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Abstract

It is generally seen that the behavior of the bursts depend upon the
nature of the channel. In a very busy communication channel bursts
repeat themselves. In this communication we are exploring the idea
of weight consideration of 2-repeated bursts of length b(fixed). Some
results on weights of 2-repeated bursts of length b(fixed) are derived
and some combinatorial results with weight constraint for 2-repeated
bursts of length b(fixed) are also given.
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1 Introduction

In most of the communication channels disturbances due to lightning,
break downs and loose connections affect successive digits for some length
of the word, causing errors in bursts. Abramson (1959) initiated the idea of
such errors and developed a class of error correcting codes which correct all
double adjacent errors. Later, a systematic study in this direction was made
by Fire (1959), Regier (1960) and Elspas (1960). These studies were based on
the assumption that if errors occur in the form of bursts then all digits within
a burst may not be corrupted. Easy implementation and efficient functioning
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are the added advantages with burst error correcting codes. Stone (1961)
and Bridwell and Wolf (1970) considered multiple bursts. It was noted by
Chien and Tang (1965) hat in several channels errors occur in the form of a
burst but not in the end digit of the burst. Channels due to Alexander, Gryb
and Nast (1960) belong to this category. In the view of this Chien and Tang
modified the definition of a burst which in literature is known as CT burst.
Although, this definition was further modified by Dass (1980).

In general communication the messages are long and the strings of bursts
may be short repeating in a vector itself. The notion of repeated burst was
introduced by Berardi, Dass and Verma (2009). They defined 2-repeated
bursts and obtained results for correction and detection of such type of errors.
Dass, Garg and Zannetti (2008) introduced a different type of repeated burst,
termed as repeated burst of length b(fixed). Later on Dass and Garg (2009)
defined 2-repeated burst of length b(fixed) and gave codes for correcting and
detecting such type of errors. Sharma and Dass (1976) were first to study
bursts in terms of weight. The area of 2-repeated burst of length b(fixed)
with weight w was explored by Dass and Garg (2011).

In this paper, we obtain results regarding the weight of all vectors having
2-repeated bursts of length b(fixed). The paper has been organized as follows:
In section 2 basic definitions are stated with some examples. In section 3 some
results on weights of 2-repeated bursts of length b(fixed) are derived.

In this correspondence, we shall consider the space of all n-tuples whose
nonzero components are taken from the field of q code characters with
elements 0, 1, 2, . . . , q − 1. The weight of a vector is considered in Hamming
sense as the number of non-zero entries.

2 Preliminaries

We give definition of a burst, defined by Fire (1959):

Definition 2.1. A burst of length b is a vector all of whose nonzero
components are confined to some b consecutive components, the first and
the last of which is nonzero.

A vector may have not just one cluster of errors, but more than
one. Lumping them into one burst, amounts to neglecting the nature of
communication and unnecessarily considering longer burst which may have
a part, which is not of cluster in-between. For example in a very busy
communication channel, sometimes, bursts repeat themselves. Berardi, Dass
and Verma (2009) introduced the idea of repeated bursts. In particular they
defined ‘2-repeated burst ’.
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A 2-repeated burst of length b may be defined as follows:

Definition 2.2. A 2-repeated burst of length b is a vector of length n whose
only nonzero components are confined to two distinct sets of b consecutive
components, the first and the last component of each set being nonzero.

Example 2.1. (0001204100300) is a 2-repeated burst of length 4 over GF(5).

Chien and Tang (1965) defined a burst of length b which is called as CT
burst of length b and may be defined as follows:

Definition 2.3. A CT burst of length b is a vector whose only non-zero
components are confined to some b consecutive positions, the first of which is
non-zero.

This definition was further modified by Dass (1980) as follows:

Definition 2.4. A burst of length b(fixed) is an n-tuple whose only non-zero
components are confined to b consecutive positions, the first of which is non-
zero and the number of its starting positions in an n-tuple is among the first
n− b + 1 components.

Following is the definition of a 2-repeated burst of length b(fixed) as given
by Dass and Garg (2009):

Definition 2.5. A 2-repeated burst of length b(fixed) is an n-tuple whose only
non-zero components are confined to two distinct sets of b consecutive digits,
the first component of each set is non-zero and the number of its starting
positions is amongst the first n− 2b + 1 components.

For example, (10000010000) is a 2-repeated burst of length up to 5(fixed)
whereas (0000100100) is a 2-repeated burst of length at most 3 (fixed).

Dass and Garg (2011) defined a 2-repeated burst of length b(fixed) with
weight w as follows:

Definition 2.6. A 2-repeated burst of length b(fixed) with weight w or less
is an n-tuple whose only non-zero components are confined to two distinct
sets of b consecutive components the first component of each set is non-zero
where each set can have at most w non-zero components (w ≤ b), and the
number of its starting positions is among the first n− 2b + 1 components.

For example, (001111000000100000) is a 2-repeated burst of length up to
6(fixed) with weight 4 or less.

Weight structure being of quite some interest, in the next section, we
present some results on weights of 2-repeated bursts of length b(fixed).
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3 Results on Weights of 2-repeated bursts

Let W2b denotes the total weight of all vectors having 2-repeated bursts
of length b in the space of all n-tuples. Before obtaining W2b in terms of n
and b we give two results in the lemmas below, on counting the 2-repeated
bursts.

Lemma 3.1. The total number of 2-repeated bursts length b > 1(fixed), in
the space of all n-tuple over GF(q), is

(n− 2b + 1)(n− 2b + 2)

2
(q − 1)2q2(b−1) . (1)

Proof. Total number of 2-repeated bursts of length b(fixed) in the space of all
n-tuples over GF (q) is, refer Theorem 1 of Dass, Garg and Zannetti (2008),

1+

(
b

1

)
(q−1)qb−1 +

n−2b+1∑
i=1

(q−1)qb−1

[
1 +

(
n−2b−i+2

1

)
(q−1)qb−1

]
. (2)

Eqn. (2) includes the cases when all vectors are zero and when in the last
2b− 1 position there remains only a single burst of length b(fixed).

As we are counting the number of 2-repeated bursts of length b(fixed)
only, eqn. (2) reduces to the following form

n−2b+1∑
i=1

(q − 1)qb−1

[
1 +

(
n− 2b− i + 2

1

)
(q − 1)qb−1

]
or

(n− 2b + 1)(n− 2b + 2)

2
(q − 1)2q2(b−1).

This proves the result.

Next we impose weight restriction on 2-repeated bursts and count their
numbers. The results are given in the lemma below.

Lemma 3.2. The total number of vectors having 2-repeated bursts of length
b(fixed) with weight w (1 ≤ w ≤ b) in the space of all n-tuples is:

(n− 2b + 1)(n− 2b + 2)

2
[Lb−1

w,q ]2, (3)

where [
w∑

s=1

(
b− 1

s− 1

)
(q − 1)s

]
= Lb−1

w,q (4)

is the incomplete binomial expansion of [1 + (q− 1)]b−1 up to the (q− 1)w in
the ascending powers of (q − 1), w ≤ b.
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Proof. Let us consider a vector having 2-repeated bursts of length b(fixed)
with weight w. Its only nonzero components are confined to two distinct sets
of consecutive components, the first component of each set is nonzero, where
each set can have at most w non-zero components (w ≤ b), and the number
of its starting positions is among the first n− 2b+ 1 components. Now, each
of these, the first component of each set may be any of the q − 1 nonzero
field elements. As we are considering only 2-repeated bursts of length b(fixed)
with weight w, in a vector of length n, this will have non-zero positions as
follows:

(i) First position of first burst.

(ii) First position of second burst.

(iii) Some r − 1 amongst the b − 1 in-between positions of first burst
(1 ≤ r ≤ w) and then some s − 1 in the in-between b − 1 positions
of the second burst (1 ≤ s ≤ w).

(iv) Other positions have the value 0.

Thus analyzing in combinatorial ways, in the earlier counting factor
[(q − 1)qb−1]2 replacing one factor qb−1 by

(
b−1
r−1

)
(q − 1)r−1 and the other

by
(
b−1
s−1

)
(q − 1)s−1 each 2-repeated burst will give its number by:

(q − 1)(q − 1)
w∑

r=1

(
b− 1

r − 1

)
(q − 1)r−1

w∑
s=1

(
b− 1

s− 1

)
(q − 1)s−1

=
w∑

r=1

(
b− 1

r − 1

)
(q − 1)r

[
w∑

s=1

(
b− 1

s− 1

)
(q − 1)s

]
.

Then from eqn. (4) the number of each 2-repeated burst of length b(fixed)
with weight w is given by,

[Lb−1
w,q ]2.

Therefore, the total number of 2-repeated bursts of length b(fixed) and weight

w, with sum of their starting position
(n− 2b + 1)(n− 2b + 2)

2
is

(n− 2b + 1)(n− 2b + 2)

2
[Lb−1

w,q ]2 .

This proves the lemma.

Now we return to finding an expression for W2b, the total weight of all
vectors having 2-repeated bursts of length b(fixed) in the space of all n-tuples.
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Theorem 3.1. For n ≥ b

W2 =
n(n− 1)

2
(q − 1)2 (5)

and

W2b =
(n− 2b + 1)(n− 2b + 2)

2
w2[Lb−1

w,q ]2 . (6)

Proof. The value of W2 follows simply by considering all vectors having any
two non-zero entries out of n. Their number clearly is given by(

n

2

)
(q − 1)2 =

n(n− 1)

2
(q − 1)2 .

This gives the value of W2 as stated.
Next, for b > 1, using the Lemma 3.2, the total weight of all vectors

having 2-repeated bursts of length b(fixed) each with weight of each burst at
most w, is given by

w∑
i=1

w∑
j=1

(n− 2b + 1)(n− 2b + 2)

2
i[Lb−1

w,q ] · j[Lb−1
w,q ]

=
(n− 2b + 1)(n− 2b + 2)

2
w2[Lb−1

w,q ]2 .

This completes the proof of the theorem.

Further, in coding theory, an important criterion is to look for minimum
weight in a group of vectors. Our following theorem is a result in that
direction.

Theorem 3.2. The minimum weight of a vector having 2-repeated burst of
length b > 1(fixed) in the space of all n-tuples is at most[

wLb−1
w,q

(q − 1)qb−1

]2
. (7)

Proof. From Lemma 3.1, it is clear that the number of 2-repeated bursts of
length b(fixed) in the space of all n-tuples with symbols taken from the field
of q elements is

[q(b−1)(q − 1)]2
(n− 2b + 1)(n− 2b + 2)

2
.
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Also from Theorem 3.1, their total weight is

(n− 2b + 1)(n− 2b + 2)

2
w2[Lb−1

w,q ]2 .

Since the minimum weight element can at most be equal to the average
weight, an upper bound on minimum weight of a 2-repeated burst of length
b(fixed) is given by

(n− 2b + 1)(n− 2b + 2)

2
w2[Lb−1

w,q ]2 · 2

(n− 2b + 1)(n− 2b + 2)(q − 1)2q2(b−1)

=

[
wLb−1

w,q

(q − 1) q(b−1)

]2
.

This proves the result.

4 Concluding remarks

Here we have considered vectors having two bursts of equal lengths
b(fixed), with or without weight constraints. Studies generalizing these
considerations have also attracted our attention that will be reported
separately. With these bursts as error patterns in block-wise manner will
be a part of later study as codes capable of correcting such type of error
patterns will improve the communication rate.

References

[1] N. M. Abramson, A class of systematic codes for non-independent errors,
IRE Trans. on Information Theory IT-5 (4) (1959), 150-157.

[2] A. A. Alexander, R. M. Gryb and D. W. Nast, Capabilities of the
telephone network for data transmission, Bell System Tech. J. 39 (3)
(1960), 431-476.

[3] L. Berardi, B. K. Dass and R. Verma, On 2-repeated burst error detecting
codes, Journal of Statistical Theory and Practice 3 (2009), 381-391.

[4] J. D. Bridwell and J. K. Wolf, Burst distance and multiple-burst
correction, Bell System Tech. J. 49 (1970), 889-909.

[5] R. T. Chien and D. T. Tang, On definitions of a burst, IBM Journal of
Research and Development 9 (4) (1965), 229-293.

67



B. Rohtagi and B. D. Sharma

[6] B. K. Dass, On a burst-error correcting code, Journal of Information and
Optimization Sciences 1 (3) (1980), 291-295.

[7] B. K. Dass, P. Garg and M. Zanneti, On repeated burst error detecting
and correcting codes, in special volume of East-West J. of Mathematics:
Contributed in General Algebra II (eds. Nguyen Van Sanh and Nittiya
Pabhapote) (2008), 79-98.

[8] B. K. Dass and P. Garg, On repeated low-density burst error detecting
linear codes, Mathematical Communications 16 (2011), 37-47.

[9] B. K. Dass and P. Garg, On 2-repeatted burst codes, Ratio Mathematica
19 (2009), 11-24.

[10] B. Elspas, A note on p-nary adjacent error correcting codes, IRE Trans.
IT-6 (1960), 13-15.

[11] P. Fire, A class of multiple-error-correcting binary codes for non-
independent errors, Sylvania Report RSL-E-2, Sylvania Reconnaissance
System Laboratory, Mountain View, Calif., (1959).

[12] W. W. Peterson and E. J. Weldon, Jr., Error-cCorrecting Codes, 2nd
edition, The MIT Press, Mass. (1972).

[13] S. H. Reiger, Codes for the correction of clustered errors, IRE Trans.
Inform. Theory, IT-6 (1960), 16-21.

[14] B. D. Sharma and B. K. Dass (1972), On weight of bursts, presented at
38th Annul. Conf. of IMS, Bhopal, India.

[15] J. J. Stone, Multiple burst error correction, Information and Control 4
(1961), 324-331.

68


