
Ratio Mathematica
Vol. 32, 2017, pp. 63-75

ISSN: 1592-7415
eISSN: 2282-8214

Teaching Least Squares in Matrix Notation

Guglielmo Monaco1, Aniello Fedullo2∗

1Department of Chemistry and Biology ”A. Zambelli”, University of Salerno, Italy

gmonaco@unisa.it
2Department of Physics ”E. R. Caianiello”, University of Salerno, Italy

afedullo@unisa.it

Received on: 30-05-2017. Accepted on: 27-06-2017. Published on: 30-06-2017

doi:10.23755/rm.v32i0.335

c©G. Monaco and A. Fedullo

Abstract

Material for teaching least squares at the undergraduate level in matrix
notation is reported. The weighted least squares equations are first derived
in matrix form; equivalence with the standard results obtained by standard
algebra are then given for the weighted average and the simplest linear re-
gression. Indicators of goodness of fit are introduced and interpreted. Even-
tually a basic equation for resampling is derived.
Keywords: coefficient of determination, weighted sample mean, resam-
pling, undergraduate education.
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1 Introduction

Statistics is a never missing topic in first degree courses of scientific programs.
Very soon, often at the second year undergraduate, the basic knowledge of random
variables and distributions, is complemented by the simple linear regression, as a
necessary tool for the interpretation of experimental data gathered in the labo-
ratories. Indeed, the critical practice of linear regressions often forms students’
basic awareness of data analysis. The advent of powerful and handy softwares
on the one hand has reduced the effort required to the students for accomplish-
ing the needed calculations, on the other hand has given them the possibility to
easily perform more advanced statistical analyses [1, 2], which they cannot really
understand on the grounds of the course. One of simplest of such more advanced
analyses is the consideration of more regressors, the starting point of multivariate
data analysis [3]. Although a specific course at the last undergraduate or first grad-
uate year can be much profitable, we experienced that, provided the students have
a basic knowledge in linear algebra, the generalized least squares can be thought
at the second year undergraduate with reasonable appreciation from the class.
Reference textbooks on the matter, seemingly more diffused in the community
of econometrics [5] than in that of experimental sciences [6], are not missing.
However, we needed to compact some fundamental concepts and equations, and
still convince the students that the more general matrix form of the least squares
allows to easily retrieve the results obtainable with standard algebra. Thus, we
prepared the following material, and we presented it effectively in a 12 hours
module together with numerical exercises. Although our lessons obviously have a
significant overlap with reference textbooks, the revised simple linear regression
and the introduction of the (adjusted) weighted coefficient of determination are
not easily retrieved from any of the textbooks known to us.

2 Matrix Form of the Weighted Least Squares

We consider n measures {y1, y2, ..., yn} and for each of them, say the i-th
one, the regressors {xi1, xi2, ..., xip}, here assumed constant, which are generally
coming from different associated measures. We will assume that for each measure
the first regressor equals one, xi1 = 1, in order to take into account the so called
intercept. The linear regression model connects the above quantities by

yi =

p∑
j=1

xijβj + εi i = 1, 2, ..., n (1)
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where β1, β2, ..., βp are the parameters to be estimated and ε1, ε2, ..., εn are ran-
dom errors, assumed independent and possibly normally distributed, with mean 0
and standard deviations σ1, σ2, ..., σn. Ordinary least squares (OLS) and weighted
least squares (WLS), also called homoskedastic and heteroskedastic regressions,
are the names used to distinguish the special case of equal values for all standard
deviations from the case of different values. The equations for WLS of course
also apply to the special OLS case.

Dividing eq. 1 by σi, i.e. given zi := yi
σi

, qij :=
xij
σi

, ςi := εi
σi

, and using the
matrix notation, the model is written as

z = Qβ + ς, (2)

or, equivalently,

W
1
2y = W

1
2Xβ +W

1
2 ε,

where W is a diagonal matrix whose elements Wii := wi = σ−2
i are known as

statistical weights, z and β are column matrices of n and p elements, respectively,
Q is a matrix of dimension n× p. It should be noticed that Qβ is the expectation
value of z, i.e. Qβ =< z >.

Under these hypotheses the least squares method gives an estimate of the
model parameters by the minimization with respect to β of the functional

SS := ςT ς = (z −Qβ)T (z −Qβ) (3)

= (z −Qβ)T (z −Qβ) = zT z − 2βTQT z + βTQTQβ, (4)

where it has been considered that βTQT z = zTQβ.
The estimates of the parameters by the least squares method are the solutions

of the equations ∂SS
∂βi

= 0, for i = 1, 2, ..., p, one for each model parameter. The
computation of the derivative with respect to the vector of the parameters gives:

−QT z +QTQβ = 0, (5)

whose solution

β̂ = V QT z (6)

is, by definition, the least squares estimator of β, where V := C−1, and
C := QTQ, which we will assume always invertible.
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We note that β̂ is an unbiased estimator of β, indeed form eqs. 2 and 6 we
have

< β̂ >= V QT < z >= V QTQβ = V Cβ = β. (7)

An unbiased behavior also characterizes the weighted sample mean. Indeed,
eq. 5 for β = β̂ gives QT z = QT ẑ which, rewritten in the original variables, is
XTWy = XTWŷ. From this and from the initial hypothesis xi1 = 1, for any i,
one gets

∑
iwiyi =

∑
iwiŷi, which divided by

∑
iwi shows that the weighted

sample mean of the fitted values equals the weighted sample mean of the mea-
sures:

ȳw = ŷw. (8)

Given δ:= β̂ − β from eqs. 6 and 7 one gets

δ = V QT ς, (9)

which allows to easily compute the covariance matrix of the parameters, showing
that it coincides with V

< δδT >= V QT < ςςT > QV = V QT IQV = V,

where I denotes the identity matrix.
The standard deviations of the estimators of the parameters are given by the

square roots of the diagonal elements of V .

Using the fitted values, one can write

z = ẑ + (z − ẑ) = Qβ̂ + e,

where e is known as the vector of residuals, whose analysis is object of much
concern in literature.

The fitted values are often written as

ẑ = Qβ̂ = QV QT z =: Hz, (10)

where we have introduced the symmetric matrix H , which is known as hat matrix
as it ’puts the hat on z’. This matrix is readily verified to be idempotent, H2 =
QV QTQV QT = H , a feature which readily allows to demonstrate the useful
property of orthogonality of residuals and fitted values:

(z − ẑ)T ẑ = zT (I −H)Hz = 0.

Given
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SSE := minβSS = eT e,

the expansion 4, with ς in place of z and δ in place of β, can be rewritten as:

SSE = (ς −Qδ)T (ς −Qδ) = ςT ς−2δTQT ς + δTCδ = ςT ς − δTCδ,

where we have considered that QT ς = Cδ thanks to eq. 9.
Given SSR := δTCδ, which as SS and SSE is non-negative, the preceding

equation becomes

SSE = SS − SSR

whose interpretation is that the error in the estimation of the parameters, yielding
a nonzero SSR, reduces the sum of squares SS which could have been computed
with the expectation value 〈z〉 = Qβ.

The average of SSE can be easily computed considering that δTCδ = Tr
[
δδTC

]
,

and then

〈SSE〉 =
〈
ςT ς
〉
− Tr

[〈
δδT
〉
C
]

= n− Tr (V C) = n− p,

known as the number of degrees of freedom, denoted by ν.
Notation. In the following sxx,w, Sxx,w e sxy,w indicate respectively the sample

variance, sum of squares and weighted covariance, defined from the weighted
sample mean ȳw :=

∑
i wiyi∑
i wi

in analogous manner to the corresponding unweighted

means. We recall that their expressions are sxx,w = x2
w− x̄2

w, Sxx,w = sxx,w
∑

iwi
e sxy,w = xyw − x̄wȳw, where xy := (x1y1, ..., xnyn).

3 Indicators for the Goodness of Fit
Besides reporting the best-fit parameters and the resulting fitted values, it is

customary to give compact indicators of the goodness of fit.
A method which is widely used in the analysis of experimental data consists

in the chi-squared test: the hypothesis that the model is correct is not rejected,
at the appropriate level of significance, if SSE assumes values close to 〈SSE〉,
i.e., for any number of parameters, if χ2

r = SSE
ν

is close to 1. Values of χ2
r larger

or smaller than 1 are then considered as indicators of a poor fit or, respectively,
overfitting.

A different approach considers weighted sample means. Defining the weighted
coefficient of determination R2

w as the square of the weighted sample correlation
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coefficient syŷ,w√
syy,wsŷŷ,w

between data y and fitted values ŷ = Xβ̂ and thus limited
by 0 ≤ R2

w ≤ 1, one has that

1−R2
w =

SSE

Syy,w
=

see
syy,w

, (11)

showing that R2
w = 1 iff SSE = 0, i.e. iff all residuals are zero. Therefore the

greater the value of R2
w the better the agreement. Eq. 11 can be proven thanks

to the orthogonality relation discussed above. The vector yww
1
2 , where w

1
2 is a

column vector of elements w
1
2
i , is orthogonal to the vector of residuals z − ẑ, by

virtue of eq. 8. Therefore the orthogonality of residuals and fitted values, eq. 2,
still holds if the fitted values are translated by yww

1
2 . The vector relationship

z − yww
1
2 = (ẑ − yww

1
2 ) + (z − ẑ), (12)

graphically sketched in Figure 1, allows to assess that

Syy,w = Sŷŷ,w + SSE, (13)

whose interpretation is that Sŷŷ,w/Syy,w is the fraction of variability of the data
explained by the knowledge of Q, i.e. by the regression, and SSE/Syy,w is the
unexplained one, i.e. that coming from errors.

Still from eq. 12 one gets

Sŷy,w = (ẑ − ŷww
1
2 )T (z − yww

1
2 ) = (ẑ − ŷww

1
2 )T (ẑ − ŷww

1
2 ) = Sŷŷ,w (14)

and then

R2
w =

S2
ŷy,w

Sŷŷ,wSyy,w
=
Sŷŷ,w
Syy,w

. (15)

Insertion of eq. 15 in eq. 13 readily gives eq. 11.
In order to discourage the introduction of models too complicated for the data

examined, it has been introduced the adjusted determination coefficient

R2
a = 1− (1−R2

w)
n− 1

n− p
,

obtained substituting the unbiased variances in the rhs of eq. 11.

It often happens that standard deviations of experimental data are only ap-
proximately known. A common assumption is that the standard deviations σi are
known but for a factor k: σi = kσ̃i, with the σ̃i known a priori. If the adjustment
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w1/2yw

ẑ

ẑ −w1/2yw
z −w1/2yw

z

w1/2yw

z − ẑ

z − ẑ

Figure 1: The residuals z− ẑ are orthogonal to both the estimates ẑ and the vector
yww

1
2 .
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of k leads to a good fitting for the model, χ2
r should be close to ν. Using this

value, one gets

ν =
n∑
i=1

(yi − ŷi)2

k2σ̃2
i

,

and a trial value for k is obtained as

k =

√
1

ν

∑
(yi − ŷi)2

σ̃2
i

.

4 Basic Applications

4.1 (Weighted) mean
The model y = β1 + ε has an n × 1 matrix of relative regressors, whose i-th

element is
qi1 = w

1
2
i

Application of eq. 7 soon gives as the best fit parameter the weighted mean

β̂ = V Qz =

∑
iwiyi∑
iwi

= ȳw

and its variance is the sum of the weights: σ2
β = V11 =

∑
iwi.

4.2 WLS for a straight line
The standard linear regression considers the model y = a + bx. In the above

notation a = β1 and b = β2 and the regressor matrix is

X =

[
1 1 ... 1
x1 x2 ... xn

]T
The matrix of relative regressors will be then

Q =

[ √
w1

√
w2 ...

√
wn√

w1x1
√
w2x2 ...

√
wnxn

]T
,

the vector of relative data
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z =
[ √

w1y1
√
w2y2 ...

√
wnyn

]T
,

and

C =
∑
i

wi

[
1 x̄w
x̄w x2

w

]
,

whose inverse gives the covariance matrix of the parameters

V =
1

Sxx,w

[
x2
w −x̄w
−x̄w 1

]
.

The standard deviations of the estimators of the parameters will be then[
σâ
σb̂

]
=

[ √
V11√
V22

]
=

1√
Sxx,w

[ √
x2
w

1

]
,

and the estimated parameters will be

[
â

b̂

]
= V QT z =

1

sxx,w

[
x2
w −x̄w
−x̄w 1

] [
yw
xyw

]
=

[
ȳw − sxy,w

sxx,w
x̄w

sxy,w
sxx,w

]
,

which in case of all equal weights (homoskedastic regression) have the simpler
expression

[
ȳ − sxy

sxx
x̄ sxy

sxx

]T
.

4.3 Revised simple linear regression
We now give a simplified approach for the bivariate weighted linear regres-

sion: given 1 := [1 1 ... 1]T , we subtract yw1 from the data and from the fitted
data and, considering that yw = ŷw = a+ bx̄w, we obtain

y − yw1 = b(x− x̄w1) + ε, (16)

which, with z := W
1
2 (y − yw1), q := W

1
2 (x− x̄w1) e ς := W

1
2 ε, can be written

as in eq. 2,
z = bq + ς,

but here there is the single parameter b to be determined, as in the example of the
weighted mean.

This means that matrix C is the scalar Sxx,w readily invertible, and then V =
C−1 = 1

Sxx,w
. On the other hand, as
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qT z = (x− x̄w1)TW (y − yw1) = Sxy,w + yw
∑
i

wi(xi − x̄w) = Sxy,w,

from eq. 6, one gets again b̂ = sxy,w
sxx,w

. Writing now the model as y − bx = a1 + ε,
the example in 4.1 gives for the intercept ȳw − bx̄w, from where, replacing b with
its estimator1, one finally gets â = ȳw − b̂x̄w, as in 4.2.

It is to be considered, however, that this simplification leads to loose informa-
tion on the covariance of the a and b parameters, which should then be recover ex
post (Appendix).

4.4 Resampling and the Best-fit Parameters
A remarkable representation of the p best-fit parameters can be obtained if one

tries to determine them from the
(
n
p

)
p-elements subsets of the original set of n

measures [4]. Let S(s) be a p× n matrix obtained from the n× n identity matrix,
upon selecting the p rows whose indices form subset s, with s = 1, . . .

(
n
p

)
. Let

also M [k|v] be the matrix obtained from matrix M upon replacing its k-th column
with vector v.

For any p-elements subset s, the data needed for the WLS are stored in vector
z(s) = S(s)z and the square matrix Q(s) = S(s)Q; the best-fit parameters are

β̂(s) = Q−1
(s)z(s) = X−1

(s)W
−1/2
(s) W

1/2
(s) y(s) = X−1

(s) y(s), (17)

which shows that, for p measures, WLS and OLS give the same results.
Use of Cramer’s rule on eqs. 5 and 17 gives

β̂k =
detQTQ[k|z]

detQTQ
, (18)

and

β̂(s)k =
detQ

[k|z]
(s)

detQ(s)

=
detX

[k|y]
(s)

detX(s)

, (19)

Use of the Cauchy-Binet theorem to expand the determinants of the equation
18 leads to

β̂k =

∑
s detQ(s) detQ

[k|z]
(s)∑

s detQ(s) detQ(s)

=

∑
swsβ̂(s)k∑

sws
, (20)

which is the equation for a weighted average of the OLS results β̂(s)k with weights

ws = (detQ(s))
2. (21)

1Implicit use is made of the functional invariance of the estimator b̂.
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The above representation of the best-fit parameters is the starting point for robust
modifications of WLS, where the basic idea is to exclude from the mean the more
extreme values of β(s)k [7].

5 Conclusions
The least squares method, a fundamental piece of knowledge for students of

all scientific tracks, is often introduced considering the simple linear regression
with only two parameters to be determined. However, the availability of ever
more large data sets prompts even undergraduate students to a sounder and wider
knowledge of linear regression. Here, we have used the linear algebra formal-
ism to compact the main results of the least squares method, encompassing ordi-
nary and weighted least squares, goodness of fit indicators, and eventually a basic
equation of re-sampling, which could be used to stimulate interested students in
an even broader knowledge of data analysis. The compactness of the equations
reported above allow their introduction at the undergraduate level, provided that
basic linear algebra has been previously introduced.
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Appendix
Moments of â e b̂

Averages.
< b̂ >= <sxy,w>

sxx,w
= (x−x̄w1)TW<y−ȳw1>

sxx,w
= (x−x̄w1)TW<y>

sxx,w
= (x−x̄w1)TW<a1+bx>

sxx,w
=

b (x−x̄w1)TW (x−x̄w1)
sxx,w

= b;

< â >=< ȳw > −x̄w < b̂ >= a+ bx̄w − x̄wb = a
The estimators are then unbiased.

Variances.
We shall use the following auxiliary results:
i) Cov(yi, yj) = δijw

−1
i

ii) V ar(ȳw) = Tr(W )−1

iii) Cov(ȳw, b̂) = 0

Given d := W (x − x̄w1), we have that dT1 =
∑

i di = 0 and then Sxy,w =
dT (y − ȳw1) = dTy; Then V ar(Sxy,w) =

∑
ij didjCov(yi, yj) =

∑
i d

2
iw
−1
i

=
∑

iwi(xi − x̄w)2 = Sxx,w from which V ar(b̂) = V ar(Sxy,w)

S2
xx,w

= 1
Sxx,w

.

V ar(â) = V ar(ȳw)−x̄wCov(ȳw, b̂)+x̄2
wV ar(b̂) = Tr(W )−1+ x̄2w

Sxx,w
= x2w

Sxx,w
.

.
Cov(â, b̂) = Cov(ȳw − x̄wb̂, b̂) = Cov(ȳw, b̂)− x̄wV ar(b̂) = − x̄w

Sxx,w
.

Proof of the auxiliary results
i) Cov(yi, yj) = Cov(a + bxi + εi, a + bxj + εj) = Cov(εi, εj) = δijσ

2
i =

δijw
−1
i .

ii) V ar(ȳw) = Tr(W )−2
∑

ij wiwjCov(yi, yj) = Tr(W )−2
∑

iwi = Tr(W )−1

iii) Tr(W )Cov(ȳw, Sxy,w) =
∑

ij widjCov(yi, yj) =
∑

i di = 0 and then
Cov(ȳw, b̂) = 0.

2
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