalued [27].

A series of studies, mostly in quantitative linguistics [15, 16, 17, 18, 19], have
shown that the bar can be widely used to a broad range of populations and settings
due to its simplicity and adaptability. A questionnaire developed using the bar
instead of a Likert scale takes less time to complete and no training or special skill
of the participants is required other than to possess an understanding of distance
on a ruler. Moreover, minimal translation difficulties can easily lead to a cross-
cultural adaptation of a questionnaire. Recently, [19] developed a software for
using the bar in online questionnaires.

The most important merit of using the bar, however, is the flexibility it of-
fers to practitioners with regard to data analysis, without having to re-administer
the questionnaire. After data collection, the analyst can decide how to split each
variable at appropriate intervals. Instead, in the case of Likert-type scales, such
a decision has to be taken before data collection and does not give any room for
testing alternative ways of data processing. The number of groups per variable
is chosen according to the distribution of the variable at hand. In this context,
continuous variables are usually divided into equal-length or equal-area intervals
according to a desirable distribution (e.g., the Gaussian or the parabola). A de-
tailed justification of such a discretization scheme is given in [27]. Hereafter, we
will refer to this procedure by crisp coding.

Crisp coding of a continuous value to a category obviously loses a substantial
part of the original information and, subsequently, the advantage of continuity pro-
vided using the bar. This is because the original values are usually not uniformly
distributed in the newly created intervals. To alleviate this problem, we discuss an
alternative, fuzzy coding of the original data, which exploits linear and invertible
triangular membership functions. A side advantage of the proposed fuzzy coding
scheme is that the resulting data matrix can be given as input to Correspondence
Analysis, a multivariate technique that can visualize both linear and non-linear
variable associations.

Section 2 presents the rationale behind utilizing a fuzzy instead of a crisp cod-
ing scheme to data obtained from questionnaires using the bar. Section 3 offers a
brief introduction to Correspondence Analysis applied on fuzzy coded data. The
proposed approach is illustrated with a real-world application in Section 4. Sec-
tion 5 concludes the paper.

2 Crisp versus fuzzy coding of continuous variables
Let A,B,C, . . . be a number of continuous variables whose values range from

0 to 62 and were collected for a number of survey participants or subjects using
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the bar. A common discretization scheme is to split each variable into five inter-
vals of equal length, 1 to 5, as follows:

1 : [0−12.4], 2 : [12.4−24.8), 3 : [24.8−37.2), 4 : [37.2−49.6), 5 : (49.6−62].

Then, for each subject a binary vector can be formed to summarize any value of
each variable. For example, the value 35.7 for variable A lies in the third interval
and can be coded into [0 0 1 0 0]. This type of binary coding is commonly referred
to as crisp coding (e.g. see [1]) and a row-wise concatenation of all binary vectors
forms a table, ZA, for variable A. The row margins of ZA are the same, equal to a
column of ones. The so-called indicator matrix, denoted by Z, is composed of a
set of subtables, ZA,ZB,ZC , . . . stacked side by side, one for each variable. Table
1 shows an example of crisp coding for some subjects on variable A with five
categories (on the left), and their coding into a dummy variable (on the right). The
matrix on the right is the subtable ZA and Z = [ZA;ZB;ZC ; . . .] denotes the full
indicator matrix. This matrix can be subsequently analyzed with Correspondence
Analysis, a well-established exploratory data analysis technique (see e.g., [9] and
Section 3).

Table 1: An example of crisp coding of a categorical variable with five categories
into a dummy or indicator variable

A
3
1
5
.
.
.

A1 A2 A3 A4 A5
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
. . . . .
. . . . .
. . . . .

In the case of crisp coding, it is assumed that the original continuous values are
uniformly distributed within each interval. However, this is a strong assumption
to make and the discrete assignment of continuous values to categories obviously
loses a substantial part of the original information. This problem can be alleviated
by using a fuzzy instead of crisp coding scheme. Fuzzy coding (codage flou in
French) has been successfully used in a variety of data analysis techniques and
settings (see e.g., [1, 10, 11, 26].

The idea is to convert a continuous variable into a pseudo-categorical (i.e.,
fuzzy) variable using appropriate membership functions [11]. This is called “fuzzi-
fication” of the data. For example, 35.7 can be fuzzy coded into [0 0 0.75 0.25 0],
instead of [0 0 1 0 0]. An important decision to make is the choice of membership
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functions that will be used for fuzzification. Following [1], we adopt the sys-
tem of the so-called “three-point triangular membership functions”, also known
as piecewise linear functions, or second order B-splines [26]. Triangular member-
ship functions have two nice properties that will be further illustrated below: they
are linear and invertible.

A simple example of triangular membership functions is shown in Figure 1,
defining a fuzzy variable with five categories. On the horizontal axis is the scale
of the original variable and five hinge points or knots, chosen as the minimum, 1st
quartile, median, 3rd quartile and maximum values of the variable. This choice of
hinge points is a simple one and corresponds to the quantiles of the distribution;
it has been argued that such a choice ensures robustness [24]. The five functions
shown in Figure 1 are used for the recoding, and 35.7 is graphically shown to be
recoded as 0 for category 1, 0 for category 2, 0.75 for category 3, 0.25 for cate-
gory 4 and 0 for category 5. This coding scheme is linear and invertible, as shown
below:

35.7 = 0.0× 0 + 0.0× 21 + 0.75× 31 + 0.25× 50 + 0.0× 62. (1)

Given the fuzzy observation [0 0 0.75 0.25 0], the value of the original variable is
unique and equals to 35.7.

An algebraic description of the proposed scheme is given below. Using tri-
angular membership functions, the fuzzy values z1, z2, . . . , z5 for a five-category
fuzzy coding, where x is the original value on the continuous scale and the hinge
points are m1,m2, . . . ,m5 are given by:

z1(x) =

{
m2−x
m2−m1

, for x ≤ m2

0, otherwise
z2(x) =


x−m1

m2−m1
, for x ≤ m2

m3−x
m3−m2

, for m2 ≤ x ≤ m3

0 otherwise

z3(x) =


x−m2

m3−m2
, for m2 ≤ x ≤ m3

m4−x
m4−m3

, for m3 ≤ x ≤ m4

0 otherwise
z4(x) =


x−m3

m4−m3
, for m3 ≤ x ≤ m4

m5−x
m5−m4

, for x > m4

0 otherwise

z5(x) =

{
x−m4

m5−m4
, for x > m4

0 otherwise

Table 2 shows the corresponding subtable ZA in the case of fuzzy coding of
some values of variable A. Let Z∗ denote the full fuzzy indicator matrix, which is
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Figure 1: Triangular membership functions to code a continuous variable (hori-
zontal axis) into five fuzzy categorical variables. An example is shown of a value
on the orginal scale (35.7) being fuzzy coded as [0 0 0.75 0.25 0].

composed of a set of subtables stacked side by side, one for each fuzzy indicator
variable. As it is obvious from Eq. 1, fuzzy coding transforms continuous vari-
ables into fuzzy categories with no loss of information, since a fuzzy-coded vari-
able can be back-transformed to its original value. This is an improvement over
crisp coding, where the information about the value of the variable within each
interval is lost. Alternatives to triangular membership functions can be, for ex-
ample, trapezoidal, Gaussian and generalized Bell membership functions [1, 25].
A thorough investigation of their properties in the context of questionnaire data
obtained using the bar is beyond the scope of this work.

Table 2: An example of fuzzy coding of a continuous variable into a fuzzy indi-
cator variable with five categories

A
35.7
43.1
25.0
.
.
.

A1 A2 A3 A4 A5
0 0 0.75 0.25 0
0 0 0.36 0.64 0
0 0.60 0.40 0 0
. . . . .
. . . . .
. . . . .
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3 Correspondence Analysis on fuzzy-coded data
The fuzzy coding scheme described in Section 2, can be combined with Corre-

spondence Analysis (CA), a well-established method of Geometric Data Analysis
[23] for visualizing the rows and columns of a matrix of nonnegative data as points
in a spatial representation. For a detailed treatment of CA we refer the reader to
[9], for example. Aşan and Greenacre [1] showed that CA on the fuzzy indicator
matrix Z∗ (see Table 2) can visualize nonlinear relationships between variables
and that this property holds for all forms of membership functions. The core of
the CA algorithm is the Singular Value Decomposition (SVD) of a suitably trans-
formed matrix. Next, we briefly present the algorithmic steps of CA on the fuzzy
indicator matrix Z∗ [20].

Step 1. Given a data table with continuous variables, apply the fuzzy coding
scheme of Section 2 to obtain the fuzzy indicator matrix, Z∗.
Step 2. Compute the matrix P as Z∗ divided by its grand total, with row and
column sums of P defined as r = P1, cT = 1TP, where 1 denotes a column
vector of 1’s of appropriate order and T denotes vector and matrix transpose. The
elements of r and c are called row and column masses in CA terminology.
Step 3. Compute the matrix of standardized residuals S:

S = D−1/2
r (P− rc)TD−1/2

c

where Dr and Dc denote diagonal matrices of the respective masses.
Step 4. Compute the SVD of S:

S = UDαV
T

where the singular vectors in U and V are normalized as UTU = VTV = I,
and Dα is the diagonal matrix of the singular values, which are positive and in
descending order, α1 ≥ α2 ≥ . . . > 0.
Step 5. Compute the coordinates of the row and column points to obtain the so-
called “symmetric” CA map:

rows: F = D
−1/2
r UDα, columns: Γ = D

−1/2
c VDα.

4 Application to real data
The real data set considered here consists of 159 pre-service teachers’ eval-

uation ratings of an introductory statistics university course. The focus of the
analysis is on the following 5 statements, A to E, that were used to evaluate the
quality of the teaching-learning process.
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How much has each of the following contributed to your understanding of the
main ideas covered in this course?

A: The tutor’s description of the aim, syllabus content and course objectives.
B: The tutor’s encouragement of students to ask questions.
C: The connection of the course material with everyday life examples.
D: Your own effort and engagement in the course.
E: Your own consistency in attending classes.

The original five-point Likert-type scale was substituted by the bar (0 to 62mm).
After data collection, each one of the five statements was coded into five fuzzy
categories using triangular membership functions, as described in Section 2. Data
analysis was perfomed using the R package ca [22] and R code written by the
author.

The Correspondence Analysis symmetric map for these data (first and second
dimension) is shown in Figure 2. This map explains a total of 27.3% of the vari-
ance (or inertia) in the data. Triangle points correspond to the fuzzy categories
of each variable (A1 to A5, B1 to B5, etc). Variable category points close to
each other indicate similar response profiles to the corresponding statements. The
origin of the map corresponds to the average response profile.

The main interpretation of the CA map is carried out by evaluating the posi-
tions of the category points to each axis. On the left part of the first dimension
(horizontal axis) lies a group of students who attribute their understanding of the
course content to the tutor’s quality of teaching and practices (strong agreement
with statements A, B and C) but not to their own efforts and consistency in attend-
ing classes (strong disagreement with statements D and E). On the right part of
the first dimension, there is a group of students that contrasts the one on the left.
These students express strong agreement with statements D and E but strong dis-
agreement with statements A, B and C. The second dimension, when projected on
the vertical axis, separates extreme values on top from moderate responses below
the cross of the axes. The resulting parabolic shape or “horse shoe” is a typical
structure in CA that has a unidimensional structure and confirms that the items are
articulated around a hierarchical scale (for more details on the horseshoe effect,
see [23]). To sum up, CA on the fuzzy-coded data obtained using the bar, reveals
an interesting negative association between statements {A, B, C} and {D, E}.

5 Conclusions
The bar of Kambaki-Vougioukli and Vougiouklis is a suitable and useful con-

tinuous scale, similar to a rule, that serves to collect survey data. After data col-
lection the analyst can decide how to split each variable at appropriate intervals.
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Figure 2: Correspondence Analysis symmetric map (1st and 2nd dimension).

This type of discrete or crisp coding, however, can lead to a significant loss of
information and negate the important advantages of using the bar. Fuzzy instead
of crisp coding preserves the original information lying in the original data. The
original values are mapped, via triangular membership functions, to a 5-category
recoding, using the minimum, quartiles and maximum as the hinge points, with
the first and last functions not being “shouldered”. The proposed scheme is linear
and invertible and can be paired with a well-established exploratory data analysis
method, Correspondence Analysis, for the visual investigation of both linear and
non-linear relationships among variables. A side advantage of fuzzy coding is that
it transforms continuous data to a form that is comparable to categorical data, and
so enables analysis of mixed measurement scales. Exploring this possibility is an
important step for future work.
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Abstract

In social sciences when questionnaires are used, there is a new tool, the
bar instead of Likert scale. The bar has been suggested by Vougiouklis &
Vougiouklis in 2008, who have proposed the replacement of Likert scales,
usually used in questionnaires, with bar. This new tool, gives the opportunity
to researchers to elaborate the questionnaires in different ways, depending
on the filled questionnaires and of course on the problem. Moreover, we im-
prove the procedure of the filling the questionnaires, using the bar instead of
Likert scale, on computers where we write down automatically the results,
so they are ready for research. This new kind of elaboration is being applied
on data obtained by a survey, studying the new results. The hyperstructure
theory is being related with questionnaires and we study the obtained hy-
perstructures, which are used as an organized device of the problem and we
focus on special problems.
Keywords: hyperstructures; questionnaires; bar;
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1 Basic definitions

The main object of this paper is the class of hyperstructures calledHv-structures
introduced in 1990 [17], which satisfy the weak axioms where the non-empty in-
tersection replaces the equality. Some basic definitions are the following:

In a set H equipped with a hyperoperation (abbreviation hyperoperation =
hope) · : H ×H → P (H)−{∅}, we abbreviate by WASS the weak associativity:
(xy)z∩x(yz) 6= ∅,∀x, y, z ∈ H and by COW the weak commutativity: xy∩yx 6=
∅,∀x, y ∈ H .

The hyperstructure (H, ·) is called an Hv-semigroup if it is WASS, it is called
Hv-group if it is reproductive Hv-semigroup, i.e., xH = Hx = H,∀x ∈ H.

Motivation. In the classical theory the quotient of a group with respect to an
invariant subgroup is a group. F. Marty from 1934, states that, the quotient of a
group with respect to any subgroup is a hypergroup. Finally, the quotient of a
group with respect to any partition (or equivalently to any equivalence relation) is
an Hv-group. This is the motivation to introduce the Hv-structures [17], [18].

(R,+, ·) is called anHv-ring if (+) and (·) are WASS, the reproduction axiom
is valid for (+) and (·) is weak distributive with respect to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

Let (R,+, ·) be an Hv-ring, (M,+) be a COW Hv-group and there exists an
external hope

· : R×M → P (M) : (a, x)→ ax

such that ∀a, b ∈ R and ∀x, y ∈M we have

a(x+ y) ∩ (ax+ ay) 6= ∅, (a+ b)x ∩ (ax+ bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

then M is called an Hv-module over F. In the case of an Hv-field F, which is
defined later, instead of an Hv-ring R, then the Hv-vector space is defined.

For more definitions and applications on Hv-structures one can see [2], [3],
[4], [5], [6], [10], [14], [16], [18].

The main tool to study hyperstructures is the fundamental relation. In 1970 M.
Koscas defined in hypergroups the relation β and its transitive closure β*. This
relation connects the hyperstructures with the corresponding classical structures
and is defined in Hv-groups as well. T. Vougiouklis introduced the γ* and ε*
relations, which are defined, in Hv-rings and Hv-vector spaces, respectively [17].
He also named all these relations β*, γ* and ε*, fundamental relations because
they play very important role to the study of hyperstructures especially in the
representation theory of them. For similar relations see [18], [22], [4].
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Definition 1.1. The fundamental relations β*, γ* and ε*, are defined, in Hv-
groups, Hv-rings and Hv-vector space, respectively, as the smallest equivalences
so that the quotient would be group, ring and vector space, respectively.

Specifying the above motivation we remark the following: Let (G, ·) be a group
and R be an equivalence relation (or a partition) in G, then (G/R, ·) is an Hv-
group, therefore we have the quotient (G/R, ·)/β* which is a group, the funda-
mental one. Remark that the classes of the fundamental group (G/R, ·)/β* are a
union of some of the R-classes. Otherwise, the (G/R, ·)/β* has elements classes
of G where they form a partition which classes are larger than the classes of the
original partition R.

The way to find the fundamental classes is given by the following [17], [20],
[21], [22]:

Theorem 1.1. Let (H, ·) be an Hv-group and denote by U the set of all finite
products of elements of H. We define the relation β in H by setting xβy iff {x, y} ⊂
u where u ∈ U. Then β* is the transitive closure of β.

A well known and large class of hopes is given as follows [15], [18], [12]:
Let (G, ·) be a groupoid then for every P ⊂ G, P 6= ∅, we define the follow-

ing hopes called P-hopes: for all x, y ∈ G

P : xPy = (xP )y ∪ x(Py),

P r : xP ry = (xy)P ∪ x(yP ), P l : xP ly = (Px)y ∪ P (xy).

The (G,P ),(G,P r) and (G,P l) are called P-hyperstructures. The most usual
case is if (G, ·) is semigroup, then xPy = (xP )y ∪ x(Py) = xPy and (G,P ) is a
semihypergroup. We do not know what hyperstructures are (G,P r) and (G,P l).
In some cases, depending on the choice of P, the (G,P r) and (G,P l) can be
associative or WASS. If more operations are defined in G, then for each operation
several P -hopes can be defined.

2 The bar in questionnaires
Last decades hyperstructures seem to have a variety of application not only

in mathematics, but also in many other sciences [1], [2], [9], [13], [19], [25],
including the social ones.

An important application which can be used in social sciences is the combina-
tion of hyperstructure theory with fuzzy theory, by the replacement of the Likert
Scale by the Bar. The suggestion is the following [9]:
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Definition 2.1. In every question substitute the Likert scale with ’the bar’ whose
poles are defined with ’0’ on the left end, and ’1’ on the right end:

0 1

The subjects/participants are asked instead of deciding and checking a specific
grade on the scale, to cut the bar at any point s/he feels expresses her/his answer
to the specific question.

The use of the bar of Vougiouklis & Vougiouklis instead of a scale of Likert
has several advantages during both the filling-in and the research processing. The
final suggested length of the bar, according to the Golden Ratio, is 6.2cm, see [7],
[8], [23]. Several advantages on the use of the bar instead of scale one can find in
[9].

There are certain advantages concerning the use of the bar comparing to the
Likert-scale during all stages of developing, filling and processing. The most im-
portant maybe advantage of the bar though is the fact that it provides the potential
for different types of processing. Therefore, it gives the initiative to the researcher
to explore if the given answers follow a special kind of distribution, as Gauss or
parabola for example. In this case the researcher has the opportunity to correct
any kind of tendency appeared, for more accurate results. A possibility of choos-
ing among a number of alternatives is offered, by using fuzzy logic in the same
way as it has already been done combining mathematical models with multivalued
operation.

3 Evaluation
The following survey is based on the described theory that has been estab-

lished in the department of Elementary Education of Democritus University of
Thrace, in the frame of course evaluation, and especially of Algebra of first semester.
The sample was 152 students, who were asked to answer questions related to the
course, to the teacher and to the teaching of the course. The questionnaire used
the bar, which was firstly divided into six equal-segments according to the first
questionnaires which used a six-grade Likert scale.

The use of histograms helped in order to explore if the answers follow any
kind of distribution or they present any kind of tendency. In this case, the bar is
redivided into equal-area segments, for more accurate results.

The filling questionnaire procedure has been accomplished using computers,
and especially a software developed for this purpose. Using this software the re-
sults can automatically be transferred for research elaboration. There are several
advantages of the bar, the only disadvantage is to the data collection for further
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elaboration. The implemented program has been developed to overcome the prob-
lems raised during the data collection, inputting of data from questionnaires to
processing. It eliminates the time of data collection, transferring data directly for
any kind of elaboration [10].

3.1 Question category: Course
The first question category is about the course and consists of 9 questions.

Gathering the answers on the bar, it is obvious that there is an upward trend, a fact
that becomes even more obvious on the following histograms:

Figure 1: Question Category: Course

In the majority of the questions, on can notice a vast concentration in the last 2
or 3 grades and in some of the questions this is more obvious, as the concentration
is the last grades is much higher.

More specifically, question number 1,2,3,5,6 and 9 present the biggest con-
centration rate in the last 2 grades, while in question 4, there is a remarkable
concentration in the center of the bar.

Based mainly on this histograms and some other parameters that have been
obtained by the correspondence analysis, the answers of questions 2,4 and 6 will
be redistributed on the bar, which will be now divided in equal-area segments:
For question 2, the bar will be divided in 6 equal-ares segments according to the
increasing-low parabola
For question 4, the be will be divided in 6 equal-ares segments according to the
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Gauss distribution and,
for question 6, the bar will be divided in 6 equal-ares segments according to the
increasing-upper parabola.

The new obtained histograms are the following:

Figure 2: Equal segments

Figure 3: Equal-area segments

One can see that the use of the upper-low parabola on question 2, reveals
that in question 2, more than 50% was concentrated at the last two grades of the
scale, but with the new distribution there exists a tendency to the first grades. For
questions number 4 and 6 the new histograms give no more information.

3.2 Question category:Teaching

The second question category consists of 6 questions relevant to the ’teaching
of the lesson’ and to the extend that some factors contributed to its comprehension.
The related histograms are the following:
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Figure 4: Question Category: Teaching

In this question category, there is also a general upward trend - with the ex-
ception of question number 12. More specifically, in questions 10, 11 and 13 the
biggest concentration rate appears in the last grades, in opposition to question 12,
in which the biggest rate appears in the first 2 grades. Question 14 present a vast
rate in the last grade.

So, for question 12 the bar will be divided in equal-area segments according
to decreasing-low parabola and for question 14, according to increasing upper
parabola. The new obtained histograms are the following:

Figure 5: Equal segments

Figure 6: Equal-area segments
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From the new distribution, the bar gives different results for question 12, as it
reveals that the increasing-low trend not exists anymore. This fact is very impor-
tant for the researcher as it gives him information he couldn’t have only through
the first subdivision of the bar. The second question leads to the same results.

3.3 Question category:Teacher

In the penultimate category there are 3 questions concerning the teacher.

Figure 7: Question Category: Teacher

Once again, there is an obvious trend to the respondents according to the his-
tograms, even more remarkable in the first question: there is a vast concentration
rate in the last grade. Because of that, the bar will be divided into equal area
segments following the increasing-upper parabola:

Figure 8: Equal segments Figure 9: Equal-area segments

The new histogram is just confirming the first result.
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4 Questionnares and Hyperstructures
In the research processing suppose that we want to use Likert scale through

the bar dividing the continuum [0,62] into equal segments and into equal area
division of Gauss distribution [9] or parabola distribution [24]. If we consider that
the continuum [0,62] is divided into n segments, we can number the n segments
starting with 0. We can define a hope on the segments as follows [11] :

Definition 4.1.

For all i, j ∈ {0, 1, ..., n− 1}, if en the nth segment ,then

ei ⊕ ej = {ek : x+ y ∈ ek,∀x ∈ ei, y ∈ ej}

Therefore, we can consider as an organized device the group (Zn,⊕) where n
the number of segments, as we have a modulo like hyperoperation. The multipli-
cation tables obtained by this hyperoperation , referred in mm, are the following:

6 equal segments
0:[0, 10.33], 1:(10.33, 20.66], 2:(20.66, 30.99], 3:(30.99, 41.32], 4:(41.32, 51.65],
5:(51.65, 62]

⊕ 0 1 2 3 4 5
0 0,1 1,2 2,3 3,4 4,5 0,5
1 1,2 2,3 3,4 4,5 0,5 0,1
2 2,3 3,4 4,5 0,5 0,1 1,2
3 3,4 4,5 0,5 0,1 1,2 2,3
4 4,5 0,5 0,1 1,2 2,3 3,4
5 0,5 0,1 1,2 2,3 3,4 4,5

6 equal-area segments (Gauss distribution)
0:[0, 22], 1:(22, 27], 2:(27, 31], 3:(31, 35], 4:(35, 40], 5:(40, 62],

⊕ 0 1 2 3 4 5
0 0,1,2,3,4,5 1,2,3,4,5 2,3,4,5 3,4,5 4,5 0,5
1 1,2,3,4,5 5 5 5 0,5 0,1
2 2,3,4,5 5 5 0,5 0 0,1,2
3 3,4,5 5 0,5 0 0 0,1,2,3
4 4,5 0,5 0 0 0 0,1,2,3,4
5 0,5 0,1 0,1,2 0,1,2,3 0,1,2,3,4 0,1,2,3,4,5
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Increasing Low parabola x = y2

0:[0, 34], 1:(34, 43], 2:(43, 49], 3:(49, 54], 4:(54, 58], 5:(58, 62]

⊕ 0 1 2 3 4 5
0 0,1,2,3,4,5 0,1,2,3,4,5 0,2,3,4,5 0,3,4,5 0,4,5 0,5
1 0,1,2,3,4,5 0 0 0,1 0,1 0,1
2 0,2,3,4,5 0 0,1 0,1 1,2 1,2
3 0,3,4,5 0,1 0,1 1,2 1,2,3 2,3
4 0,4,5 0,1 1,2 1,2,3 2,3 3,4
5 0,5 0,1 1,2 2,3 3,4 4,5

Increasing Upper parabola 1− y = (1− x)2

0:[0, 22], 1:(22, 32], 2:(32, 40], 3:(40, 48], 4:(48, 55], 5:(55, 62]

⊕ 0 1 2 3 4 5
0 0,1,2,3, 1,2,3,4 2,3,4,5 0,3,4,5 4,5,0 0,5
1 1,2,3,4 0,3,4,5 0,4,5 0 0,1 0,1
2 2,3,4,5 0,4,5 0 0,1 0,1,2 1,2
3 0,3,4,5 0 0,1 0,1,2 1,2,3 2,3
4 0,4,5 0,1 0,1,2 1,2,3 2,3 3,4
5 0,5 0,1 1,2 2,3 3,4 4,5

Decreasing low parabola y = (1− x)2

0:[0, 4], 1:(4, 8], 2:(8, 13], 3:(13, 19], 4:(19, 28], 5:(28, 62]

⊕ 0 1 2 3 4 5
0 0,1 1,2 2,3 3,4 4,5 0,5
1 1,2 2,3 2,3,4 3,4 4,5 0,1,5
2 2,3 2,3,4 3,4 4,5 4,5 0,1,2,5
3 3,4 3,4 4,5 4,5 5 0,1,2,3,5
4 4,5 4,5 4,5 5 5 0,1,2,3,4,5
5 0,5 0,1,5 0,1,2,5 0,1,2,3,5 0,1,2,3,4,5 0,1,2,3,4,5

Decreasing upper parabola 1− y = x2

0:[0, 7], 1:(7, 14], 2:(14, 22], 3:(22, 30], 4:(30, 40], 5:(40, 62]

⊕ 0 1 2 3 4 5
0 0,1 1,2 2,3 3,4 4,5 0,5
1 1,2 2,3 2,3,4 3,4,5 4,5 0,1,5
2 2,3 2,3,4 3,4,5 4,5 5 0,1,2,5
3 3,4 3,4,5 4,5 5 0,1,5 0,1,2,3
4 4,5 4,5 5 0,1,5 0,1,2,5 1,2,3,4
5 0,5 0,1,5 0,1,2,5 0,1,2,3 1,2,3,4 2,3,4,5
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Abstract

In the quiver of hyperstructures Professor R. M. Santilli, in early 90’es, tried
to find algebraic structures in order to express his pioneer Lie-Santilli’s The-
ory. Santilli’s theory on ’isotopies’ and ’genotopies’, born in 1960’s, desper-
ately needs ’units e’ on left or right, which are nowhere singular, symmet-
ric, real-valued, positive-defined for n-dimensional matrices based on the so
called isofields.These elements can be found in hyperstructure theory, espe-
cially in Hv-structure theory introduced in 1990. This connection appeared
first in 1996 and actually several Hv-fields, the e-hyperfields, can be used as
isofields or genofields so as, in such way they should cover additional prop-
erties and satisfy more restrictions. Several large classes of hyperstructures
as the P-hyperfields, can be used in Lie-Santilli’s theory when multivalued
problems appeared, either in finite or in infinite case. We review some of
these topics and we present the Lie-Santilli admissibility in Hyperstructures.
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1 Introduction
In T. Vougiouklis, ”The Santilli’s theory ’invasion’ in hyperstructures” [24],

there is a first description on how Santilli’s theories effect in hyperstructures and
how new theories in Mathematics appeared by Santilli’s pioneer research. We
continue with new topics in this direction.

Last years hyperstructures have applications in mathematics and in other sci-
ences as well. The applications range from biomathematics -conchology, inheritance-
and hadronic physics or on leptons, in the Santilli’s iso-theory, to mention but a
few. The hyperstructure theory is closely related to fuzzy theory; consequently,
can be widely applicable in linguistic, in sociology, in industry and production,
too. For all the above applications the largest class of the hyperstructures, the
Hv-structures, is used, they satisfy the weak axioms where the non-empty inter-
section replaces the equality. The main tools of this theory are the fundamental
relations which connect, by quotients, the Hv-structures with the corresponding
classical ones. These relations are used to define hyperstructures asHv-fields,Hv-
vector spaces and so on. Hypernumbers or Hv-numbers are called the elements of
Hv-fields and they are important for the representation theory.

The hyperstructures were introduced by F. Marty in 1934 who defined the
hypergoup as a set equipped with an associative and reproductive hyperoperation.
M. Koskas in 1970 was introduced the fundamental relation β∗, which it turns
to be the main tool in the study of hyperstructures. T. Vougiouklis in 1990 was
introduced the Hv-structures, by defining the weak axioms. The class of Hv-
structures is the largest class of hyperstructures.

Motivation for Hv-structures:
The quotient of a group with respect
to an invariant subgroup is a group.

The quotient of a group with respect to any subgroup is a hypergroup.
The quotient of a group with respect to any partition is an Hv-group.

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic
Mechanics problems. Santilli proposed a ’lifting’ of the n-dimensional trivial
unit matrix of a normal theory into a nowhere singular, symmetric, real-valued,
positive-defined, n-dimensional new matrix. The original theory is reconstructed
such as to admit the new matrix as left and right unit.

According to Santilli’s iso-theory [14], [8] on a field F = (F,+, ·), a general
isofield F̂ = F̂(â, +̂, ×̂) is defined to be a field with elements â = a × 1̂, called
isonumbers, where a ∈ F , and 1̂ is a positive-defined element generally outside F,
equipped with two operations +̂ and ×̂ where +̂ is the sum with the conventional
additive unit 0, and ×̂ is a new product

â×̂b̂ := â× T̂ × b̂, with 1̂ = T̂−1, ∀â, b̂ ∈ F̂.
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called iso-multiplication, for which 1̂ is the left and right unit of F̂,

1̂×̂â = â× 1̂ = â,∀â ∈ F̂

called iso-unit. The rest properties of a field are reformulated analogously.
The isofields needed in this theory correspond into the hyperstructures were

introduced by Santilli & Vougiouklis in 1996 [15], and called e-hyperfields. They
point out that in physics the most interesting hyperstructures are the one called
e-hyperstructures which contain a unique left ant right scalar unit.

2 Basic definitions on hyperstructures
In what follows we present the related hyperstructure theory, enriched with

some new results. However one can see the books and related papers for more
definitions and results on hyperstructures and related topics: [2], [4], [17], [18],
[19], [20], [23], [31], [33].

In a set H is called hyperoperation (abbreviated: hope) or multivalued oper-
ation, any map from H ×H to the power set of H. Therefore, in a hope

· : H ×H → ℘(H) : (x, y)→ x · y ⊂ H

the result is subset of H, instead of element as we have in usually operations.
In a set H equipped with a hope · : H ×H → ℘(H)− {∅}, we abbreviate by

WASS the weak associativity: (xy)z ∩ x(yz) 6= ∅,∀x, y, z ∈ H and by
COW the weak commutativity: xy ∩ yx 6= ∅, ∀x, y ∈ H .

The hyperstructure (H, ·) is called Hv-semigroup if it is WASS and it is called
Hv-group if it is reproductive Hv-semigroup, i.e. xH = Hx = H,∀x ∈ H . The
hyperstructure (R,+, ·) is called Hv-ring if (+) and (·) are WASS, the reproduc-
tion axiom is valid for (+), and (·) is weak distributive to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

An Hv-structure is very thin iff all hopes are operations except one, with all hy-
perproducts singletons except one, which is set of cardinality more than one.

The main tool to study all hyperstructures are the fundamental relations β*,
γ* and ε*, which are defined, in Hv-groups, Hv-rings and Hv-vector spaces, re-
spectively, as the smallest equivalences so that the quotient would be group, ring
and vector space, respectively [17], [18].

A way to find fundamental classes is given by analogous to the following:

Theorem 2.1. Let (H, ·) be Hv-group and U all finite products of elements of
H. Define the relation β by setting xβy iff {x, y} ⊂ u, u ∈ U . Then β* is the
transitive closure of β.
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Let (R,+, ·) be Hv-ring, U all finite polynomials of R. Define γ in R as fol-
lows: xγy iff {x, y} ⊂ u where u ∈ U . Then γ* is the transitive closure of
γ.

An element is called single if its fundamental class is singleton.
The fundamental relations are used for general definitions. Thus, to define the

Hv-field the γ* is used [17], [18]: A Hv-ring (R,+, ·) is called Hv-field if R/γ*
is a field. In the sequence the Hv-vector space is defined.

Let (F,+, ·) beHv-field, (V,+) a COWHv-group and there exists an external
hope

· : F ×V→ ℘(V) : (a, x)→ ax

such that, ∀a, b ∈ F and ∀x, y ∈ V, we have

a(x+ y) ∩ (ax+ ay) 6= ∅, (a+ b)x ∩ (ax+ bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

then V is called an Hv-vector space over F. In the case of an Hv-ring instead of
Hv-field then the Hv-modulo is defined.

In the above cases the fundamental relation ε* is the smallest equivalence such
that the quotient V/ε* is a vector space over the fundamental field F/γ*.

Let (H, ·), (H, ∗) be Hv-semigroups defined on the same set H. (·) is called
smaller than (∗), and (∗) greater than (·), iff there exists an

f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y),∀x, y ∈ H

Then we write · ≤ ∗ and we say that (H, ∗) contains (H, ·). If (H, ·) is a structure
then it is called basic structure and (H, ∗) is called Hb-structure.

The Little Theorem. Greater hopes than the ones which are WASS or COW,
are also WASS or COW, respectively.

The definition of Hv-field introduced a new class of hyperstructures:
The Hv-semigroup (H, ·) is called h/v-group if the quotient H/β* is a group.
In [20] the ’enlarged’ hyperstructures were examined if an element, outside

the underlying set, appears in one result. In enlargement or reduction, most useful
in representations are Hv-structures with the same fundamental structure.

The Attach Construction. Let ((H, ·) be an Hv-semigroup and v /∈ H . We
extend (·) into H = H ∪{v} as follows: x ·v = v ·x = v,∀x ∈ H, and v ·v = H .

Then (H, ·) is an h/v-group where (H, ·)/β∗ ∼= Z2 and v is single element.
We call the hyperstructure (H, ·) attach h/v-group of (H, ·) .

Definition 2.1. Let (H, ·) be a hypergroupoid. We say that remove h ∈ H , if
simply consider the restriction of (·) on H − {h}. We say that h ∈ H absorbs
h ∈ H if we replace h, whenever it appears, by h. We say that h ∈ H merges with
h ∈ H , if we take as product of x ∈ H by h, the union of the results of x with both
h and h, and consider h and h as one class, with representative h.
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The uniting elements method was introduced by Corsini & Vougiouklis [3].
With this method one puts in the same class more elements. This leads, through
hyperstructures, to structures satisfying additional properties. The uniting ele-
ments method is the following: Let G be algebraic structure and d be a property,
which is not valid and it is described by a set of equations; then, consider the
partition in G for which it is put in the same partition class, all pairs that causes
the non-validity of d. The quotient G/d is an Hv-structure. Then, quotient out the
Hv-structure G/d by the fundamental relation β*, a stricter structure (G/d)/β*
for which the property d is valid, is obtained.

An application is when more than one properties are desired then:

Theorem 2.2. [18] Let (G, ·) be a groupoid,
and F = {f1, . . . , fm, fm+1, . . . , fm+n} be a system of equations on G consisting
of two subsystems
Fm = {f1, . . . , fm} and Fn = {fm+1, . . . , fm+n}. Let σ, σm be the equivalence
relations defined by the uniting elements procedure using the systems F and Fm
resp., and let σn be the equivalence relation defined using the induced equations
of Fn on the groupoid Gm = (G/σm)/β

∗. Then

(G/σ)/β∗ ∼= (Gm/σn)/β
∗.

In a groupoid with a map on it, a hope is introduced [22]:

Definition 2.2. Let (G, ·) be groupoid (resp., hypergroupoid) and f : G → G be
map. We define a hope (∂), called theta and we write ∂-hope, on G as follows

x∂y = {f(x) · y, x · f(y)},∀x, y ∈ G.
(resp.x∂y = (f(x) · y) ∪ (x · f(y), ∀x, y ∈ G)

If (·) is commutative then (∂) is commutative. If (·) is COW, then (∂) is COW.
Motivation for a ∂-hope is the map derivative where only the product of func-

tions is used. Thus for two functions s(x), t(x), we have s∂t = {s′t, st′} where (′)
is the derivative.

A large class of hyperstructures based on classical ones are defined by [18]:

Definition 2.3. Let (G, ·) be groupoid, then for every P ⊂ G, P 6= ∅, we define
the following hopes called P-hopes: ∀x, y ∈ G

P : xPy = (xP )y ∪ x(Py),
P r : xP ry = (xy)P ∪ x(yP ), P l : xP ly = (Px)y ∪ P (xy).

The (G,P ),(G,P r) and (G,P l) are called P-hyperstructures. The usual case is
for (G, ·) semigroup, then

xPy = (xP )y ∪ x(Py) = xPy

and (G,P ) is a semihypergroup.
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3 Representations. Hv-Lie algebras.
Representations of Hv-groups, can be faced either by Hv-matrices or by gen-

eralized permutations [18], [20], [31].
Hv-matrix (or h/v-matrix) is called a matrix with entries elements of an Hv-

ring or Hv-field (or h/v-field). The hyperproduct of Hv-matrices A = (aij) and
B = (bij), of type m × n and n × r, respectively, is a set of m × r Hv-matrices,
defined in a usual manner:

A ·B = (aij) · (bij) = {C = (cij)|cij ∈ ⊕
∑

aik · bkj},

where (⊕) is the n-ary circle hope on the hypersum: the sum of products of ele-
ments is considered to be the union of the sets obtained with all possible parenthe-
ses. In the case of 2 × 2 Hv-matrices the 2-ary circle hope which coincides with
the hypersum in the Hv-ring. Notice that the hyperproduct of Hv-matrices does
not nessesarily satisfy WASS.

The representation problem by Hv-matrices is the following:

Definition 3.1. Let (H, ·) beHv-group, (R,+, ·) beHv-ring and MR = {(aij)|aij ∈
R}, then any

T : H →MR : h→ T(h) with T(h1h2) ∩T(h1)T(h2) 6= ∅,∀h1, h2 ∈ H,

is called Hv-matrix representation If T(h1h2) ⊂ T(h1)T(h2), then T is an inclu-
sion representation, if T(h1h2) = T(h1)T(h2), then T is a good representation.
If T is one to one and good then it is a faithful representation.

The main theorem of representations of Hv-structures is the following:

Theorem 3.1. A necessary condition in order to have an inclusion representation
T of an Hv-group (H, ·) by n × n Hv-matrices over the Hv-ring (R,+, ·) is the
following:
For all β∗(x), x ∈ H there must exist elements aij ∈ H, i, j ∈ {1, . . . , n} such
that

T (β∗(a)) ⊂ {A = (a′ij)|a′ij ∈ γ∗(aij), i, j ∈ {1, . . . , n}}

Therefore, every inclusion representation T : H → MR : a 7→ T (a) = (aij) in-
duces an homomorphic representation T* ofH/β* overR/γ* by setting T ∗(β∗(a)) =
[γ∗(aij)],∀β∗(a) ∈ H/β∗, where the element γ∗(aij) ∈ R/γ∗ is the ij entry of the
matrix T ∗(β∗(a)). Then T* is called fundamental induced representation of T .

The helix hopes can be defined on any type of ordinary matrices [33], [34]:
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Definition 3.2. Let A = (aij) ∈Mm×n be matrix and s, t ∈ N , with 1 ≤ s ≤ m,
1 ≤ t ≤ n. The helix-projection is a map st : Mm×n → Ms×t : A → Ast =
(aij), where Ast has entries

aij = {ai+κs,j+λt|1 ≤ i ≤ s, 1 ≤ j ≤ t and κ, λ ∈ N, i+ κs ≤ m, j + λt ≤ n}

Let A = (aij) ∈ Mm×n, B = (bij) ∈ Mu×v be matrices and s = min(m,u),
t = min(n, v). We define a hyper-addition, called helix-sum, by

⊕ : Mm×n ×Mu×v → ℘(Ms×t) : (A,B)→ A⊕B =

= Ast+Bst = (aij) + (bij) ⊂Ms×t

where (aij) + (bij) = {(cij) = (aij + bij)|aij ∈ aij and bij ∈ bij)}.
Let A = (aij) ∈ Mm×n, B = (bij) ∈ Mu×v and s = min(n, u). Define the

helix-product, by

⊗ : Mm×n ×Mu×v → ℘(Mm×v) : (A,B)→ A⊗B =

= Ams ·Bsv = (aij) · (bij) ⊂Mm×v

where (aij) · (bij) = {(cij) = (
∑
aitbtj)|aij ∈ aij and bij ∈ bij)}.

The helix-sum is commutative, WASS, not associative. The helix-product is
WASS, not associative and not distributive to the helix-addition.

Using several classes of Hv-structures one can face several representations.
Some of those classes are as follows [18], [19], [7]:

Definition 3.3. Let M = Mm×n, the set of m × n matrices on R and P = {Pi :
i ∈ I} ⊆M . We define, a kind of, a P-hope P on M as follows

P :M ×M → ℘(M) : (A,B)APB = {AP t
iB : i ∈ I} ⊆M

where P t is the transpose of P. P is bilinear Rees’ like operation where instead of
one sandwich matrix a set is used. P is strong associative and inclusion distribu-
tive to sum:

AP (B + C) ⊆ APB + APC, ∀A,B,C ∈M.

So (M,+,P) defines a multiplicative hyperring on non-square matrices.

Definition 3.4. Let M = Mm×n be module of m× n matrices on R and take the
sets

S = {sk : k ∈ K} ⊆ R,Q = {Qj : j ∈ J} ⊆M,P = {Pi : i ∈ I} ⊆M.
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Define three hopes as follows

S : R×M→ ℘(M) : (r, A)→ rSA = {(rsk)A : k ∈ K} ⊆M

Q
+
: M×M→ ℘(M) : (A,B)→ AQ

+
B = {A+Qj +B : j ∈ J} ⊆M

P : M×M→ ℘(M) : (A,B)→ APB = {AP t
iB : i ∈ I} ⊆M

Then (M, S,Q
,
P ) is a hyperalgebra on R called general matrix P-hyperalgebra.

The general definition of an Hv-Lie algebra is the following [26], [31], [16]:

Definition 3.5. Let (L,+) be Hv-vector space on (F,+, ·), φ : F → F/γ*,
canonical map and ωF = {x ∈ F : φ(x) = 0}, where 0 is the zero of the
fundamental field F/γ∗. Similarly, let ωL be the core of the canonical map φ′ :
L → L/ε* and denote by the same symbol 0 the zero of L/ε*. Consider the
bracket hope (commutator):

[, ] : L× L→ ℘(L) : (x, y)→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear,
i.e.∀x, x1, x2, y, y1, y2 ∈ L, and λ1, λ2 ∈ F
[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,

(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅,∀x, y, z ∈ L

4 The Santilli’s: e-hyperstructures, iso-hyper the-
ory.

The e-hyperstructures where introduced in [15], [25] and where investigates
in several aspects depending from applications [5], [6], [16], [31].

Definition 4.1. A hyperstructure (H, ·) which contains a unique scalar unit e, is
called e-hyperstructure. In an e-hyperstructure, we assume that for every element
x, there exists an inverse x−1, i.e. e ∈ x · x−1 ∩ x−1 · x.
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Definition 4.2. A hyperstructure (F,+, ·), where (+) is an operation and (·) a
hope, is called e-hyperfield if the following axioms are valid: (F,+) is an abelian
group with the additive unit 0, (·) is WASS, (·) is weak distributive with respect to
(+), 0 is absorbing element: 0·x = x·0 = 0,∀x ∈ F , there exists a multiplicative
scalar unit 1, i.e. 1 · x = x · 1 = x, ∀x ∈ F , and ∀x ∈ F there exists a unique
inverse x−1, such that 1 ∈ x · x−1 ∩ x−1 · x.

The elements of an e-hyperfield are called e-hypernumbers. In the case that
the relation: 1 = x · x−1 = x−1 · x, is valid, then we say that we have a strong
e-hyperfield.

Definition 4.3. Main e-Construction. Given a group (G, ·), where e is the unit,
we define in G, an extremely large number of hopes (⊗) as follows:

x⊗ y = {xy, g1, g2, ...}, ∀x, y ∈ G− {e}, and g1, g2, ... ∈ G− {e}

g1, g2,... are not necessarily the same for each pair (x,y). (G,⊗) is an Hv-group,
it is an Hb-group which contains the (G, ·). (G,⊗) is an e-hypergroup. Moreover,
if for each x,y such that xy = e, so we have x ⊗ y = xy, then (G,⊗) becomes a
strong e-hypergroup

The proof is immediate since for both cases we enlarge the results of the group
by putting elements from the set G and applying the Little Theorem. Moreover it
is easy to see that the unit e is unique scalar element and for each x in G, there
exists a unique inverse x−1, such that 1 ∈ x · x−1 ∩ x−1 · x. Finally if the last
condition is valid then we have 1 = x · x−1 = x−1 · x, So the hyperstructure
(G,⊗) is a strong e-hypergroup.

Example 4.1. Consider the quaternion group
Q = {1,−1, i,−i, j,−j, k,−k} with defining relations i2 = j2 = −1, ij =
−ji = k. Denoting i = {i,−i}, j = {j,−j}, k = {k,−k} we may define a very
large number (∗) hopes by enlarging only few products. For example, (−1) ∗ k =
k, k∗i = j and i∗j = k. Then the hyperstructure (Q, ∗) is a strong e-hypergroup.

Construction 4.1. [31], [32]. On the ring (Z4,+, ·) we will define all the mul-
tiplicative h/v-fields which have non-degenerate fundamental field and, moreover
they are,

(a) very thin minimal,

(b) COW (non-commutative),

(c) they have 0 and 1, scalars.
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We have the isomorphic cases: 2⊗3 = {0, 2} or 3⊗2 = {0, 2}. The fundamental
classes are [0] = {0, 2}, [1] = {1, 3} and we have (Z4,+,⊗)/γ∗ ∼= (Z2,+, ·).

Thus it is isomorphic to (Z2 × Z2,+). In this Hv-group there is only one unit
and every element has a unique double inverse.

We can also define the analogous cases for the rings (Z6,+, ·), (Z9,+, ·), and
(Z10,+, ·).

In order to transfer Santilli’s iso-theory theory into the hyperstructure case we
generalize only the new product ×̂ by replacing it by a hope including the old one
[15], [27], [29], [32] and [1], [5], [6], [13], [14], [21], [24]. We introduce two
general constructions on this direction as follows:

Construction 4.2. General enlargement. On a field F = (F,+, ·) and on the
isofield F̂ = F̂(â, +̂, ×̂) we replace in the results of the iso-product

â×̂b̂ = â× T̂ × b̂, with 1̂ = T̂−1

of the element T̂ by a set of elements Ĥab = {T̂ , x̂1, x̂2, . . .} where x̂1, x̂2, . . . ∈ F̂,
containing T̂ , for all â×̂b̂ for which â, b̂ /∈ {0̂, 1̂} and x̂1, x̂2, . . . ∈ F̂ − {0̂, 1̂}.
If one of â, b̂, or both, is equal to 0̂ or 1̂, then Ĥab = {T̂}. Therefore the new
iso-hope is

â×̂b̂ = â× Ĥab × b̂ = â× {T̂ , x̂1, x̂2, . . .} × b̂,∀â, b̂ ∈ F̂

F̂ = F̂(â, +̂, ×̂) becomes isoHv-field. The elements of F are called isoHv-
numbers or isonumbers.

More important hopes, of the above construction, are the ones where only for
few ordered pairs (â, b̂) the result is enlarged, even more, the extra elements x̂i,
are only few, preferable one. Thus, this special case is if there exists only one pair
(â, b̂) for which

â×̂b̂ = â× {T̂ , x̂} × b̂,∀â, b̂ ∈ F̂
and the rest are ordinary results, then we have a very thin isoHv-field.

The assumption Ĥab = {T̂}, â or b̂, is equal to 0̂ or 1̂, with that x̂i, are not 0̂ or
1̂, give that the isoHv-field has one scalar absorbing 0̂, one scalar 1̂, and ∀â ∈ F̂
one inverse.

A generalization of P-hopes, used in Santilli’s isotheory, is the following [5],
[28], [31]: Let (G, ·) be abelian group and P a subset of G with #P > 1. We
define the hope (×p) as follows:

x×p y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and y 6= e

x · y if x = e or y = e

we call this hope Pe-hope. The hyperstructure (G,×p) is abelian Hv-group.
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Construction 4.3. The P-hope. Consider an isofield F̂ = F̂(â, +̂, ×̂) with â =
a× 1̂, the isonumbers, where a ∈ F , and 1̂ is positive-defined outside F, with two
operations +̂ and ×̂, where +̂ is the sum with the conventional unit 0, and ×̂ is
the iso-product

â×̂b̂ = â× T̂ × b̂, with 1̂ = T̂−1,∀â, b̂ ∈ F̂

Take a set P̂ = {T̂ , p̂1, ..., p̂s}, with p̂1, . . . , p̂s ∈ F̂ − {0̂, 1̂}, we define the isoP-
Hv-field, F̂ = F̂(â, +̂, ×̂p) where the hope ×̂P as follows:

â×̂P b̂ :=

{
â× ˆ̂

P × b̂ = {â× ˆ̂
h× b̂|ˆ̂h ∈ ˆ̂

P} if â 6= 1̂ and b̂ 6= 1̂

â× ˆ̂
T × b̂ if â = 1̂ or b̂ = 1̂

The elements of F̂ are called isoP-Hv-numbers.

Remark. If P̂ = {T̂ , p̂}, that is that P̂ contains only one p̂ except T̂ . The
inverses in isoP-Hv-fields, are not necessarily unique.

Example 4.2. Non degenerate example on the above constructions:
In order to define a generalized P-hope on Ẑ7 = Ẑ7(â, +̂, ×̂), where we take

P̂ = {1̂, 6̂}, the weak associative multiplicative hope is described by the table:

×̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂

0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂

1̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂

2̂ 0̂ 2̂ 4̂,3̂ 6̂,1̂ 1̂,6̂ 3̂,4̂ 5̂, 2̂

3̂ 0̂ 3̂ 6̂,1̂ 2̂,5̂ 5̂,2̂ 1̂,6̂ 4̂,3̂
4̂ 0̂ 4̂ 1̂,6̂ 5̂,2̂ 2̂,5̂ 6̂,1̂ 3̂,4̂
5̂ 0̂ 5̂ 3̂,4̂ 1̂,6̂ 6̂,1̂ 4̂,3̂ 2̂,5̂
6̂ 0̂ 6̂ 5̂,2̂ 4̂,3̂ 3̂,4̂ 2̂,5̂ 1̂,6̂

The hyperstructure Ẑ7 = Ẑ7(â, +̂, ×̂) is commutative and associative on the prod-
uct hope. Moreover the β* classes on the iso-product ×̂ are {1̂, 6̂}, {5̂, 2̂}, {3̂, 4̂}.

5 The Lie-Santilli’s admissibility.
Another very important new field in hypermathematics comes straightforward

from Santilli’s Admissibility. We can transfer Santilli’s theory in admissibility for
representations in two ways: using either, the ordinary matrices and a hope on
them, or using hypermatrices and ordinary operations on them [10], [11], [12],
[14], [16] and [7], [9], [30], [31], [34].
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Definition 5.1. Let L be Hv-vector space over the Hv-field (F,+, ·), φ : F →
F/γ∗, the canonical map and ωF = {x ∈ F : φ(x) = 0}, where 0 is the zero of the
fundamental field F/γ∗. Let ωL be the core of the canonical map φ′ : L → L/ε*
and denote by the same symbol 0 the zero of L/ε*. Take two subsets R,S ⊆ L
then a Lie-Santilli admissible hyperalgebra is obtained by taking the Lie bracket,
which is a hope:

[, ]RS : L×L→ ℘(L) : [x, y]RS = xRy− ySx = {xry− ysx|r ∈ R and s ∈ S}

Special cases, but not degenerate, are the ’small’ and ’strict’ ones:

(a) When only S is considered, then [x, y]S = xy − ySx = {xy − ysx|s ∈ S}

(b) When only R is considered, then [x, y]R = xRy− yx = {xry− yx|r ∈ R}

(c) When R = {r1, r2} and S = {s1, s2} then

[x, y]RS = xRy−ySx = {xr1y−ys1x, xr1y−ys2x, xr2y−ys1x, xr2y−ys2x}.

(d) We have one case which is ’like’ P-hope for any subset S ⊆ L:

[x, y]S = {xsy − ysx|s ∈ S}

On non square matrices we can define admissibility, as well:

Construction 5.1. Let L = (Mm×n,+) be Hv-vector space of m × n hyper-
matrices on the Hv-field (F,+, ·), φ : F→ F/γ∗, canonical map and ωF = {x ∈
F : φ(x) = 0}, where 0 is the zero of the field F/γ*. Similarly, let ωL be the core
of φ′ : L → L/ε∗ and denote by the same symbol 0 the zero of L/ε*. Take any
two subsets R,S ⊆ L then a Santilli’s Lie-admissible hyperalgebra is obtained
by taking the Lie bracket, which is a hope:

[, ]RS : L× L→ ℘(L) : [x, y]RS = xRty − yStx.

Notice that [x, y]RS = xRty − yStx = {xrty − ystx|r ∈ R and s ∈ S} Special
cases, but not degenerate, is the ’small’:
R = {r1, r2} and S = {s1, s2} then

[x, y]RS = xRty − yStx =

= {xrt1y − yst1x, xrt1y − yst2x, xrt2y − yst1x, xrt2y − yst2x}
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1 Introduction
Our object is the largest class of hyperstructures, theHv-structures, introduced

in 1990 [10], satisfying the weak axioms where the non-empty intersection re-
places the equality.

Definition 1.1. In a set H equipped with a hyperoperation (abbreviate by hope)

· : H ×H → P(H)− {∅} : (x, y)→ x · y ⊂ H

we abbreviate by
WASS the weak associativity: (xy)z ∩ x(yz) 6= ∅, ∀x, y, z ∈ H and by
COW the weak commutativity: xy ∩ yx 6= ∅, ∀x, y ∈ H .

The hyperstructure (H, ·) is called Hv-semigroup if it is WASS and is called
Hv−group if it is reproductive Hv-semigroup: xH = Hx = H, ∀x ∈ H.

(R,+, ·) is called Hv−ring if (+) and (·) are WASS, the reproduction axiom
is valid for (+) and (·) is weak distributive with respect to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

For more definitions, results and applications on Hv-structures, see [1], [2],
[11], [12], [13], [17]. An interesting class is the following [8]: An Hv-structure is
very thin, if and only if, all hopes are operations except one, with all hyperprod-
ucts singletons except only one, which is a subset of cardinality more than one.
Therefore, in a very thin Hv-structure in a set H there exists a hope (·) and a pair
(a, b) ∈ H2 for which ab = A, with cardA > 1, and all the other products, with
respect to any other hopes, are singletons.

The fundamental relations β* and γ* are defined, in Hv-groups and Hv-rings,
respectively, as the smallest equivalences so that the quotient would be group
and ring, respectively [8], [9], [11], [12], [13], [17]. The main theorem is the
following:

Theorem 1.1. Let (H, ·) be an Hv-group and let us denote by U the set of all
finite products of elements of H. We define the relation β in H as follows: xβy
iff {x, y} ⊂ u where u ∈ U . Then the fundamental relation β* is the transitive
closure of the relation β.

An element is called single if its fundamental class is a singleton.
Motivation: The quotient of a group with respect to any partition is an Hv-

group.

Definition 1.2. Let (H, ·), (H,⊗) be Hv-semigroups defined on the same H. (·) is
smaller than (⊗), and (⊗) greater than (·), iff there exists automorphism

f ∈ Aut(H,⊗) such that xy ⊂ f(x⊗ y), ∀x, y ∈ H.
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Then (H,⊗) contains (H, ·) and write · ≤ ⊗. If (H, ·) is structure, then it is basic
and (H,⊗) is an Hb-structure.

The Little Theorem [11]. Greater hopes of the ones which are WASS or
COW, are also WASS and COW, respectively.

Fundamental relations are used for general definitions of hyperstructures. Thus,
to define the general Hv-field one uses the fundamental relation γ*:

Definition 1.3. [10] The Hv-ring (R,+, ·) is called Hv-field if the quotient R/γ*
is a field.

This definition introduces a new class of which is the following [15]:

Definition 1.4. The Hv-semigroup (H, ·) is called h/v-group if H/β* is a group.

The class of h/v-groups is more general than theHv-groups since in h/v-groups
the reproductivity is not valid. The h/v-fields and the other related hyperstructures
are defined in a similar way.

An Hv-group is called cyclic [8], if there is an element, called generator,
which the powers have union the underline set, the minimal power with this prop-
erty is the period of the generator.

Definition 1.5. [11], [14], [18]. Let (R,+, ·) be an Hv-ring, (M,+) be COW
Hv-group and there exists an external hope · : R ×M → P (M) : (a, x) → ax,
such that, ∀a, b ∈ R and ∀x, y ∈M we have

a(x+ y) ∩ (ax+ ay) 6= ∅, (a+ b)x ∩ (ax+ bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

then M is called an Hv-module over R. In the case of an Hv-field F instead of an
Hv-ring R, then the Hv-vector space is defined.

Definition 1.6. [16] Let (L,+) be Hv-vector space on (F,+, ·), φ : F → F/γ*,
the canonical map and ωF = {x ∈ F : φ(x) = 0}, where 0 is the zero of
the fundamental field F/γ*. Similarly, let ωL be the core of the canonical map
φ′ : L → L/ε* and denote again 0 the zero of L/ε*. Consider the bracket
(commutator) hope:

[, ] : L× L→ P (L) : (x, y)→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.
[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,
∀x, x1, x2, y, y1, y2 ∈ L, λ1, λ2 ∈ F
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(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅, ∀x, y, z ∈ L

A well known and large class of hopes is given as follows [8], [9], [11]:

Definition 1.7. Let (G, ·) be a groupoid, then for every subset P ⊂ G,P 6= ∅,
we define the following hopes, called P-hopes: ∀x, y ∈ G

P : xPy = (xP )y ∪ x(Py),

P r : xP ry = (xy)P ∪ x(yP ),

P l : xP ly = (Px)y ∪ P (xy).

The (G,P ),(G,P r), (G,P l) are called P-hyperstructures.
The usual case is for semigroup (G, ·), then xPy = (xP )y ∪ x(Py) = xPy,

and (G,P ) is a semihypergroup.

A new important application of Hv-structures in Nuclear Physics is in the
Santilli’s isotheory. In this theory a generalization of P-hopes is used, [4], [5],
[22], which is defined as follows: Let (G,) be an abelian group and P a subset of
G with more than one elements. We define the hyperoperation ×P as follows:

x×p y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and c 6= e

x · y if x = e or y = e

we call this hope Pe-hope. The hyperstructure (G,×p) is an abelian Hv-group.

2 Small hypernumbers and Hv-matrix representa-
tions

Several constructions of Hv-fields are uses in representation theory and ap-
plications in applied sciences. We present some of them in the finite small case
[18].

Construction 2.1. On the ring (Z4,+, ·) we will define all the multiplicative h/v-
fields which have non-degenerate fundamental field and, moreover they are,

(a) very thin minimal,

(b) COW (non-commutative),

(c) they have the elements 0 and 1, scalars.

170



Helix-Hopes on S-Helix Matrices

Then, we have only the following isomorphic cases 2 ⊗ 3 = {0, 2} or 3 ⊗ 2 =
{0, 2}.

Fundamental classes: [0] = {0, 2}, [1] = {1, 3} and we have (Z4,+,⊗)/γ∗ ∼=
(Z2,+, ·).

Thus it is isomorphic to (Z2 × Z2,+). In this Hv-group there is only one unit
and every element has a unique double inverse.

Construction 2.2. On the ring (Z6,+, ·) we define, up to isomorphism, all mul-
tiplicative h/v-fields which have non-degenerate fundamental field and, moreover
they are:

(a) very thin minimal, i.e. only one product has exactly two elements

(b) COW (non-commutative)

(c) they have the elements 0 and 1, scalars

Then we have the following cases, by giving the only one hyperproduct,

(I) 2⊗ 3 = {0, 3} or 2⊗ 4 = {2, 5} or 2⊗ 5 = {1, 4}
3⊗ 4 = {0, 3} or 3⊗ 5 = {0, 3} or 4⊗ 5 = {2, 5}
In all 6 cases the fundamental classes are [0] = {0, 3}, [1] = {1, 4}, [2] =
{2, 5} and we have (Z6,+,⊗)/γ∗ ∼= (Z3,+, ·).

(II) 2⊗ 3 = {0, 2} or 2⊗ 3 = {0, 4} or 2⊗ 4 = {0, 2} or 2⊗ 4 = {2, 4} or
2⊗ 5 = {0, 4} or 2⊗ 5 = {2, 4} or 3⊗ 4 = {0, 2} or 3⊗ 4 = {0, 4} or
3⊗ 5 = {1, 3} or 3⊗ 5 = {3, 5} or 4⊗ 5 = {0, 2} or 4⊗ 5 = {2, 4}
In all 12 cases the fundamental classes are [0] = {0, 2, 4}, [1] = {1, 3, 5}
and we have (Z6,+,⊗)/γ∗ ∼= (Z2,+, ·).

Hv-structures are used in Representation Theory of Hv-groups which can be
achieved by generalized permutations or by Hv-matrices [11], [14], [18].

Definition 2.1. Hv-matrix is a matrix with entries of an Hv-ring or Hv-field.
The hyperproduct of two Hv-matrices (aij) and (bij), of type m × n and n × r
respectively, is defined in the usual manner and it is a set of m × r Hv-matrices.
The sum of products of elements of theHv-ring is considered to be the n-ary circle
hope on the hypersum. The hyperproduct ofHv-matrices is not necessarily WASS.

The problem of the Hv-matrix representations is the following:

Definition 2.2. Let (H, ·) be Hv-group (or h/v-group). Find an Hv-ring (R,+, ·),
a set MR = {(aij)|aij ∈ R} and a map T : H →MR : h 7→ T (h) such that

T (h1h2) ∩ T (h1)T (h2) 6= ∅,∀h1, h2 ∈ H.
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T is Hv -matrix (or h/v-matrix) representation. If T (h1h2) ⊂ T (h1)(h2) is called
inclusion. If T (h1h2) = T (h1)(h2) = {T (h)|h ∈ h1h2}, ∀h1, h2 ∈ H , then
T is good and then an induced representation T* for the hypergroup algebra is
obtained. If T is one to one and good then it is faithful.

The main theorem on representations is [11]:

Theorem 2.1. A necessary condition to have an inclusion representation T of an
Hv-group (H, ·) by n×n, Hv-matrices over theHv-ring (R,+, ·) is the following:

For all classes β∗(x), x ∈ H must exist elements aij ∈ H, i, j ∈ {1, . . . , n}
such that

T (β∗(a)) ⊂ {A = (a′ij)|aij ∈ γ∗(aij), i, j ∈ {1, . . . , n}}

Inclusion T : H →MR : a 7→ T (a) = (aij) induces homomorphic representation
T* of H/β* on R/γ* by setting T ∗(β∗(a)) = [γ∗(aij)], ∀β∗(a) ∈ H/β∗, where
γ∗(aij) ∈ R/γ∗ is the ij entry of the matrix T ∗(β∗(a)). T* is called fundamental
induced of T.

In representations, several new classes are used:

Definition 2.3. Let M = Mm×n be the module of m × n matrices over R and
P = {Pi : i ∈ I} ⊆M . We define a P-hope P on M as follows

P :M ×M → P (M) : (A,B)→ APB = {AP t
iB : i ∈ I} ⊆M

where P t denotes the transpose of P.

The hope P is bilinear map, is strong associative and the inclusion distributive:

AP (B + C) ⊆ APB + APC, ∀A,B,C ∈M

Definition 2.4. Let M =Mm×n the m× n matrices over R and let us take sets

S = {sk : k ∈ K} ⊆ R, Q = {Qj : j ∈ J} ⊆M, P = {Pi : i ∈ I} ⊆M.

Define three hopes as follows

S : R×M → P (M) : (r, A)→ rSA = {(rsk)A : k ∈ K} ⊆M

Q
+
:M ×M → P (M) : (A,B)→ AQ

+
B = {A+Qj +B : j ∈ J} ⊆M

P :M ×M → P (M) : (A,B)→ APB = {AP t
iB : i ∈ I} ⊆M

Then (M,S,Q
+
, P ) is hyperalgebra on R called general matrix P-hyperalgebra.
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3 Helix-hopes
Recall some definitions from [3], [4], [6], [7], [19], [20], [21]:

Definition 3.1. Let A = (aij) ∈Mm×n be m×n matrix and s, t ∈ N be naturals
such that 1 ≤ s ≤ m, 1 ≤ t ≤ n. We define the map cst from Mm×n to Ms×t
by corresponding to the matrix A, the matrix Acst = (aij) where 1 ≤ i ≤ s,
1 ≤ j ≤ t. We call this map cut-projection of type st. Thus Acst = (aij) is matrix
obtained from A by cutting the lines, with index greater than s, and columns, with
index greater than t.

We use cut-projections on all types of matrices to define sums and products.

Definition 3.2. Let A = (aij) ∈ Mm×n be an m × n matrix and s, t ∈ N , such
that 1 ≤ s ≤ m, 1 ≤ t ≤ n. We define the mod-like map st from Mm×n to Ms×t
by corresponding to A the matrix Ast = (aij) which has as entries the sets

aij = {ai+κs,j+λt|1 ≤ i ≤ s, 1 ≤ j ≤ t and κ, λ ∈ N, i+ κs ≤ m, j + λt ≤ n}.

Thus, we have the map

st :Mm×n →Ms×t : A→ Ast = (aij).

We call this multivalued map helix-projection of type st. Ast is a set of s × t-
matrices X = (xij) such that xij ∈ aij, ∀i, j. Obviously Amn = A.

Let A = (aij) ∈ Mm×n be a matrix and s, t ∈ N such that 1 ≤ s ≤ m,
1 ≤ t ≤ n. Then it is clear that we can apply the helix-projection first on the rows
and then on the columns, the result is the same if we apply the helix-projection on
both, rows and columns. Therefore we have

(Asn)st = (Amt)st = Ast.

Let A = (aij) ∈ Mm×n be matrix and s, t ∈ N such that 1 ≤ s ≤ m, 1 ≤ t ≤ n.
Then if Ast is not a set but one single matrix then we call A cut-helix matrix of
type s × t. In other words the matrix A is a helix matrix of type s × t, if Acst=
Ast.

Definition 3.3. a. Let A = (aij) ∈ Mm×n, B = (bij) ∈ Mu×v, be matrices
and s=min(m,u), t=min(n,u). We define a hope, called helix-addition or
helix-sum, as follows:

⊕ :Mm×n ×Mu×v → P (Ms×t) : (A,B)→

A⊕B = Ast+Bst = (aij) + (bij) ⊂Ms×t,

where

(aij) + (bij) = {(cij = (aij + bij)|aij ∈ aij and bij ∈ bij}
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b. LetA = (aij) ∈Mm×n andB = (bij) ∈Mu×v, be matrices and s=min(m,u).
We define a hope, called helix-multiplication or helix-product, as follows:

⊗ :Mm×n ×Mu×v → P (Mm×v) : (A,B)→

A⊗B = Ams ·Bsv = (aij) · (bij) ⊂Mm×v,

where

(aij) · (bij) = {(cij = (
∑

aitbtj)|aij ∈ aij and bij ∈ bij}

The helix-sum is an external hope and the commutativity is valid. For the
helix-product we remark that we have A ⊗ B = Ams · Bsv so we have either
Ams = A or Bsv = B, that means that the helix-projection was applied only in
one matrix and only in the rows or in the columns. If the appropriate matrices in
the helix-sum and in the helix-product are cut-helix, then the result is singleton.

Remark. In Mm×n the addition is ordinary operation, thus we are interested
only in the ’product’. From the fact that the helix-product on non square matrices
is defined, the definition of the Lie-bracket is immediate, therefore the helix-Lie
Algebra is defined [22], as well. This algebra is an Hv-Lie Algebra where the
fundamental relation ε∗ gives, by a quotient, a Lie algebra, from which a classifi-
cation is obtained.

In the following we restrict ourselves on the matrices Mm×n where m < n.
We have analogous results if m > n and for m = n we have the classical theory.

Notation. For given κ ∈ N − {0}, we denote by κ the remainder resulting
from its division by m if the remainder is non zero, and κ = m if the remainder is
zero. Thus a matrix A = (aκλ) ∈ Mm×n,m < n is a cut-helix matrix if we have
aκλ = aκλ,∀κλ ∈ N− {0}.

Moreover let us denote by Ic = (cκλ) the cut-helix unit matrix which the
cut matrix is the unit matrix Im. Therefore, since Im = (δκλ), where δκλ is the
Kronecker’s delta, we obtain that, ∀κ, λ, we have cκλ = δκλ.

Proposition 3.1. For m < n in (Mm×n,⊗) the cut-helix unit matrix Ic = (cκλ),
where cκλ = δκλ, is a left scalar unit and a right unit. It is the only one left scalar
unit.

Proof. Let A,B ∈ Mm×n then in the helix-multiplication, since m < n,
we take helix projection of the matrix A, therefore, the result A ⊗ B is singleton
if the matrix A is a cut-helix matrix of type m ×m. Moreover, in order to have
A⊗B = Amm ·B = B, the matrixAmmmust be the unit matrix. Consequently,
Ic = (cκλ), where cκλ = δκλ,∀κ, λ ∈ N− {0}, is necessarily the left scalar unit.

Let A = (auv) ∈ Mm×n and consider the hyperproduct A ⊗ Ic. In the entry
κλ of this hyperproduct there are sets, for all 1 ≤ κ ≤ m, 1 ≤ λ ≤ n , of the form∑

aκscsλ =
∑

aκsδsλ = aκλ 3 aκλ.

174



Helix-Hopes on S-Helix Matrices

Therefore A⊗ Ic 3 A,∀A ∈Mm×n. 2

4 The S-helix matrices
Definition 4.1. Let A = (aij) ∈Mm×n be matrix and s, t ∈ N such that 1 ≤ s ≤
m, 1 ≤ t ≤ n. Then if Ast is a set of upper triangular matrices with the same
diagonal, then we call A an S-helix matrix of type s× t. Therefore, in an S-helix
matrix A of type s× t, the Ast has on the diagonal entries which are not sets but
elements.

In the following, we restrict our study on the case of A = (aij) ∈ Mm×n with
m < n.

Remark. According to the cut-helix notation, we have,

aκλ = aκλ = 0, for all κ > λ and aκλ = aκλ, for κ = λ.

Proposition 4.1. The set of S-helix matrices A = (aij) ∈ Mm×n with m < n, is
closed under the helix product. Moreover, it has a unit the cut-helix unit matrix
Ic, which is left scalar.

Proof. It is clear that the helix product of two S-helix matrices, X =
(xij), Y = (aij) ∈ Mm×n, X ⊗ Y , contain matrices Z = (zij), which are up-
per diagonals. Moreover, for every zii, the entry ii is singleton since it is product
of only z(i+km),(i+km) = zii, entries.

The unit is, from Proposition 3.1, the matrix Ic = Im×n, where we have
Im×n = Imm = Im. 2

An example of hyper-matrix representation, seven dimensional, with helix-
hope is the following:

Example 4.1. Consider the special case of the matrices of the type 3 × 5 on the
field of real or complex. Then we have

X =

x11 x12 x13 x11 x15

0 x22 x23 0 x22

0 0 x33 0 0

 and Y =

y11 y12 y13 y11 y15
0 y22 y23 0 y22
0 0 y33 0 0


X ⊗ Y =

x11 {x12, x15} x13

0 x22 x23

0 0 x33

 ·
y11 y12 y13 y11 y15

0 y22 y23 0 y22
0 0 y33 0 0

 =

(
x11y11 x11y12 + {x12, x15}y22 x11y13 + {x12, x15}y23 + x13y33 x11y11 x11y15 + {x12, x15}y22

0 x22y22 x22y23 + x23y33 0 x22y22
0 0 x33y33 0 0

)
Therefore the helix product is a set with cardinality up to 8.

The unit of this type is Ic =

1 0 0 1 0
0 1 0 0 1
0 0 1 0 0


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Definition 4.2. We call a matrix A = (aij) ∈ Mm×n an S0-helix matrix if it is
an S-helix matrix where the condition a11a22 . . . amm 6= 0, is valid. Therefore, an
S0-helix matrix has no zero elements on the diagonal and the set S0 is a subset of
the set S of all S-helix matrices. We notice that this set is closed under the helix
product not in addition. Therefore it is interesting only when the product is used
not the addition.

Proposition 4.2. The set of S0-helix matrices A = (aij) ∈ Mm×n with m < n,
is closed under the helix product, it has a unit the cut-helix unit matrix Ic, which
is left scalar and S0-helix matrices X have inverses X−1, i.e. Ic ∈ X ⊗ X−1 ∩
X−1 ⊗X .

Proof. First it is clear that on the helix product of two S0-helix matrices, the
diagonal has not any zero since there is no zero on each of them. Therefore, the
helix product is closed. The entries in the diagonal are inverses in the Hv-field. In
the rest entries we have to collect equations from those which correspond to each
element of the entry-set. 2

Example 4.2. Consider the special case of the above Example 4.1, of the matrices
of the type 3 × 5. Suppose we want to find the inverse matrix Y = X−1, of the
matrix X. Then we have Ic ∈ X ⊗ Y ∩ Y ⊗X . Therefore, we obtain

x11y11 = x22y22 = x33y33 = 1

x11y12 + {x12, x15}y22 3 0, x11y13 + {x12, x15}y23 + x13y33 3 0,

x11y15 + {x12, x15}y22 3 0, x23y22 + x33y23 3 0,

Therefore a solution is

y11 =
1

x11
, y22 =

1

x22
, y33 =

1

x33

y23 =
−x23
x22x33

, y12 =
−x12
x11x22

, y15 =
−x15
x11x22

, and

y13 =
−x13
x11x33

+
x23x12

x11x22x33
or y13 =

−x13
x11x33

+
x23x14

x11x22x33

Thus, a left and right inverse matrix of X is

X−1 =

 1
x11

−x12
x11x22

−x13
x11x33

+ x23x12
x11x22x33

1
x11

−x15
x11

0 1
x22

−x23
x22x33

0 1
x22

0 0 1
x33

0 0


An interesting research field is the finite case on small finite Hv-fields. Impor-

tant cases appear taking the generating sets by any S0-helix matrix.
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Example 4.3. On the type 3 × 5 of matrices using the Construction 2.1, on
(Z4,+, ·) we take the small Hv-field (Z4,+,⊗), where only 2 ⊗ 3 = {0, 2} and
fundamental classes {0, 2}, {1, 3}. We consider the set of all S0-helix matrices
and we take the S0-helix matrix:

X =

1 2 2 1 0
0 3 1 0 3
0 0 1 0 0


Then the powers of X are:

X2 =

1 {0, 2} {0, 2} 1 {0, 2}
0 1 0 0 1
0 0 1 0 0



X3 =

1 {0, 2} {0, 2} 1 {0, 2}
0 3 1 0 3
0 0 1 0 0

 , and so on

We obtain that the generating set is the following1 {0, 2} {0, 2} 1 {0, 2}
0 {1, 3} {0, 1} 0 {1, 3}
0 0 1 0 0


where in the 22 and 25 entries appears simultaneously 1 or 3.
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1 Introduction
The main object in this paper is the largest class of hyperstructures called Hv-

structures introduced in 1990 [35], which satisfy the weak axioms where the non-
empty intersection replaces the equality. Abbreviation: hyperoperation=hope.

Definition 1.1. An algebraic hyperstructure is called a set H equipped with at
least one hope · : H × H → P (H) − {∅}. We abbreviate by WASS the weak
associativity: (xy)z ∩ x(yz) 6= ∅, ∀x, y, z ∈ H and by COW the weak commu-
tativity: xy ∩ yx 6= ∅, ∀x, y ∈ H . The hyperstructure (H, ·) is called an Hv -
semigroup if it is WASS, it is called Hv-group if it is reproductive Hv-semigroup,
i.e., xH = Hx = H,∀x ∈ H.

Motivation. The quotient of a group by an invariant subgroup, is a group.
F. Marty (1934), ’Sur une generalization de la notion de groupe’. 8eme Congres
Math. Scandinaves, Stockholm, pp.45-49, states: the quotient of a group by a
subgroup is a hypergroup. The quotient of a group by a partition (or equivalently
to any equivalence) is an Hv-group.

In an Hv-semigroup the powers are defined by: h1 = {h}, h2 = h ·h, ..., hn =
h◦h◦...◦h, where (◦) is the n-ary circle hope, i.e. take the union of hyperproducts,
n times, with all possible patterns of parentheses put on them. An Hv-semigroup
(H, ·) is cyclic of period s, if there is an element h, called generator, and a natural
number s, the minimum : H = h1 ∪ h2... ∪ hs. Analogously the cyclicity for
the infinite period is defined [30], [33], [39]. If there is an h and s, the minimum:
H = hs, then (H, ·), is called single-power cyclic of period s.

Definition 1.2. An (R,+, ·) is called Hv−ring if (+) and (·) are WASS, the re-
production axiom is valid for (+) and (·) is weak distributive with respect to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

Let (R,+, ·) be an Hv-ring, (M,+) be a COW Hv-group and there exists an
external hope

· : R×M → P (M) : (a, x)→ ax

such that ∀a, b ∈ R and ∀x, y ∈M we have

a(x+ y) ∩ (ax+ ay) 6= ∅, (a+ b)x ∩ (ax+ bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

then M is called an Hv-module over F. In the case of an Hv-field F, which is
defined later, instead of an Hv-ring R, then the Hv−vector space is defined.

For more definitions and applications on hyperstructures one can see books
[4], [5], [9], [10], [11], [39] and papers as [3], [7], [8], [15], [16], [20], [21], [27],
[38], [40], [41], [43], [48], [55], [68].
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Definition 1.3. Let (H, ·), (H, ∗) be Hv-semigroups on the same set H, the hope
(·) is called smaller than the (∗), and (∗) greater than (·), iff there exists an

f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H.

Then we write · ≤ ∗ and we say that (H, ∗) contains (H, ·). If (H, ·) is a structure
then it is called basic structure and (H, ∗) is called Hb − structure.

The Little Theorem. Greater hopes than ones which are WASS or COW, are
also WASS or COW, respectively.

This Theorem leads to a partial order onHv-structures and to posets [39], [42],
[43], [21].

Let (H, ·) be hypergroupoid. We remove h ∈ H , if we take the restriction of
(·) in the set H − {h}. h ∈ H absorbs h ∈ H if we replace h by h and h does
not appear. h ∈ H merges with h ∈ H , if we take as product of any x ∈ H by h,
the union of the results of x with both h, h, and consider h and h as one class with
representative h.

The main tool in hyperstructures is the fundamental relation. M. Koscas 1970,
[20], defined in hypergroups the relation β and its transitive closure β*. This
relation is defined in Hv-groups, as well, and connect hyperstructures with the
classical structures. T. Vougiouklis [34], [35], [39], [40], [41], [53], [54], [60],
introduced the γ* and ε* relations, which are defined, in Hv-rings and Hv-vector
spaces, respectively. He also named all these relations, fundamental. (see also [4],
[5], [1], [8], [10], [11]).

Definition 1.4. The fundamental relations β*, γ* and ε*, are defined, in Hv-
groups,Hv-rings andHv-vector spaces, respectively, as the smallest equivalences
so that the quotient would be group, ring and vector spaces, respectively.

Specifying the above motivation we remark that: Let (G, ·) be a group and
R be an equivalence relation (or a partition) in G, then (G/R, ·) is an Hv-group,
therefore we have the quotient (G/R, ·)/β∗ which is a group, the fundamental
one.

The main Theorem to find the fundamental classes is the following:

Theorem 1.1. Let (H, ·) be an Hv-group and denote by U the set of all finite
products of elements of H. We define the relation β in H by setting xβy iff {x, y} ⊂
u where u ∈ U . Then β* is the transitive closure of β.

Notation. We denote by [x] the fundamental class of the element x ∈ H .
Therefore β∗(x) = [x].

Analogous theorems are for Hv-rings, Hv-vector spaces and so on. For proof,
see [34], [39]. An element is called single [39] if its fundamental class is singleton
so, [x] = {x}.
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More general structures can be defined by using the fundamental structures.
An application in this direction is the general hyperfield. There was no general
definition of a hyperfield, but from 1990 [35] there is the following [38], [39]:

Definition 1.5. An Hv-ring (R,+, ·) is called Hv-field if R/γ* is a field.

Since the algebras are defined on vector spaces, the analogous to Theorem 1.1,
on Hv-vector spaces is the following: Let (V,+) be an Hv-vector space over the
Hv-field F. Denote by U the set of all expressions consisting of finite hopes either
on F and V or the external hope applied on finite sets of elements of F and V. We
define the relation ε, in V as follows: xεy iff {x, y} ∈ u where u ∈ U . Then the
relation ε* is the transitive closure of the relation ε.

Definition 1.6. [53], [54], [57]. Let (L,+) be an Hv-vector space over the Hv-
field (F,+, ·), φ : F → F/γ* the canonical map and ωF = {x ∈ F : φ(x) = 0},
where 0 is the zero of the fundamental field F/γ*. Let ωL be the core of the
canonical map φ′ : L→ L/ε* and denote by the same symbol 0 the zero of L/ε*.
Consider the bracket (commutator) hope:

[, ] : L× L→ P (L) : (x, y)→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.
[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,
∀x, x1, x2, y, y1, y2 ∈ L, λ1, λ2 ∈ F

(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅, ∀x, y ∈ L

In the Definition 1.5, was introduced a new class of which is the following
[45] (for a preliminary report see: T. Vougiouklis. A generalized hypergroup,
Abstracts AMS, Vol. 19.3, Issue 113, 1998, p.489):

Definition 1.7. The Hv-semigroup (H, ·) is called h/v-group if H/β∗ is a group.

An important and well known class of hyperstructures defined on classical
structures are defined as follows [30], [33], [36], [57], [60]:

Definition 1.8. Let (G, ·) be groupoid, then for every P ⊂ G,P 6= ∅, we define
the following hopes called P-hopes: ∀x, y ∈ G

P : xPy = (xP )y ∪ x(Py),
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P r : xP ry = (xy)P ∪ x(yP ),

P l : xP ly = (Px)y ∪ P (xy).

The (G,P ),(G,P r), (G,P l) are called P-hyperstructures. The most usual case
is if (G, ·) is semigroup, then xPy = (xP )y ∪ x(Py) = xPy and (G,P ) is a
semihypergroup.

A generalization of P-hopes, used in Santilli’s isotheory, is the following
[12], [13], [14]: Let (G, ·) be abelian group and P a subset of G with #P > 1.
We define the hope (×P ) as follows:

x×P y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and c 6= e

x · y if x = e or y = e

we call this hope Pe-hope. The hyperstructure (G,×P ) is abelian Hv-group.

Definition 1.9. [36]. An Hv-structure is called very thin if all hopes are opera-
tions except one, which has all hyperproducts singletons except one, which is a
subset of cardinality more than one. Therefore, in a very thin Hv-structure in H
there exists a hope (·) and a pair (a, b) ∈ H2 for which ab = A, with cardA > 1,
and all the other products, are singletons.

From the properties of the very thin hopes the Attach Construction is obtained
[43], [54]: Let (H, ·) be an Hv-semigroup and v /∈ H . We extend the (·) into
H = H ∪ {v} by:

x · v = v · x = v,∀x ∈ H, and v · v = H.

The (H, ·) is an Hv-group, where (H, ·)/β∗ ∼= Z2 and v is a single.
A class of Hv-structures is the following [47], [49], [57], [60]:

Definition 1.10. Let (G, ·) be groupoid (resp. hypergroupoid) and f : G→ G be
a map. We define a hope (∂), called theta-hope, we write ∂-hope, on G as follows

x∂y = {f(x)·y, x·f(y)}, ∀x, y ∈ G. (resp. x∂y = (f(x)·y)∪(x·f(y)), ∀x, y ∈ G)

If (·) is commutative then ∂ is commutative. If (·) is COW, then ∂ is COW.

If (G, ·) is a groupoid (or hypergroupoid) and f : G → P (G) − {∅} be any
multivalued map. We define the ∂-hope on G as follows:

x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G.

The ∂-hopes can be defined in Hv-vector spaces and Hv-Lie algebras:
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Let (A,+, ·) be an algebra over the field F. Take any map f : A → A, then
the ∂-hope on the Lie bracket [x, y] = xy − yx, is defined as follows

x∂y = {f(x)y − f(y)x, f(x)y − yf(x), xf(y)− f(y)x, xf(y)− yf(x)}.

then (A,+, ∂) is anHv-algebra over F, with respect to the ∂-hopes on Lie bracket,
where the weak anti-commutativity and the inclusion linearity is valid.

Motivation for the theta-hope is the map derivative where only the multiplica-
tion of functions can be used. Basic property: if (G, ·) is semigroup then ∀f , the
∂-hope is WASS.

Example.

(a) In integers (Z,+, ·) fix n 6= 0, a natural number. Consider the map f such
that f(0) = n and f(x) = x, ∀x ∈ Z − {0}. Then (Z, ∂+, ∂·), where
∂+ and ∂· are the ∂-hopes refereed to the addition and the multiplication
respectively, is an Hv-near-ring, with

(Z, ∂+, ∂·)/γ* ∼= Zn.

(b) In (Z,+, ·) with n 6= 0, take f such that f(n) = 0 and f(x) = x, ∀x ∈
Z− {n}. Then (Z, ∂+, ∂·) is an Hv-ring, moreover, (Z, ∂+, ∂·)/γ* ∼= Zn.

Special case of the above is for n = p, prime, then (Z, ∂+, ∂·) is an Hv-field.

The uniting elements method was introduced by Corsini-Vougiouklis [6] in 1989.
With this method one puts in the same class, two or more elements. This leads,
through hyperstructures, to structures satisfying additional properties.

The uniting elements method is the following: Let G be algebraic structure and
d, a property which is not valid. Suppose that d is described by a set of equations;
then, take the partition in G for which it is put together, in the same class, every
pair of elements that causes the non-validity of the property d. The quotient by
this partition G/d is an Hv-structure. Then, quotient out the Hv-structure G/d by
the fundamental relation β*, a stricter structure (G/d)/β* for which the property
d is valid, is obtained.

It is very important if more properties are desired, then we have the following
[39]:

Theorem 1.2. Let (R,+, ·) be a ring, and F = {f1, ..., fm, fm+1, ..., fm+n} be
a system of equations on R consisting of two subsystems Fm = {f1, ..., fm} and
Fn = {fm+1, ..., fm+n}. Let σ, σm be the equivalence relations defined by the
uniting elements procedure using the systems F and Fm respectively, and let σn
be the equivalence relation defined using the induced equations of Fn on the ring
Rm = (R/σm)/γ*. Then,

(R/σ)/γ∗ ∼= (Rm/σn)γ∗.
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Combining the uniting elements procedure with the enlarging theory or the
∂-theory, we can obtain analogous results [39], [51], [54], [60], [22].

Theorem 1.3. In the ring (Zn,+, ·), with n=ms we enlarge the multiplication only
in the product of the special elements 0 · m by setting 0 ⊗ m = {0,m} and the
rest results remain the same. Then

(Zn,+,⊗)/γ∗ ∼= (Zm,+, ·).

Remark that we can enlarge other products as well, for example 2·m by setting
2⊗m = {2,m+ 2}, then the result remains the same. In this case 0 and 1 remain
scalars.

Corollary. In the ring (Zn,+, ·), with n=ps where p is prime, we enlarge only
the product 0 · p by 0⊗ p = {0, p} and the rest remain the same. Then (Zn,+,⊗)
is very thin Hv-field.

2 Constructions of Hv-fields and h/v-fields
The class of h/v-groups is more general than theHv-groups since in h/v-groups

the reproductivity is not valid. The reproductivity of classes is valid, i.e. if H is
partitioned into equivalence classes, then

x[y] = [xy] = [x]y,∀x, y ∈ H,

because the quotient is reproductive. In a similar way the h/v-rings, h/v-fields,
h/v-modulus, h/v-vector spaces etc are defined.

Remark 2.1. From definition of the Hv-field, we remark that the reproduction
axiom in the product, is not assumed, the same is also valid for the definition of
the h/v-field. Therefore, an Hv-field is an h/v-field where the reproduction axiom
for the sum is also valid.

We know that the reproductivity in the classical group theory is equivalent to
the axioms of the existence of the unit element and the existence of an inverse
element for any given element. From the definition of the h/v-group, since a
generalization of the reproductivity is valid, we have to extend the above two
axioms on the equivalent classes.

Definition 2.1. Let (H, ·) be an Hv-semigroup, and denote [x] the fundamental,
or equivalent class, of the element x ∈ H . We call unit class the class [e] if we
have

([e] · [x]) ∩ [x] 6= ∅ and ([x] · [e]) ∩ [x] 6= ∅,∀x ∈ H,
and for each element x ∈ H , we call inverse class of [x], the class [x′], if we have

([x] · [x′]) ∩ [e] 6= ∅ and ([x′] · [x]) ∩ [e] 6= ∅.
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The ’enlarged’ hyperstructures were examined in the sense that a new element
appears in one result. In enlargement or reduction, most useful are those Hv-
structures or h/v-structures with the same fundamental structure [43], [53].

Construction 2.1. (a) Let (H, ·) be an Hv-semigroup and v /∈ H . We extend
the (·) into H = H ∪ {v} as follows:

x · v = v · x = v,∀x ∈ H, and v · v = H.

The (H, ·) is an h/v-group, called attach, where (H, ·)/β∗ ∼= Z2 and v is a
single element.

We have core (H, ·) = H . The scalars and units of (H, ·) are scalars and
units (resp.) in (H, ·). If (H, ·) is COW (resp. commutative) then (H, ·) is
also COW (resp. commutative).

(b) Let (H, ·) be an Hv-semigroup and {v1, . . . , vn} ∩ H = ∅, is an ordered
set, where if vi < vj , when i < j. Extend (·) in Hn = H ∪ {v1, . . . , vn} as
follows:

x · vi = vi · x = vi, vi · vj = vj · vi = vj,∀i < j and

vi · vi = H ∪ {v1, . . . , vi−1},∀x ∈ H, i ∈ {1, . . . , n}.

Then (Hn, ·) is h/v-group, called attach elements, where (Hn, ·)/β∗ ∼= Z2

and vn is single.

(c) Let (H, ·) be anHv-semigroup, v /∈ H , and (H, ·) be its attached h/v-group.
Take an element 0 /∈ H and define in Ho = H ∪ {v, 0} two hopes:
hypersum (+): 0 + 0 = x + v = v + x = 0, 0 + v = v + 0 = x + y = v,
0 + x = x+ 0 = v + v = H , ∀x, y ∈ H
hyperproduct (·): remains the same as in H moreover 0 ·0 = v ·x = x ·0 =
0,∀x ∈ H
Then (Ho,+, ·) is h/v-field with (Ho,+, ·)/γ∗ ∼= Z3. (+) is associative, (·)
is WASS and weak distributive with respect to (+). 0 is zero absorbing and
single but not scalar in (+). (Ho,+, ·) is called the attached h/v-field of the
Hv-semigroup (H, ·).

Let us denote by U the set of all finite products of elements of a hypergroupoid
(H, ·). Consider the relation defined as follows:

xLy iff there exists u ∈ U such that ux ∩ uy 6= ∅.

Then the transitive closure L∗ of L is called left fundamental reproductivity rela-
tion. Similarly, the right fundamental reproductivity relation R∗ is defined.
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Theorem 2.1. If (H, ·) is a commutative semihypergroup, i.e. the strong com-
mutativity and the strong associativity is valid, then the strong expression of the
above L relation: ux = uy, has the property: L∗ = L .

Proof. Suppose that two elements x and y ofH are L* equivalent. Therefore,
there are u1, . . . , un+1 elements of U, and z1, . . . , zn elements of H , such that

u1x = u1z1, u2z1 = u2z2, . . . , unzn−1 = unzn, un+1zn = un+1y.

From these relations, using the strong commutativity, we obtain

un+1 . . . u2u1x = un+1 . . . u2u1z1 = un+1 . . . u1u2z1 =

= un+1 . . . u2u1z2 = · · · = un+1 . . . u2u1y

Therefore, setting u = un+1 . . . u2u1 ∈ U, we have ux = uy. 2
Corollary. Let (S, ·) be commutative semigroup which has an element w ∈ S

such that the set wS is finite. Consider the transitive closure L* of the relation L
defined by:

xLy iff there exists z ∈ S such that zx = zy.

Then < S/L∗,◦ /β∗ is a finite commutative group, where (◦) is the induced oper-
ation on classes of S/L*.

Open problem: Prove that L*, is the smallest equivalence: H/L*, is reproduc-
tive.

We present now the small non-degenerate Hv-fields on (Zn,+, ·) which sat-
isfy the following conditions, appropriate in Santilli’s iso-theory:

1. multiplicative very thin minimal,

2. COW (non-commutative),

3. they have the elements 0 and 1, scalars,

4. when an element has inverse element, then this is unique.

Remark that last condition means than we cannot enlarge the result if it is 1 and
we cannot put 1 in enlargement. Moreover we study only the upper triangular
cases, in the multiplicative table, since the corresponding under, are isomorphic
since the commutativity is valid for the underline rings. From the fact that the
reproduction axiom in addition is valid, we have always Hv-fields.

Theorem 2.2. All multiplicative Hv-fields defined on (Z4,+, ·), which have non-
degenerate fundamental field, and satisfy the above 4 conditions, are the following
isomorphic cases:

The only product which is set is 2⊗ 3 = {0, 2} or 3⊗ 2 = {0, 2}.
The fundamental classes are [0] = {0, 2}, [1] = {1, 3} and we have

(Z4,+,⊗)/γ∗ ∼= (Z2,+, ·).
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Example. Let us denote by Eij the matrix with 1 in the ij-entry and zero in
the rest entries. Then take the following 2×2 upper triangular Hv-matrices on the
above Hv-field (Z4,+, ·) of the case that only 2⊗ 3 = {0, 2} is a hyperproduct:

I = E11+E22, a = E11+E12+E22, b = E11+2E12+E22, c = E11+3E12+E22,

d = E11+3E22, e = E11+E12+3E22, f = E11+2E12+3E22, g = E11+3E12+3E22,

then, we obtain for X = {I, a, b, c, d, e, f, g}, that (X,⊗) is non-COW Hv-group
and the fundamental classes are a = {a, c}, d = {d, f}, e = {e, g} and the fun-
damental group is isomorphic to (Z2×Z2,+). In this Hv-group there is only one
unit and every element has a unique double inverse.

Theorem 2.3. All multiplicative Hv-fields defined on (Z6,+, ·), which have non-
degenerate fundamental field, and satisfy the above 4 conditions, are the following
isomorphic cases:
We have the only one hyperproduct,

(I) 2⊗ 3 = {0, 3} or 2⊗ 4 = {2, 5} or
3⊗ 4 = {0, 3} or 3⊗ 5 = {0, 3} or 4⊗ 5 = {2, 5}
Fundamental classes: [0] = {0, 3}, [1] = {1, 4}, [2] = {2, 5}, and
(Z6,+, ·)/γ∗ ∼= (Z3,+, ·).

(II) 2⊗ 3 = {0, 2} or 2⊗ 3 = {0, 4} or 2⊗ 4 = {0, 2} or 2⊗ 4 = {2, 4} or
2⊗ 5 = {0, 4} or 2⊗ 5 = {2, 4} or 3⊗ 4 = {0, 2} or 3⊗ 4 = {0, 4} or
3⊗ 5 = {3, 5} or 4⊗ 5 = {0, 2} or 4⊗ 5 = {2, 4}
Fundamental classes: [0] = {0, 2, 4}, [1] = {1, 3, 5}, and
(Z6,+,⊗)/γ∗ ∼= (Z2,+, ·).

Theorem 2.4. All multiplicative Hv-fields defined on (Z9,+, ·), which have non-
degenerate fundamental field, and satisfy the above 4 conditions, are the following
isomorphic cases:
We have the only one hyperproduct,
2⊗ 3 = {0, 6} or {3, 6}, 2⊗ 4 = {2, 8} or {5, 8}, 2⊗ 6 = {0, 3} or {3, 6},
2⊗ 7 = {2, 5} or {5, 8}, 2⊗ 8 = {1, 7} or {4, 7}, 3⊗ 4 = {0, 3} or {3, 6},
3⊗ 5 = {0, 6} or {3, 6}, 3⊗ 6 = {0, 3} or {0, 6}, 3⊗ 7 = {0, 3} or {3, 6},
3⊗ 8 = {0, 6} or {3, 6}, 4⊗ 5 = {2, 5} or {2, 8}, 4⊗ 6 = {0, 6} or {3, 6},
4⊗ 8 = {2, 5} or {5, 8}, 5⊗ 6 = {0, 3} or {3, 6}, 5⊗ 7 = {2, 8} or {5, 8},
5⊗ 8 = {1, 4} or {4, 7}, 6⊗ 7 = {0, 6} or {3, 6}, 6⊗ 8 = {0, 3} or {3, 6},
7⊗ 8 = {2, 5} or {2, 8},
Fundamental classes: [0] = {0, 3, 6}, [1] = {1, 4, 7}, [2] = {2, 5, 8}, and
(Z9,+,⊗)/γ∗ ∼= (Z3,+, ·).
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Theorem 2.5. All Hv-fields defined on (Z10,+, ·), which have non-degenerate
fundamental field, and satisfy the above 4 conditions, are the following isomorphic
cases:

(I) We have the only one hyperproduct,
2⊗4 = {3, 8}, 2⊗5 = {2, 5}, 2⊗6 = {2, 7}, 2⊗7 = {4, 9}, 2⊗9 = {3, 8},
3⊗4 = {2, 7}, 3⊗5 = {0, 5}, 3⊗6 = {3, 8}, 3⊗8 = {4, 9}, 3⊗9 = {2, 7},
4⊗5 = {0, 5}, 4⊗6 = {4, 9}, 4⊗7 = {3, 8}, 4⊗8 = {2, 7}, 5⊗6 = {0, 5},
5⊗7 = {0, 5}, 5⊗8 = {0, 5}, 5⊗9 = {0, 5}, 6⊗7 = {2, 7}, 6⊗8 = {3, 8},
6⊗ 9 = {4, 9}, 7⊗ 9 = {3, 8}, 8⊗ 9 = {2, 7}.
Fundamental classes: [0] = {0, 5}, [1] = {1, 6}, [2] = {2, 7}, [3] = {3, 8},
[4] = {4, 9} and (Z10,+,⊗)/γ∗ ∼= (Z5,+, ·).

(II) The cases where we have two classes
[0] = {0, 2, 4, 6, 8} and [1] = {1, 3, 5, 7, 9}, thus we have fundamental field
(Z10,+,⊗)/γ∗ ∼= (Z2,+, ·), can be described as follows:
Taking in the multiplicative table only the results above the diagonal, we
enlarge each of the products by putting one element of the same class of the
results. We do not enlarge setting the element 1, and we cannot enlarge only
the product 3⊗ 7 = 1. The number of those Hv-fields is 103.

Example 2.1. In order to see how hard is to realize the reproductivity of classes
and the unit class and inverse class, we consider the above Hv-field (Z10,+,⊗)
where we have 2⊗ 4 = {3, 8}. Then the Multiplicative Table of the hyperproduct
is the following:

⊗ 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 3,8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

On this table it is easy to see that the reproductivity is not valid but it is very hard
to see that the reproductivity of classes is valid. We can see the reproductivity of
classes easier if we reformulate the Multiplicative Table according to the funda-
mental classes, [0] = {0, 5}, [1] = {1, 6}, [2] = {2, 7}, [3] = {3, 8}, [4] = {4, 9}.
Then we obtain:
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⊗ 0 5 1 6 2 7 3 8 4 9
0 0 0 0 0 0 0 0 0 0 0
5 0 5 5 0 0 5 5 0 0 5
1 0 5 1 6 2 7 3 8 4 9
6 0 0 6 6 2 2 8 8 4 4
2 0 0 2 2 4 4 6 6 3,8 8
7 0 5 7 2 4 9 1 6 8 3
3 0 5 3 8 6 1 9 4 2 7
8 0 0 8 8 6 6 4 4 2 2
4 0 0 4 4 8 8 2 2 6 6
9 0 5 9 4 8 3 7 2 6 1

From this it is easy to see the unit class and the inverse class of each class.

3 The h/v-representations and applications
Hv-structures are used in Representation Theory of Hv-groups which can be

achieved either by generalized permutations or by Hv-matrices [31], [32], [38],
[39], [44], [46], [57], [58]. The representations by generalized permutations can
be faced by translations [37]. Moreover in hyperstructure theory we can define
hyperproduct on non-square ordinary matrices by using the so called helix hopes
where we use all entries of them [65], [28], [29] and [13], [14], [66], [67]. Thus,
we face the representations of the hyperstructures by non-square matrices as well.

Hv-matrix (or h/v-matrix) is a matrix with entries of an Hv-ring or Hv-field
(or h/v-ring or h/v-field). The hyperproduct of two Hv-matrices (aij) and = (bij),
of type m × n and n × r respectively, is defined in the usual manner and it is
a set of m × r Hv-matrices. The sum of products of elements of the Hv-ring is
considered to be the n-ary circle hope on the hyperaddition. The hyperproduct of
Hv-matrices is not necessarily WASS.

The problem of the Hv-matrix (or h/v-group) representations is the following:

Definition 3.1. Let (H, ·) be anHv-group (or h/v-group). Find anHv-ring (or h/v-
ring) (R,+, ·), a set MR={(aij)|aij∈R} and a map T : H → MR : h 7→ T (h)
such that

T (h1h2) ∩ T (h1)T (h2) 6= ∅,∀h1, h2 ∈ H.

T is an Hv-matrix (or h/v matrix) representation.
If T (h1h2) ⊂ T (h1)T (h2),∀h1, h2 ∈ H, then T is an inclusion representation.
If T (h1h2) = T (h1)T (h2),∀h1, h2 ∈ H, then T is a good representation and an
induced representation T* of the hypergroup algebra is obtained. If T is one to
one and the good condition is valid then it is called faithful representation.
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The main theorem of the theory of representations is the following [31], [32],
[38]:

Theorem 3.1. A necessary condition in order to have an inclusion representation
T of an h/v-group (H, ·) by n × n, h/v-matrices over the h/v-ring (R,+, ·) is the
following:
For all classes β*(x), x ∈ H there must exist elements aij ∈ H, i, j ∈ {1, ..., n}
such that

T (β*(a)) ⊂ {A = (a′ij)|a′ij ∈ γ*(aij), i, j ∈ {1, ..., n}}

Thus, inclusion representation T : H → MR : a 7→ T (a) = (aij) induces an
homomorphic T* of H/β* over R/γ* by setting
T*(β*(a)) = [γ*(aij)],∀β*(a) ∈ H/β*, where γ*(aij)R/γ* is the ij entry of
T*(β*(a)). T* is called fundamental induced representation of T .

Let T a representation of an h/v-group H by h/v-matrices and trφ(T (x)) =
γ∗(Txii) be the fundamental trace, then is called fundamental character, the map-
ping

XT : H → R/γ* : x 7→ XT (x) = trφ(T (x)) = trT ∗(x)

In representations of Hv-groups there are two difficulties: First to find an Hv-ring
or an Hv-field and second, an appropriate set of Hv-matrices. Notice that the
more interesting cases are for the small Hv-fields, where the results have one or
few elements.

Example 3.1. In the case of the Hv-field (Z6,+,⊗) where the only one hyper-
product is 2⊗ 4 = {2, 5} we consider the 2× 2 h/v-matrices of type

i = E11 + iE12 + 4E22, where i = 0, 1, 2, 3, 4, 5,

then an h/v-group is obtained and the multiplicative table of the hyperproduct of
those Hv-matrices is given by

⊗ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 4 5 0 1 2 3
2 2 0,3 1,4 2,5 0,3 1,4
3 0 1 2 3 4 5
4 4 5 0 1 2 3
5 2 3 4 5 0 1

where the fundamental classes are (0) = {0, 3}, (1) = {1, 4}, (2) = {2, 5} and
the fundamental group is isomorphic to (Z3,+). Remark that (Z6,⊗) is an h/v-
group which is cyclic where the elements 2 and 4 are generators of period 4.
Notice that the hope (⊗) is a hyperproduct of h/v-matrices although (0) stands
for the unit matrix, this is so because the symbolism follows the entry 12.
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Example 3.2. Let us denote by Eij the matrix with 1 in the ij-entry and zero in the
rest entries. Then take the following 2 × 2 upper triangular h/v-matrices on the
above h/v-field (Z4,+,⊗) of the case that only 2⊗ 3 = {0, 2} is a hyperproduct:

I = E11+E22, a = E11+E12+E22, b = E11+2E12+E22, c = E11+3E12+E22,

d = E11+3E22, e = E11+E12+3E22, f = E11+2E12+3E22, g = E11+3E12+3E22,

then, we obtain the following multiplicative table for the set X={I,a,b,c,d,e,f,g}

⊗ I a b c d e f g
I I a b c d e f g
a a b c I g d e f
b b c I a d,f e,g d,f e,g
c c I a b e f g d
d d e f g I a b c
e e f g d c I a b
f f g d e I,b a,c I,b a,c
g g d e f a b c I

The (X,⊗) is non-COW, Hv-group and we can see that the fundamental classes
are the a = {a, c}, d = {d, f}, e = {e, g} and the fundamental group is isomor-
phic to (Z2 × Z2,+). In this Hv-group there is only one unit and every element
has a unique double inverse. Only f has one more right inverse element, the d,
since f ⊗ d = {I, b}.

Remark that if we need h/v-fields where the elements have at most one inverse
element, then we must exclude the case of 2 ⊗ 5 = {1, 4} from (I), and the case
3⊗ 5 = {1, 3} from (II).

Last decadesHv-structures have applications in other branches of mathematics
and in other sciences. These applications range from biomathematics -conchology,
inheritance- and hadronic physics or on leptons to mention but a few. The hyper-
structure theory is related to fuzzy theory; consequently, hyperstructures can be
widely applicable in industry and production, too [2], [5], [11], [12], [23], [25],
[43], [47], [59].

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic Me-
chanics problems. Santilli proposed a ’lifting’of the n-dimensional trivial unit ma-
trix of a normal theory into a nowhere singular, symmetric, real-valued, positive-
defined, n-dimensional new matrix. The original theory is reconstructed such as
to admit the new matrix as left and right unit. The isofields needed, correspond
into the hyperstructures were introduced by Santilli & Vougiouklis in 1996 [25]
and they are called e-hyperfields, [12], [24], [52], [56], [61].
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Definition 3.2. A hyperstructure (H, ·) which contains a unique scalar unit e, is
called e-hyperstructure. In an e-hyperstructure, we assume that for every element
x, there exists an inverse x−1, i.e. e ∈ x · x−1 ∩ x−1 · x.

Definition 3.3. A hyperstructure (F,+, ·), where (+) is an operation and (·) is a
hope, is called e-hyperfield if the following axioms are valid: (F,+) is an abelian
group with the additive unit 0, (·) is WASS, (·) is weak distributive with respect to
(+), 0 is absorbing element: 0·x = x·0 = 0,∀x ∈ F , there exists a multiplicative
scalar unit 1, i.e. 1 · x = x · 1 = x, ∀x ∈ F , and ∀x ∈ F there exists a unique
inverse x−1, such that 1 ∈ x · x−1 ∩ x−1 · x.

The elements of an e-hyperfield are called e-hypernumbers. In the case that
the relation: 1 = x · x−1 = x−1 · x, is valid, then we say that we have a strong
e-hyperfield.

Definition 3.4. Main e-Construction. Given a group (G, ·), where e is the unit,
then we define in G, a large number of hopes (⊗) as follows:

x⊗ y = {xy, g1, g2, ...}, ∀x, y ∈ G− {e}, and g1, g2, ... ∈ G− {e}

g1, g2,... are not necessarily the same for each pair (x,y). (G,⊗) is an Hv-group,
in fact it is an Hb-group which contains the (G, ·). (G,⊗) is an e-hypergroup.
Moreover, if for each x,y such that xy = e, then (G,⊗) becomes a strong e-
hypergroup

The main e-construction gives an extremely large number of e-hopes.
Example. Consider the quaternions Q = {1,−1, i,−i, j,−j, k,−k}, with i2 =
j2 = −1, ij = −ji = k, and denote i = {i,−i}, j = {j,−j}, k = {k,−k}.
We define a lot of hopes (∗) by enlarging few products. For example, (−1) ∗ k =
k, k ∗ i = j and i∗j = k. Then the hyperstructure (Q, ∗) is a strong e-hypergroup.

The Lie-Santilli admissibility on non-quare matrices [12], [14], [24], [26],
[57], [61]:

Construction 3.1. Let L = (Mm×n,+) be an Hv-vector space of m × n hyper-
matrices over the Hv-field (F,+, ·), φ : F → F/γ∗, the canonical map and ωF =
{x ∈ F : φ(x) = 0}, where 0 is the zero of the fundamental field F/γ*. Similarly,
let ωL be the core of the canonical map φ′ : L → L/ε∗ and denote by the same
symbol 0 the zero of L/ε*. Take any two subsets R, S ⊆ L then a Santilli’s Lie-
admissible hyperalgebra is obtained by taking the Lie bracket, which is a hope:

[, ]RS : L× L→ P (L) : [x, y]RS = xRty − yStx.

Notice that [x, y]RS = xRty − yStx = {xrty − ystx|r ∈ R and s ∈ S}
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An application, which combines the ∂-structures and fuzzy theory, is to re-
place in questionnaires the scale of Likert by the bar of Vougiouklis & Vougiouklis
[19]:

Definition 3.5. In every question substitute the Likert scale with ’the bar’ whose
poles are defined with ’0’ on the left end, and ’1’ on the right end:

0 1

The subjects/participants are asked instead of deciding and checking a specific
grade on the scale, to cut the bar at any point s/he feels expresses her/his answer
to the specific question

The use of the Vougiouklis & Vougiouklis bar instead of a Likert scale has
several advantages during both the filling-in and the research processing. The
final suggested length of the bar, according to the Golden Ratio, is 6.2cm, [17],
[18], [50], [51], [62], [63], [64].
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