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Abstract

The aim of this paper is to introduce the notions of lower and up-
per approximation of a subset of a hyper BC' K-algebra with respect
to a hyper BCK-ideal. We give the notion of rough hyper subalgebra
and rough hyper BC K-ideal, too, and we investigate their properties.

Key words: rough set, rough (weak, strong) hyper BCK-ideal,
rough hyper subalgebra, regular congruence relation.

MSC 2010: 20N20, 20N25.

1 Introduction

In 1966, Y. Imai and K. Iseki [2] introduced a new notion, called a BC'K-
algebra. The hyper structure theory (called also multi algebras ) was intro-
duced in 1934 by F. Marty [6] at the 8th Congress of Scandinavian Math-
ematicians. In [3], Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei
applied the hyper structures to BC K-algebras and they introduced the no-
tion of hyper BC' K-algebra (resp. hyper K-algebra) which is a generalization
of BC K-algebra (resp. hyper BC'K-algebra). They also introduced the no-
tion of hyper BC' K-ideal, weak hyper BC'K-ideal, hyper K-ideal and weak
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hyper K-ideal and gave relations among them. In 1982, Pawlak introduced
the concept of rough set (see [7]). Recently Jun [5] applied rough set theory
to BC K-algebras. In this paper, we apply the rough set theory to hyper
BC K-algebras.

2 Preliminaries

Let U be a universal set. For an equivalence relation © on U, the set

of elements of U that are related to x € U, is called the equivalence class
of z and is denoted by [z]e. Moreover, let U/© denote the family of all
equivalence classes induced on U by ©. For any X C U, we write X¢ to
denote the complement of X in U, that is the set U\X. A pair (U, ©) where
U # ¢ and O is an equivalence relation on U is called an approximation
space.
The interpretation in rough set theory is that our knowledge of the objects
in U extends only up to membership in the class of © and our knowledge
about a subset X of U is limited to the class of © and their unions. This
leads to the following definition.

Definition 2.1. [7] For an approximation space (U, ©), by a rough approxi-
mation in (U, ©) we mean a mapping Apr : P(U) — P(U) x P(U) defined
for every X € P(U) by Apr(X) = (Apr(X), Apr(X)), where

Apr(X) = {z € Ullalo € X},

Apr(X) = {z € Ul[z]le N X # ¢}.

Apr(X) is called a lower rough approzimation of X in (U, ©), whereas Apr(X)

is called an upper rough approzimation of X in (U, ©).

Definition 2.2. [7] Given an approximation space (U, 0), a pair (A, B) €
P(U) x P(U) is called a rough setin (U, ©) if and only if (A, B) = Apr(X)
for some X € P(U).

Definition 2.3. ([7]) Let (U,©) be an approximation space and X be a
non-empty subset of U.

(i) If Apr(X) = Apr(X), then X is called definable.
(ii) If Apr(X) = ¢, then X is called empty interior.

4
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(iii) If Apr(X) = U, then X is called empty exterior.

Let H be a non-empty set endowed with a hyper operation “o”, that is o is
a function from H x H to P*(H) = P(H) — {¢}. For two subsets A and B
of H, denote by A o B the set UaeA’beB a o b. We shall use x o y instead of

zo{y}, {z} oy, or {z}o{y}.

Definition 2.4. ([3]) By a hyper BC K -algebra we mean a non- empty set H
endowed with a hyper operation “o”and a constant 0 satisfying the following
axioms:

(HK1) (zoz)o(yoz) < xoy,
(HK2) (xoy)oz=(xoz)oy,
(HK3) 20 H < {z},

(

HK4) 2z < y and y < z imply = = v,

forall z,y, z € H, where x < y is defined by 0 € oy and for every A, B C H,
A < B is defined by Va € A,3b € B such that a < b. In such case, we call
“<”the hyper order in H.

Theorem 2.5. ([3]) In any hyper BC' K-algebra H, the following hold:
al) 000 = {0},

(

(

(

(

(ab) A < 0 implies A = {0},
(ab

(

(

(

roy = {0} implies (roz2)o(yoz)={0} and z0z <K yoz,
(al2) Ao {0} = {0} implies A = {0},
for all z,y, z € H and for all non-empty subsets A and B of H.

5
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Definition 2.6. ([3]) Let H be a hyper BC K-algebra and let S be a subset
of H containing 0. If S be a hyper BC'K-algebra with respect to the hyper
operation “o”on H, we say that S is a hyper subalgebra of H.

Theorem 2.7. ([3]) Let S be a non-empty subset of hyper BC K-algebra
H. Then S is a hyper subalgebra of H if and only if xroy C S, forall x,y € S.

Definition 2.8. ([3]) Let I be a non-empty subset of hyper BC K-algebra
Hand 0 € 1.

(i) I is said to be a hyper BCK-ideal of H if x oy < I and y € I imply
x el forall x,y e H.

(ii) I is said to be a weak hyper BCK-ideal of H if toy C I and y € [
imply x € [ for all z,y € H.

(iii) [ is called a strong hyper BCK -ideal of H if (xoy)NI # ¢ and y €
imply z € [ for all x,y € H.

Theorem 2.9. ([3]) If H be a hyper BC K-algebra, then
(i) every hyper BC'K-ideal of H is a weak hyper BC' K-ideal of H.

(ii) every strong hyper BC'K-ideal of H is a hyper BC'K-ideal of H.

Definition 2.10. ([4]) Let H be a hyper BC'K-algebra. A hyper BCK-
ideal I of H is called reflexive if x ox C I for all x € H.

Definition 2.11. ([1]) Let © be an equivalence relation on hyper BC'K-
algebra H and A, B C H. Then,

(i) AOB means that, there exist a € A and b € B such that a©b,

(ii) A©®B means that, for all a € A there exists b € B such that a©b and
for all b € B there exists a € A such that a©b,

(iii) © is called a congruence relation on H, if 20y and 2'©y’ imply x o
'Oy oy for all x,y, 2,y € H.

(iv) © is called a regular relation on H, if z o y©{0} and y o 20{0} imply
xOy for all z,y € H.
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Example 2.12. Let H; = {0,1,2}, Hy = {0,a,b} and hyper operations
“o;”and “oy”on H; and H, are defined respectively, as follow:

o] 0 1 2 0| 0 a b
0 {0} {0} {0} 01 {0y {0y {0}
L {1y {0y {1} a | {a} {0,a} {0,a}
2 {2y {2} {0,2} b | {b} {a,b} {0,b}

Then (Hy,01) and (Hy, 09) are hyper BC' K-algebras. Define the equivalence
relation ©; and ©, on H; and Hs, respectively, as

@1 = {(07 0)7 (17 1)7 (27 2)7 (07 2)7 (27 0)}7
and
@2 - {(07 0)7 (a7 CL), <b> b)? (07 CL), (CL, O)}

It is easily checked that ©; is a congruence relation on H;. But O, is not a
congruence relation on Hs, since bOyb and 00,a but b o 005b 0 a is not true.

Example 2.13. Let (Hj,01) be a hyper BC K-algebra as Example 2.12.
Let Hy = {0, a,b,c} and define the hyper operation “oy”on Hj as follow:

os | 0 a b c
01|{oy {o} {0} {o}
a | {at {0,a} {0}  {a}
b {o} {b} {0,a} {0}
c | {ct A A {0,

Then (Hs,09) is a hyper BC'K-algebra. Define the congruence relation ©
and ©5 on H; and H,, respectively, by

@1 = {(070)7 (17 1)7 (272)7 (07 1)7 (17 0)}7

and
@2 = {(07 0)7 (a7 CL), <b> b)v (Ca 0)7 (07 b)’ (bv O)}

It is easily checked that ©; is a regular congruence relation on Hy, but O is
not a regular relation on Hy, since aobO9{0} and boa®,{0} but (a,b) & Os.

Theorem 2.14. ([1]) Let © be a regular congruence relation on hyper
BCK-algebra H. Then [0]g is a hyper BC'K-ideal of H.

7
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Theorem 2.15. ([1]) Let © be a regular congruence relation on H, I = [0]g
and & = {I, : # € H}, where I, = [z]e for all z € H. Then ¥ with hyper

(1)

operation “o”and hyper order “<”which is defined as follow, is a hyper BC' K-
algebra which is called quotient hyper BC' K -algebra,

Liol,={I,:z€xoy},

and
I, <l 1€l ol,

Theorem 2.16. ([1]) Let I be a reflexive hyper BC' K-ideal of H and rela-
tion © on H be defined as follow:

10y<—=zxoyClandyox C 1

for all z,y € H. Then © is a regular congruence relation on H and I = [0]e.

3 Rough hyper BC K-ideals

Throughout this section H is a hyper BC K-algebra. In this section first
we define lower and upper approximation of the subset A of H with respect
to hyper BC'K-ideal of H and prove some properties. Then we give the
definition of (weak, strong) rough hyper BCK-ideals and investigate the
relation between them and (weak, strong) hyper BC' K-ideals of H.

Definition 3.1. Let © be a regular congruence relation on hyper BC'K-
algebra H, I = [0]e, I, = [z]e and A be a non-empty subset of H. Then the
sets

Apr (A) = {z € H|I, C A},
Apri(A) = {o € HIL N A # 6},

are called lower and upper approzimation of the set A with respect to the
hyper BC'K-ideal I, respectively.

Proposition 3.2. For every approximation space (H, ©) and every subsets
A, B C H, we have:

(1) Apr, (A) € AC Apr (A),

(2) Apr (¢) = ¢ = Apr,(9),



(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

(15)

Rough Set Theory Applied To Hyper BC' K-Algebra

@I(H) :H:A_pr[(H)?

if A C B, then Apr (A) C Apr (B) and Apr,(A) C Apr,(B),
Apr (Apr (A)) = Apr,(A),

Apr; (Apry(A)) = Apry(A),
Apry(Apr (A)) = Apr (A),

Apr (Apry(A)) = Apry(A),
Apr,(A) = (Apr(A%)),

Apr (4) = (Apr (A°))",

Apr1(AN B) € Apry(A) 0 Apry(B),
Apr (AN B) = Apr,(4) N Apr (B),
Apr1 (AU B) = Apr,(A) U Apr,(B),
@](A UB)D @I(A) U@I(B),

Apr (1) = H = Apr,(1,) for all z € H.

Proof. (1), (2) and (3) are straightforward.

(4)

For any = € Apr (A) we have I, C A C B and so x € Apr (B). Now,
suppose that 2 € Apr;(A). Then I, N A # ¢ and so I, N B # ¢. Hence
z € Apr(B).

Since Apr (A) C A, by (4) we have Apr (Apr (A)) C Apr (A). Now,
let z € MI(A). Then I, € A. Since for any y € I, we have I, = I,
then I, C A and so y € Apr (A). Therefore, I, C Apr (A) and then
we obtain z € Apr (Apr (A)).

By (1) and (4), Apr;(A) C Apr;(Apr;(A)). On the other hand, we
assume that » € Apr;(Apr;(A)). Then we have I, N Apr;(A) # ¢ and
so there exist a € I, and a € Apr;(A). Hence I, = I, and [, N A # ¢
which imply I, N A # ¢. Therefore, x € Apr;(A).

9
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(7) By (1), we have Apr (A) C A_pr[(@I(A)) Now, let x € A_])?“I(@I(A))
Then I, N Apr (A) # ¢ and so there exist a € I, and a € Apr (A).
Hence I, = I, and I, € A which imply I, € A. Therefore, x €
Apr, (4).

(8) By (1), we have @I(A_WI(A» C Apr;(A). Now, we assume that
x € Apr;(A). Then I, N A # ¢. For every y € I,, we have I, = I,
and so I, N A # ¢. Hence y € Apr;(A) which implies I, C Apr;(A).
Therefore, z € MI(A_WI(A))

(9) For any subset A of H we have:

(Apri(A%))° = {w € H : 2 ¢ Tpr,(A%)}
={zxeH:I,NA= ¢}
={reH:I,CA}
={reH:zeApr (A}
= Apr (4).

(10) For any subset A of H we have:

(Apr (A°))° = { € H - & ¢ Apr (A%)}
={zreH: I, ¢ A}
={reH:I,NA# ¢}
—{re H: e A (4))
— i, (A).

(11) Since ANB C A and AN B C B, then by (4), Apr;(ANB) C Apr;(A)
and Apr(ANB) C Apr;(B). Hence Apr;(ANB) C Apr (A)NApr(B).

10
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(12) For any subset A and B of H we have:

z€Apr (ANB) =1, CANB
<~— [, CAand I, CB
< x € Apr (A) and z € Apr (B)
< x € Apr (A) N Apr (B).

(13) For any subset A and B of H we have

v € Apr(AUB) <= I,N(AUB) # ¢
— ([, NA)UI,NB)#¢
= LNA#bor LNB+#6
= € Apri(A) or x € Apr(B)
= x € Apri(A) U Apr(B).

(14) Since A C AUB and B C AU B, then by (4), Apr (A) C Apr (AUB)
and Apr (B) C Apr (AU B), which imply that Apr (4) U Apr (B) C
Apr (AU B).

O

(15) The proof is straightforward.

Corollary 3.3. Let (H,©) be an approximation space. Then
(i) for every A C H, Apr (A) and Apr;(A) are definable sets,

(ii) for every x € H, I, is definable set.

Proof. (i) By proposition 3.2 (5) and (7), we have Apr (Apr (A)) = Apr (A) =
Apr(Apr,(A)). Hence Apr (A) is a definable set. On the other hand
by proposition 3.2 (6) and (8), we have Apr;(Apr;(A)) = Apr;(A) =
Apr, (Apr;(A)). Therefore Apr;(A) is a definable set.

(ii) By proposition 3.2 (15) the proof is clear. O

11
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Theorem 3.4. Let O be a regular congruence relation on H, I = [0]g be
a hyper BC'K-ideal of H and A, B are non-empty subsets of H. Then

(1)
(i)

A_Z”"I(A) OA_PTI(B) = A_]W‘I(A o B),
MI<A) O@[(B) C MI(A o B).

Proof. (i) Let z € Apr;(A) o Apr;(B). Then there exist a € Apr;(A) and

b € Apr;(B) such that z € aob. Hence I, N A # ¢ and I, B # ¢ and
so there exist ¢ € I, N A and d € I, N B such that a®c¢ and bOd. Since
© is a congruence relation on H, then we have a o bOc o d and because
z € aob, then there exist y € c o d such that 20y. Hence y € I..
On the other hand, y € cod C A o B which implies I, N (Ao B) # ¢
and so z € Apr;(Ao B). Therefore Apr;(A)o Apr;(B) C Apr;(Ao B).
Now, suppose that # € Apr;(Ao B). Then I, N (Ao B) # ¢. Let
z € I, N (Ao B), then there exist a € A and b € B such that z € aob
and I, = I,. Thus we have I, € I, 0 I, and so I, € I, o I,. Hence
v €aobC Ao B C Apr;(A) o Apr;(B). Therefore, Apr;(Ao B) C
Apr(A) o Apry(B). O

Let z € Apr (A) o Apr (B). Then there exist a € Apr (A) and b €
@I(B) such that z € aob, I, C A and I, C B. For every y € I, we
have I, =1, € [0l andsoy € aob C Ao B. Then y € Ao B and so
I, C Ao B. Therefore z € Apr (Ao B). O

Example 3.5. Let H = {0,1,2} and define the hyper operation “o”on H
as follow:

0 1 2
{0y {0} {0}
{1y {0y {1}
{2+ {2 {02}

— O 0

[\

Then (H, o) is a hyper BC' K-algebra. Define the equivalence relation © by

0 ={(0,0),(1,1),(2,2),(0,1),(1,0)}.

Then © is a regular congruence relation on H and so we have:

I= [0]9 = {07 1}711 = [1]@ = {07 1}7[2 = [2]9 = {2}

12
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Now, if we let A = {1,2} and B = {0, 2}, then we have Ao B = {0, 1,2} and
SO

Apr (Ao B) = {z € H|L,N (Ao B) £ ¢} = {0,1,2},
APTI A) © APTI( ) =10,1,2},
Apr (A) o Apr (B) = {0,2}.

Therefore, we see that Apr (A) o Apr (B) # Apr (Ao B) but Apri(A) o
Apri(B) = Apri(Ao B).

Apr (A) = {x € H|L, C A} = {2},
Apri(A) ={z € H|IL, N A # ¢} ={0,1,2},
Apr (B) ={z € H|I, C B} = {2},
Apr;(B) ={r € H|I, N B # ¢} = {0,1,2},
Apr (Ao B) ={x € H|I, C Ao B} ={0,1,2},
(A
(
(A

Apr

Definition 3.6. Let © be a regular congruence relation on H, I = [0]g be
a hyper BCK-ideal of H and A be a non-empty subset of H. If Apr (A) and

Apr;(A) are hyper subalgebra of H, then A is called a rough hyper subalgebra
of H.

Theorem 3.7. If I be a hyper BC'K-ideal and J be a hyper subalgebra of
H, then

(i) Apr;(J) is a hyper subalgebra of H.
(i) If I C J, then Apr (J) is a hyper subalgebra of H.

Proof. (i) Since 0 € J C Apr;(J), then Apr,;(J) # ¢. Now, we assume
that x,y € Apr;(J). We must prove that z oy C Apr;(J). Since
I.NJ #¢and IyNJ # ¢, wecanlet t € I, NJ, s € I, NJ and
z€xoy. Hence I, € [0, = I;ol;and so z € tos C J. Thus we
have z € J and z € I, and so I, N.J # ¢. Therefore, z € Apr;(.J) and
o 20y C Apry ().

(ii) Since I = Iy C J, we have 0 € @I(J) # ¢. Now, suppose that
a,be MI(J). Then I, C J and [, C J. For every z € aob and every
yel, wehave I, =1,€ l,ol,andsoy € aob C J. Hence I, C J,
which implies that z € Apr (). Therefore, aob C Apr (J). O

13
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Theorem 3.8. Let © and ® be two regular congruence relations on H and
I = [0]e, J = [0]s¢ be two hyper BC K-ideals of H such that I C J. Then
for any nonempty subset A of H, we have:

(i) Apr (A) € Apr (A),
(i) Apr;(A) € Apr,(A).

Proof. (i) First we show that if I C J, then I, C J,. Let y € I,. Then
1Oy. Since O is a congruence relation on H and 0z, then xoxOzxoy.
Since 0 € x o x, then there exist ¢ € z oy such that 00¢ and so
t € [0]o =1 C J = [0]e. Thus by hypothesis, t € [0]¢ and so zoy®{0}.
By the similar way, we can show that y o x®{0}. Since ® is a regular
congruence relation, we get x®y and so y € [z]e = J,. Therefore,
I, C J,. Now, let x € MJ(A). Then J, C A and so I, C A which
implies x € Apr (A).

(i) Assume that x € Apr;(A). Then I, N A # ¢. Since I, C J,, we have
J. N A # ¢. Therefore, z € Apr,(A). ]

Corollary 3.9. Let © and ® are two regular congruence relations on H,
I = [0]g, J = [0] be two hyper BC'K-ideals of hyper BC K-algebra H and
A be a non-empty subset of H. Then

(i) Apr (A)nyApr,(A) € Apr,(A),

s

(ii) Apr,(A) © Apr (A) 0 Apr,(A).

Proof. By theorem 3.8, the proof is clear. n

Definition 3.10. Let O be a regular congruence relation on H, I = [0]e
be a hyper BC'K-ideal of H, A be a non-empty subset of H and Apr;(A) =
(@I(A),A_pr](fl)) be a rough set in the approximation space (H,©). If
MI(A) and Apr;(A) are hyper BC K-ideals (resp, weak, strong) of H, then
A is called a rough hyper BC' K -ideal (resp, weak, strong) of H.

14
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Example 3.11. Let H = {0,1,2,3} and hyper operation “o”on H is de-
fined as follow:

0 1 2 3
{0y {0} {0} {0}
{1 {01} {0} {1}
2y {2 {01} {2}
313 3y {3t {03}

Then (H,0,0) is a hyper BC'K-algebra. We define the regular congruence
relation on H as follow:

© ={(0,0),(1,1),(2,2),(3,3),(0,1),(1,0)}.

N — O| 0

So we have:
-[:-[0 :-[1 - {Oa]-},IQ - {2}7-[3 - {3}

Now, let A ={0,1,3} be a subset of H, then
Apr (A) ={z € H|I, C A} ={0,1,3},
Apr,(4) = {x € HILNA# 6} = {0,1,3).

Easily we give that Apr (A) and Apr;(A) are hyper BC K-ideals. Therefore,
A is a rough hyper BC'K-ideal of H.

Example 3.12. Let H = {0,a,b,c}. By the following table (H,0) is a
hyper BC'K-algebra.

0 a b c
{oy {0} {0} {0}
{a} {0,a} {0}  {a}
{or {0t {0,a} {0}
{c¢t A{t { {0}

Now, let relation © on H is defined as follow:

© = {(0,0), (a,a), (b,b), (¢, c), (0,b), (b,0),(0,a), (a,0), (a,b), (b,a)}.
Then,

o T ® OO0

=1, = I, = {0,a,b}, I. = {c}.

Let J; = {0,c}, Jo = {0,b} and J5 = {c}. Then,
MI(‘]D = {C}>A_prl(<]l) = {O7avb7 C}’
@I(‘&) = {}7A_WI(J2> = {O7a7b}7
Apr (J5) = {c}, Apr () = {c}.

15
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Hence we can see that J; is a hyper BC K-ideal of H but @I(Jl) is not a
hyper BC K-ideal. Moreover .J, is not a hyper BC K-ideal but Apr,(.J,) is a
hyper BCK-ideal of H. In follows, J3 is not a hyper BC'K-ideal and neither
Apr (J3) nor Apr;(Js) is a hyper BC'K-ideal of H.

Theorem 3.13. Let O be a regular congruence relation on H and I = [0]g
be a hyper BC'K-ideal of H. Then

(1)

(i)

(iii)

If J be a weak hyper BCK-ideal of H containing [, then Apr (J) is a
weak hyper BC K-ideal of H,

If J be a hyper BCK-ideal of H containing I, then @I(J) is a hyper
BCK-ideal of H,

If J be a strong hyper BC'K-ideal of H containing I, then MI(J) is
a strong hyper BC'K-ideal of H.

Proof. (i) Since I = Iy C J, then 0 € Apr (J). Now, Let z,y € H be such

(i)

that z oy C Apr (J) and y € Apr (J). We must prove that I, C J.
Let a € I, and b € I,. Then a®©z and bOy. Since O is a congruence
relation on H, we have a0 bOz oy and so for every z € aob, there exist
t € z oy such that 20t. Since x oy C Apr (J), we have t € Apr (J)
and so I; = I, C J which implies z € J. Thus aob C J. On the
other hand, b € I, C J. Since J is a weak hyper BC K-ideal, we have
a € J and so I, C J. Hence x € Apr (J). Therefore, Apr (J) is a
weak hyper BC'K-ideal of H.

Let z,y € H be such that x oy < Apr (J) and y € Apr (J). We
must prove that I, € J. Let a € I, and b € I,. Then aOx and
bOy. Since O is a congruence relation on H, we have a o bOx o y and
so for every z € a o b, there exist 2z’ € x oy such that 202’. Since
2" € xoy < Apr,(J), then there exists t € Apr (J) C J such that
7' <« t and so from 20z’ we have Iy € I,;ol;, =1,01;. Hence 0 € zot
and then z < t. Thus we have proved that for every z € a o b, there
exist t € J such that z < t which means that a o b < J. On the other
hand we have b € I, € J. Since J is a hyper BCK-ideal of H, we
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have a € J. Thus I, C J which implies that « € Apr (J). Therefore,
Apr (J) is a hyper BC'K-ideal of H.

(iii) Suppose that z,y € H be such that (z oy) N MI(J) # ¢ and y €
Apr (J). Let a € I, and b € I,. Then aOz and bOy. Since O is a
congruence relation on H, we have aobOzoy. Since (zoy)NApr (J) #
¢, then there exist ¢t € H such that t € zoy and t € MI(J). Now,
t € x o yOa o b implies that there exist z € a o b such that 20t and so
I, =1, C J. Hence z € J and so (aob)NJ # ¢. On the other hand, we
have b € I, C J. Since J is a strong hyper BC K-ideal of H, then we
have a € J which implies I, C J that means x € Apr (J). Therefore,
Apr (J) is a strong hyper BC'K-ideal of H. O

Theorem 3.14. Suppose that I be a hyper BC'K-ideal of H and © be a
regular congruence relation on H which is defined as follow:

10y« rzoyClandyox C 1.

(i) If J be a weak hyper BCK-ideal of H containing I, then Apr;(J) is a
weak hyper BC'K-ideal of H,

(ii) If J be a hyper BCK-ideal of H containing I, then Apr;(.J) is a hyper
BCK-ideal of H,

(iii) If J be a strong hyper BC K-ideal of H containing I, then Apr,(J) is
a strong hyper BC K-ideal of H.

Proof. (i) Since I C J C Apr;(J), then we have 0 € Apr;(J). Let x,y €
H be such that xoy C Apr;(J) and y € Apr;(J). Then I,NJ # ¢ and
for every z € roy, we have z € Apr;(J) which means I, N.J # ¢. Thus
there exist a,b € H such that a € I, N J and b € I, N J which imply
that a®y, Oz and a,b € J. Thus yoa C I C Jand zobC I C J and
so we get y, z € J, since J is a weak hyper BC' K-ideal. Thus we have
proved that for any z € x oy, we have z € J and so x oy C J. Since J
is a weak hyper BC'K-ideal and y € J, obviously we have z € J. Since
x € I, then I, N J # ¢. Therefore x € Apr;(J) and so Apr;(J) is a
weak hyper BC' K-ideal of H.

17
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Let z,y € H be such that z oy < Apr;(J) and y € Apr;(J). Then
I,NJ # ¢ and for every z € x oy, there exist ¢t € Apr;(J) such that
z < tand I; N J # ¢. Thus, there exist ¢,d € H such that c € I, N J
and d € I, N J and so cOt, dOy and c¢,d € J. Hence toc C I C J
and yod C I C J. Since J is a hyper BCK-ideal and c¢,d € J, we
have y,t € J. Thus, we have proved that for every z € x oy, there
exist t € J such that z < ¢t which means that z oy < J and so from
y € J we get x € J. Consequently, I, NJ # ¢ and so x € Apr;(J).
Therefore, Apr;(J) is a hyper BCK-ideal.

Let x,y € H be such that (z oy) N Apr;(J) # ¢ and y € Apr;(J).
Then I, N J # ¢ and so there exist z € H such that z € z oy and
z € Apr;(J). Hence I, N.J # ¢ and so there exist ¢,d € H such that
cel.NJandd e I,NJ. Hence cO©z and dOy where c,d € J. Thus we
have zoc C I C Jand yod C I C J. Since J is a strong hyper BC K-
ideal and ¢,d € J, we have z € J and y € J. Thus we have proved
that (roy)NJ # ¢ and y € J. Since J is a strong hyper BC K-ideal,
we have z € J and so I, N J # ¢ which means that Apr;(.J) is a strong
hyper BC'K-ideal of H. m

Conclusion

This paper is intend to built up connection between rough sets and hy-
per BCK-algebras. We have presented a definition of the lower and upper
approximation of a subset of a hyper BC K-algebra with respect to a hyper
BCK-ideal. This definition and main results are easily extended to other
algebraic structures such as hyper K-algebra, hyper [-algebra, etc.
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Abstract

In this article, we study some properties of multiplication Mp-
modules and their prime Mp-submodules. We verify the conditions
of ACC and DCC on prime Mr-submodules of multiplication Mrp-
module.
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1 Introduction

The notion of a I'-ring was first introduced by Nobusawa [17]. Barnes
[5] weakened slightly the conditions in the definition of I'-ring in the sense
of Nobusawa. After the I'-ring was defined by Barnes and Nobusawa, a
lot of researchers studied on the I'-ring. Barnes [5], Kyuno [15] and Luh
[16] studied the structure of I'-rings and obtained various generalizations
analogous of corresponding parts in ring theory. Recently, Dumitru, Ersoy,
Hoque, Oztiirk, Paul, Selvaraj, have studied on several aspects in gamma-
rings (see [10, 8, 12, 14, 18, 19, 20]).

McCasland and Smith [14] showed that any Noetherian module M con-
tains only finitely many minimal prime submodules. D. D. Anderson [2]
generalized the well-known counterpart of this result for commutative rings,
i.e., he abandoned the Noetherianness and showed that if every prime ideal
minimal over an ideal I is finitely generated, then R contains only finitely
many prime ideals minimal over /. Behboodi and Koohy [7] showed that this
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result of Anderson was true for any associative ring (not necessarily commu-
tative) and also, they extended it to multiplication modules, i.e., if M is a
multiplication module such that every prime submodule minimal over a sub-
module K is finitely generated, then M contains only finitely many prime
submodules minimal over K.

In this paper, we study some properties of multiplication left Mp-modules
and their prime Mp-submodules. This paper is organized as follows: In
Section 2, we review some basic notions and properties of I'-rings. In Section
3, the concept of a moltiplication Mp-module is introduced and its basic
properties are discussed. Also, we show that If L is a left operator ring of
the I'-ring M and A is a multiplication unitary left Mp-module, then A is a
multiplication left L-module. In Section 4, we proved that in fact this result
was true for I'-rings and Mp-modules.

2 Preliminaries

In this section we recall certain definitions needed for our purpose.
Recall that for additive abelian groups M and I' we say that M is a I'-ring
if there exists a mapping

o MxI'x M — M
(m,y,m') — mym’

such that for every a,b,c € M and «, 8 € T', the following hold:
1. (a+b)ac = aac+bac, a(a+F)c = aac+afc and aa(b+c) = aab+aac;
2. (aab)Be = aa(bpe).

Note that any ring R, can be regarded as an R-ring. A I'-ring M is called
commutative, if for any x,y € M and v € T', we have xyy = yyz. M is called
a ['-ring with unit, if there exists elements 1 € M and ~y € I" such that for
any m € M, 1lygym = m = m~yyl.

If A and B are subsets of a I'-ring M and © C I', we denote AOB,
the subset of M consisting of all finite sums of the form ) a;v;b;, where
(a;,7i,b;) € A x © x B. For singleton subsets we abbreviate this notation
for example, {a}OB = a©B.

A subset I of a I'-ring M is said to be a right ideal of R if I is an additive
subgroup of M and IT'M C I. A left ideal of M is defined in a similar way.
If I is both a right and left ideal, we say that A is an ideal of M.

For each subset S of a I'-ring M, the smallest right ideal containing S
is called the right ideal generated by S and is denoted by |S). Similarly
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we define (S| and (S), the left and two-sided (respectively) ideals generated
by S. For each a of a I'-ring M, the smallest right ideal containing a is
called the principal right ideal generated by @ and is denoted by |a). We
similarly define (a| and (a), the principal left and two-sided (respectively)
ideals generated by a. We have |a) = Za + aI'M, (a| = Za + MTa, and
(a) = Za+ al'M + MTa + MTal'M, where Za = {na : nis an integer}.

Let I be an ideal of I'-ring M. If for each a + I, b+ I in the factor group
M/I, and each v € ', we define (a + I)y(b+ I) = ayb+ I, then M/I is a
[-ring which we shall call the difference I'-ring of M with respect to I.

Let M be a I'-ring and F' the free abelian group generated by I' x M.
Then A = {>,ni(vi,z;) € F:a € M = ), nay;x; = 0} is a subgroup of
F. Let R = F/A, the factor group, and denote the coset (v, x)+ A by [y, z].
It can be verified easily that o, z] + [3,2] = [o + 5, 2] and [a, 2] + [0, y] =
[,z + y] for all a, f € T" and x, y € M. We define a multiplication in
R by > lai, @] Y5085, y51 = X2, lai, xiByy;]. Then R forms a ring. If we
define a composition on M x R into M by a ), [a;, ;] = >, acuz; for a € M,
> ilei,z;] € R, then M is a right R-module, and we call R the right operator
ring of the I' -ring M. Similarly, we may construct a left operator ring L of
M so that M is a left L-module. Clearly I is a right (left) ideal of M if and
only if I is a right R-module (left L- module) of M. Also if A is a right (left)
ideal of R(L), then MA(AM) is an ideal of M. For subsets N C M, & C T,
we denote by [®, N] the set of all finite sums ) .[v;, ;] in R, where v; € @,
x; € N, and we denote by [(®, N)| the set of all elements [p, x] in R, where
¢ € &, x € N. Thus, in particular, R = [I"; M].

An ideal P of M is prime if, for any ideals U and V of M, UT'U C P
implies U € P or V C P. A subset S of M is an m-system in M if S = ()
or if a,b € S implies < a > T < b > NS # (. The prime radical P(A) is the
set of x in M such that every m-system containing x meets A. The prime
radical of the zero ideal in a I'-ring M is called the prime radical of the I'-ring
M which we denote by P(M).

An ideal @@ of M is semi-prime if, for any ideals U of M, UTU C @
implies U C Q.

Proposition 2.1. [15] If Q is an ideal in a commutative I'-ring with unit
M, then P(Q) is the smallest semi-prime ideal in M which contains @, i.e.

P@Q =[P
where P runs over all the semi-prime ideals of M such that ) C P.

Let P be a proper ideal in a commutative ['-ring with unit M. It is clear
that the following conditions are equivallent.
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1. P is semi-prime.
2. For any a € M, if aypa € P, then a € P.
3. For any a € M and n € N, if (ayy)"a € P, then a € P.

Proposition 2.2. [13] Let Q be an ideal in a commutative I'-ring with unit
M and A be the set of all x € M such that (z7y)"x € Q for somen € NU{0},
where (x7y9)°x = z. Then A = P(Q).

3 Mpr-module

Let M be a I'-ring. A left Mp-module is an additive abelian group A
together with a mapping - : M x I' x A — A ( the image of (m,~,a)
being denoted by m~ya), such that for all a,a,a0 € A, v,71,72 € T', and
m,my, mg € M the following hold:

L. my(a1 + az) = myay + myas;
2. (my1 4+ mo)ya = myym + moya;

3. miyi(mayea) = (Mm1y1ma)yea.

A right Mp-module is defined in analogous manner. If [ is a left ideal of a
[-ring M, then I is a left Mp-module with rva (r € M,y € I';a € I) being
the ordinary product in M. In particular, {0} and M are Mp-modules.

Let A be a left Mpr-module and B a nonempty subset of A. B is a Mp-
submodule of A, which we denote by B < A, provided that B is an additive
subgroup of A and m~b € B, for all (m,~,b) € M x ' x B.

Definition 3.1. Let A be a left Mr-module and X a subset of A. Let { Ax}xea
be the family of all Mp-submodule of A which contain X. Then [,., Ax is
called the Mr-submodule of A generated by the set X and denoted (X|.

IfBC A NCMand® CTI', wedenote NOB, the subset of A consisting
of all finite sums of the form > n;y;b; where (n;,~v;,b;) € N x © x B. For
singleton subsets we abbreviate this notation for example, {n}©B = nO©B.

If X = {ai,...,a,}, we write (ay,...,a,| in place of (X|. If A =
(a1,...,ay|, (a; € A), A is said to be finitely generated. If a € A, the
Mp-submodule (a| of A is called the cyclic Mp-submodule generated by
a. We have (X| = ZX + MTX, where ZS = {3V n; - ni € Z,2; €
S and kis an integer}.

Finally, if {Ba}rea is a family of Mp-submodules of A, then the Mp-
submodule generated by X = J,., B, is called the sum of the Mr-modules
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B, and usually denoted (X| = ",_, By. If the index set A is finite, the sum
of By, ..., By is denoted By + By + ... + By. It is clear that if {B)}ea is
a family of Mp-submodules of A, then ), , B\ consists of all finite sums
b>\1 + ...+ b)\k with b)\j € B/\l'

Proposition 3.1. Let M be a T'-ring and {I\} ea be a family of left ideals
of M. If A is a left My-module, then

() L)FA=> (I.TA).

AEA AEA

Proof. Let x € (3 ,c5 Ix)T'A. Then there exists ay,...,a; € Aand vy, ...,y €
I'and @1,...,25 € ) cp Ly such that x = Zle Tyaq, it follows that for
1<t<k x = ft:l i, with iy, € I),,. Hence z = Zle Zf’;l i Vel €
Yonea(hI'A). Therefore (3, .y I)IA C >0, A(I\T'A).  Also, Since for
every A € A, LT'A C (3 ,cpo M)A, we conclude that ), ., ([h,['A) C

(> oaea DITA. Hence (D, cp I)TA =3, A (ITA). O

Definition 3.2. If A is a left Mr-module and S is the set of all Mr-submodules
B of A such that B # A, then S is partially ordered by set-theoretic inclu-

sion. B is a mazrimal Mrp-submodule if and only if B is a mazximal element

in the partially ordered set S.

Proposition 3.2. If A is a non-zero finitely generated left Mr-module, then
the following statements are hold.

1. If K is a proper Mr-submodule of A, then there exists a maximal M-
submodule of A such that contain K.

2. A has a maximal Mr-submodule.
Proof. (1) Let A= (ay,...,a,| and
S={L:K CL and L is a proper Mp-submodule of A}.

S is partially ordered by inclusion and note that S # 0, since K € S. If
{Lx}sen is a chain in S, then L = (J,., Ly is a Mp-submodule of A. We
show that L # A. If L = A, then for every 1 < ¢ < n, there exists \; € A
such that a; € Ly,. Since {Ly}xea is a chain in S, we conclude that there
exists 1 < j < n such that ay,...,a, € Ly;. Therefore A = Ly, € § which
contradicts the fact that A ¢ S. It follows easily that L is an upper bound
{L }xea in S. By Zorn’s Lemma there exists a proper Mp-submodule B of
A that is maximal in S. It is a clear that B a maximal Mp-submodule of A
such that contain K.

(2) By part (1), it suffices we put K = (0]. O
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Definition 3.3. A left Mr-module A is unitary if there exists an element, say
1 in M and an element vy € ', such that, 1y9a = a and 1ygm = m = mypl
for every (a,m) € A x M.

Corolary 3.1. If M is a unitary left (right) Mr-module, then M has a left
(right) mazimal ideal.

Proof. 1t is evident by Proposition 3.2. O

Let A be a left Mp-module. let X C A and let B < A. Then the set
(B:X):={me M :mI'X C B} is a left ideal of M. In particular, if
a € A, then (0 : a) := ((0) : {a}) is called the left annihilator of a and
(0 : A) := ((0) : A) is an ideal of M called the annihilating ideal of A.
Furthermore A is said to be faithful if and only if (0 : A) = (0).

Definition 3.4. A left Mr-module A is called a multiplication left Mr-module
if each Mr-submodule of A is of the form IT' A, where I is an ideal of M.

Proposition 3.3. Let B be a Mr-submodule of multiplication left Mr-module
A. Then B = (B : A)T'A.

Proof. 1t is a clear that (B : A)I’A C B. Since A is a multiplication left Mp-
module, we conclude that there exists ideal I of I'-ring M such that B = IT'A,
it follows that B = ITA C (B : A)T'A C B. Therefore B= (B : A)TA. O

Proposition 3.4. Let A be a left Mr-module. A is multiplication if and only
if for every a € A, there exists ideal I in M such that (a| = IT A.

Proof. In view of Definition 3.4, it is enough to show that if for every a € A,
there exists ideal I in M such that (a| = IT' A, then A is multiplication. Let
B be an Mp-submodule of A. Then for every b € B, there exists ideal [, in
M such that (b| = I,['A. By Proposition 3.1, (3,5 Iy)[A =", z(L,T'A) =
Y peplb] = B, it follows that A is multiplication. O

Proposition 3.5. Let M be a I'-ring which has a unique mazimal ideal ()
and A be a unitary multiplication left Mr-module. If every ideal I in M is
contained in Q, then for every a € A\ QT'A, (a] = A.

Proof. Suppose that a € A\ QT'A. Since A is multiplication left Mp-module,
we conclude that there exists ideal I in M such that (a| = IT'A. Clearly
I Z @ and hence I = M, which implies (a| = MT'A = A. O

Corolary 3.2. Let I'-ring M be a unitary left Mr-module which has a unique
maximal ideal Q) and A be a unitary multiplication left Mr-module. Then for

every a € A\ QT'A, (a| = A.
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Proof. By Propositions 3.2 and 3.5, it is evident. [

Proposition 3.6. Let L be a left operator ring of the I'-ring M and let A
be a unitary left Mr-module. If we define a composition on L x A into A
by O [wi, au])a = >, micya for a € A, Y [z, 4] € L, then A is a left L-
module. Also, for every B C A, B is a Mr-submodule of A if and only if B
is a L-submodule of A.

Proof. Suppose that 1 € M and 7o € I such that for every (a,m) € A x M,
Iya = a and 1yom = m = myl. Let S [zi, ] = > i-1lvs B € L and
a =b € A. By definition of left operator ring of the I'-ring M, we conclude
that S0 w1 = > 5—1 Y3341, it follows that

(2521 [xi, ai])a = Zﬁzl T;05a

>t (wii(1y0a))
>ty (wicil)yoa
(Zle 552'041'1)’70(1
(32521 %38 1)0b
22:1 yjﬂjb

= (O 5=alvs BiDb

Hence composition on L x A into A is a well-defined. Let r = >_'_, [z;, a]
and s = > " [y;, Bj]. Then for every a € A,

(rs)Ja = (Zi,j[xiaiyj’ﬁj])a

> (@icuy;) Ba

> vici(y;0;a)

Yo miei(Yo5_ yiBia)

= (Cialr al) (X5 vi8a)
r(X25=11ys, Bi])a)

= r(sa)

The remainder of the proof is now easy. ]

Proposition 3.7. Let L be a left operator ring of the I'-ring M. If A is
a multiplication unitary left Mr-module, then A is a multiplication left L-
module.

Proof. Let B be a L-submodule of A. By Proposition 3.6, B is a Mrp-
submodule of A and there exists ideal I of I'-ring M such that B = IT'A. It
well known that [I', I] is an ideal of L. We show that B = [I,T']A. Suppose
that ay,...,a; € A, and for every 1 < i <t, Z?i:l[a:ij, ;] € [I,T]. Then we
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have 22:1(Z§;1[$ijaaij])ai =", Z§;1 7i,05,a;) € B and it follows that
[I,T']A C B. Also, if b € B, then there exists z,...,2; € I,y1,...,% € T,
and aq,...,a; € A such that b = Zle Tivia; = Zzzl[mi,’yi]ai € [/,TA and

we conclude that B = [I,T']A. O

Proposition 3.8. Let A be a unitary cyclic left Myr-module. If L is a left
operator ring of the I'-ring M and for every l,I' € L, there exists " € L such
that 1! =1"1, then A is a multiplication left L-module.

Proof. Let B be a L-submodule of A and I = {l € L : [A C B}, then
IA C B. Since A is a unitary cyclic left Mp-module, we conclude that
there exists a € A such that A = MT'a. Let b € B. Hence there exists
mi,...,m; € M and 71,...,7 € T such that b = > myya. In view
of operations of addition and multiplication in left L-module A, we have
b= [mi,yila = (O [mi,v])a. We put I = >'_ [my,~] and it follows
that b = la. If ' € A, then a similar argument shows that there exists I’ € L
such that a’ = ['a. By hypothesis, there exists [” € L such that [I' = ["I.
Therefore la’ = ll'a = I"la = I"b € B and it follows that [ € I, this is
b=1la € IA. Hence B = IA and the proof is now complete. O

Definition 3.5. Let A be a unitary left Mr-module and B be a Mr-submodule
in A and P € Max(M). A is called P-cyclic if there exist p € P and b € B
such that (1—p)yB C MTb and also, it is clear that (1—p)yB = (1—p)I'B.
Define TpB as the set of all b € B such that (1 —p)yob = 0, for some p € P.

Lemma 3.1. Let A be a unitary left Mr-module and B be a Mry-submodule
in A and P € Max(M). If M is a commutative I'-ring, then TpB is a
Mr-submodule in A.

Proof. Suppose by, by € TpB. So there exist pi, ps € P such that by = p1yb;
and by = payoba. Let pg = p1+p2—p17yope. It is clear that (1—pg)yo(by—b2) =
0. Hence by — by € TpB. Let x € MI'(TpB). So x = ., myy;b;, where
neN, b €TpB, v €l andm; € M (1 <i<mn). Suppose i € {1,---,n}.
Since b; € TpN, there exists p; € P such that (1 — p;)yom;v;b; = 0. Hence
mfyzbl € TPN Thus x € TPB Hence MFTPB = TPB ]

Proposition 3.9. Let M be a commutative I'-ring and let A be a unitary
left Myr-module. A is multiplication Mr-module if and only if for any ideal
P e Max(M), either A=TpA or A is P-cyclic.

Proof. Let A be a multiplication ideal and P € Max(M). First suppose that
A = PT'A. Since A is multiplication ideal, we conclude that for every a € A,
there exists an ideal I in M such that < a >= IT'A. Hence < a >= PI' <
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a >. So there exists p € P such that (1 — p)ya = 0, it follows that a € TpB
and then A = TpA.

Now suppose that A # PT'A and x € A\ PT'A. Then there exists an ideal
I in M such that < x >= IT'A and P + I = M. Obviously, if we assume
that p € P, then (1 — p)yA C MT'z. Therefore A is P-cyclic.

Conversely, suppose that B is a Mp-submodule in A. Define I as the set
of all m € M, where myya € B for any a € A. Clearly [ is an ideal in M and
ITA C B. Let b € B. Define K as the set of all m € M, where m~yb € IT'A.
We claim K = M. Assume that K C M. Hence by Zorns Lemma there
exists @) € Max(M) such that K C @ C M. By hypothesis A =Ty A or Ais
Q-cyclic. If A =T A, then there exists s € @) such that (1—s)v,b = 0. Hence
(1—s) € K C Q, it follows that 1 € @, a contradiction. If A is @-cyclic, then
there exist t € @ and ¢ € A such that (1—1t)yA C MTI'c =< ¢ >. Define L as
the set of all m € M such that mvyyc € (1 —1t)yB. Clearly L is an ideal in M
and Lvyoc C (1 —t)yB C< ¢ >. Hence (1 —t)yB C Lyyc. So (1 —t)yB =
Lpc, it follows that (1 —t)y0LyA C (1 —t)y%B C B and (1 —t)yL C I.
Therefore (1 — t)yo(1 — t)y0B C IT'A. Hence (1 —t)y(1 —t) € K C Q.
Thus 1 —t € @, it follows that 1 € @), a contradiction. Hence K = M and
b€ IT'A. Thus A is a multiplication ideal. O

Let A be a left Mp-module. A is said to have the intersection property
provided that for every non-empty collection of ideals {I)} e of M,

(VLA = ([ I)TA.

AEA AEA

If left Mr-module of A has intersection property, then for every non-empty
collection of ideals {I}ren of M,

() IATA = ([)(Ix + Ann(A)))T A,

AEA AEA

Proposition 3.10. Let M be a commutative I'-ring and let A be a unitary
left Mr-module.

1. If A has intersection property and for any Mrp-submodule N in A any
ideal I in M which N C IT'A, there exists ideal J in M such that J C 1
and N C JUA, then A is multiplication left Mr-module.

2. If A is faithful left multiplication Mr-module, then A has intersection
property and for any Mrp-submodule N in A any ideal I in M which
N C IT'A, there exists ideal J in M such that J C I and N C JI'A.
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Proof. (1) Let N be a Mp-submodule in A and
S={I: Iisanideal of M and N C IT'A}.

Clearly M € S. Since A has intersection property, we conclude from Zorns
Lemma that S has a minimal member I (say). Since N C [T'A and [ is
minimal element of S, we can conclude that N = IT'A. It follows that A is
a multiplication ideal.

(2) Let {Ix}aea be a nonempty collection of ideal in M and I = (., I».
Clearly ITA C (ea(NT'A). Let 2 € (),cp (IAI'A) and we put L = {m € M :
myox € ITA}. We claim L = M. Assume that L C M. By Proposition 3.2,
there exists P € Max(M) such that L C P. It is clear that x ¢ TpA. Hence
TpA # A and by Proposition 3.9, A is P-cyclic. Hence there exist a € A and
p € P such that (1 —p)yA C MT'a =< a >. Thus (1 —p)yz € [,cx(Irv00)
and so for any A € A, (1 — p)yoz € Iyya. It is clear that (1 — p)y(1 —p) €
L C P, in view of the fact that A is faithful. Hence 1 € P, a contradiction.
Therefore L = M, it follows that x+ = 1yyx € IT'A and A has intersection
property. Now suppose N be a Mp-submodule in A and I be an ideal in M
which N C IT'A. Since A is multiplication Mp-module, there exists an ideal
J in M such that N = JI'A. Let K = I N J. Clearly, K C I and since A
has intersection property, we conclude that N C KT'A. The proof is now
complete. O

Proposition 3.11. Let A be a faithful multiplication Myr-module and I,J be
two ideals in M. ITA C JT A if and only if either I C J or A= [J : I|TA.

Proof. Let I € J. Note that [J : I] = (,cx[J :< i >] where X is the set of
all elements ¢ € I with ¢ € J. By Proposition 3.10,

[J: ITA = (\([J :< i >]TA)

i€X

If for every i € X, A = [J :< i >|['A, then A = [J : I|l'A, which finishes
the proof. Let i € X and Q = [J :< i >]. It is clear that Q # M. Let Q
denote the collection of all semi-prime ideals P in M containing (). Suppose
that there exists P € 2 such that A # PI'A and z € A\ PI'A. Since A is a
multiplication Mp-module, we conclude that there exists ideal D in M such
that < © >= DI'A and D € P. Thus cI'A C< = > for some ¢ € D\ P.
Now we have cl'al’'A C JI' < x >. It is easily to show that for any v € T,
there exists v; € I' and b € J such that (cya — 1y1b)vz = 0, it follows
that (cya — 1y0)['cI’A = 0. Hence cyec € [J :< i >] = Q. Since P is
a semi-prime ideal containing (), we conclude that ¢ € P, a contradiction.
Therefore for every P € 2, A = PI'A and by Propositions 2.1 and 3.10,
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A= P(Q)TA. Let j € A. 1t is easily to show that < j >= P(Q)[' < j >.
Then there exists s € P(Q) such that for every n € N, j = (s7)"j. By
Proposition 2.2, there exists t € N U {0} such that (syy)'s € @, it follows
that j = (s70)'s70j € QT'A, i.e., A C QT'A. Hence QT'A = A. The converse
is evident. [

4 Prime Mpr-submodule

Through this section M and A will denote a commutative I'-ring with
unit and an unitary left Mpr-module, respectively.

Definition 4.1. A prime ideal P in M is called a minimal prime ideal of
the ideal I if I C P and there is no prime ideal P' such that I C P' C P.
Let Min(I) denote the set of minimal prime ideals of I in I'-ring M, and
every element of Min((0)) is called minimal prime ideal.

Proposition 4.1. If an ideal I of U'-ring M is contained in a prime ideal P
of M, then P contains a minimal prime ideal of I.

Proof. Let
A={Q : Q is prime ideal of M and I C Q C P}.

By Zorn’s Lemma, there is a prime ideal ) of R which is minimal member
with respect to inclusion in A. Therefore @ € Min(I) and I CQ C P. [

Lemma 4.1. Let I" be a finitely generated group. If I and J are finitely
generated ideals of M, then IT'J is finitely generated ideal of M.

Proof. Let I = (ay,...,a,), J = (by,...,by), and T" = (y1,...,7%). It is
clear that ITJ = (a;yb; : 1 <i<mn,1 <t <k 1<j<m). O]

Proposition 4.2. Let I" be a finitely generated group. If I is a proper ideal
of M and each minimal prime ideal of I is finitely generated, then Min(I)
s finite set.

Proof. Consider the set
S ={PTI'P...P;;neNand P, € Min(I),for each 1 <i <n}
and set

A ={K; K is an ideal of M and Q € K, for each Q € S}
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which is the non-empty set, since I € A. (A, C) is the partial ordered set.
Suppose { K} e is the chain of A in which A # () and set K = [J,., K. It
is clear that K is an ideal of M. Also, if there exits () € S such that Q) C K,
then by Lemma 4.1, Q = P,I'P;...P, is finitely generated ideal of M, i.e.,
Q = (x1,...,2,). But Q C K implies that x1,zs,...,z, € K. Thus there
exists A € A such that zy,29,...,2, € K, and so Q C K, contradiction.
Hence, for each Q € S, Q € K and K € A is the upper band of this chain.

By Zorhn’s lemma A has maximal element such as (). Now if a ¢ @) and
b Qfora,be M, then @ C (QU{a}) and @ C (QU{b}). Maximality of Q)
implies that (Q U {a}), (QU {b}) & A. So there exists @; and @3 in S such
that @1 C (QU{a}) and Q2 C (Q U {b}). It is clear that Q1 I'Q2 C @ which
is contradiction, since Q1I'Qs € S. Therefore (a)I'(b) Z ) and @ is a prime
ideal of M contained I. By Proposition 4.1, there exists a minimal prime
ideal P C ). But P € &, contradictory with ) € A. Above contradicts
show that there exists Q' = Pi\I'...P,, € S such that ' C I.

Now for each P € Min(I) we have Q' C I C P and PI'P,...P,, C P. It
is clear that P; C P for some 1 < j < m. Thus P; = P, since P is minimal.
Hence Min(I) = { Py, P, ..., P, } is finite. O

Proposition 4.3. For proper Mr-submodule B of A, the following state-
ments equivalent:

1. For every Mr-submodule C of A, if B C C, then (B : A) = (B :C).
2. For every (m,a) € M x A, if ml'a C B, then a € B orm € (B : A).

Proof. (1) = (2) Let (m,a) € M x A such that mI'a C B and a ¢ B. It
is clear that B C B + MT'a. Since mI'(B + MTa) C mI'B + mI'(MT'a) =
mI'B + MT(ml'a) C B, we conclude from statement (1) that m € (B :
B+ MTa) = (B : A) and the proof is now complete.

(2) = (1) Let C be a Mp-submodule of A such that B C C. It is clear
that (B : A) C (B : C). Now, suppose that m € (B : C). Since B C C,
we infer that there exists a € C'\ B such that mI'a C B. By statement (2),
m € (B : A) and the proof is now complete.

O]

Definition 4.2. A proper Mr-submodule B of A is said to be prime if mI'a C
B for (m,a) € M x A implies that either a € B orm € (B : A).

Proposition 4.4. If B is a prime Mr-submodule of A, then (B : A) is a
prime ideal of I'-ring M.
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Proof. Let x,y € M such that (x)I'(y) C (B : A) and = € (B : A). Then
there exists v € I' and a € A such that zya ¢ B, and also, yI'(xya) =
(yI'z)ya = (2T'y)ya € B. Since B is a prime Mp-submodule of A and
zya ¢ B, we conclude that yI'A C B, i. e., y € (B : A). The proof is now
complete. O

Proposition 4.5. Let A be a multiplication left Mr-module, and B, By, ...,
By be Mr-submodules of A. If B is a prime Mr-submodule of A, then the

following statements are equivalent.
1. B; € B for some 1 <j <k.
2. N, B: C B.

Proof. (1) = (2) It is clear.

(2) = (1) We have B; = I,I'A for some ideals I;, (1 <1i < k) of I'-ring M.
Then (N, IHTA C N (LTA) =N, B: € Bandso ,_, I, C (B : A).
Since M is a commutative I'-ring, we infer that for every permutations 6 of
{1, 2, ey k‘}, IIFIQ cee ]k = ]9(1)Flg(2) cee Ig(k), it follows that ]1FIQ cee Ik g
Ni, I; € (B : A). Since by Proposition 4.4, (B : A) is prime ideal of T-ring
M, we conclude that I; C (B : A) for some 1 < j < k. Therefore, by
Proposition 3.3, B; = I,T’TA C B for some 1 < j <k. O

Proposition 4.6. If A is a multiplication left Mr-module, then for Mp-
submodule B of A, the following statements are equivalent.

1. B is prime Mr-submodule of A.
2. (B : A) is prime ideal of I'-ring M.

3. There exists prime ideal P of I'-ring M such that B = PT'A and for
every ideal I of M, IT'A C B implies that I C P.

Proof. (1) = (2) By Proposition 4.4, It is evident.
(2) = (3) We put

M ={P:B=PI'Aand P is an ideal of I'-ring M }

Since A is multiplication left Mp-module, we conclude that (M, C) is a non-
empty partial order set. Let {Py\}rea € M be a chain. By Proposition 3.10,
Maea Pr € M is an upper bound of {P\}iea. By Zorn’s Lemma M has a
maximal element. Thus, we can pick a P to be maximal element of M. Let
z,y € M and (z)['(y) C P. Hence ({(x)I'(y))A C PTA = B and we infer
that (x)I'(y) C (B : A). Now, by statement (2), x € (B: A) ory € (B : A).
Since A is multiplication left Mp-module, we conclude from the Proposition
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3.3 that B = (B : A)T'A, it follows that (B : A) € M. On the other hand,
clearly P C (B : A) andso P = (B : A),ie.,, z € Pory € P, Thus P is
prime ideal of I'-ring M.

(3) = (1) Let prime ideal P of I'-ring M such that B = PT'A and for
every ideal I of I'-ring M, ITA C B implies that I C P. It is clear that
P = (B:A). Lt m e M and a € A such that mI'a C B. Since A is a
multiplication S-act, we conclude that there exists an ideal I of I'-ring M
such that (a) = IT'A, it follows that (mI'[)'’A = mI'(ITA) = mI'(MTa) =
(mIM)l'a = (MT'm)l'a = MT'(mI'a) C B. Therefore mI'I C (B : A) = P
and it is easy to see directly that (m)['l C (B : A). Then mI’A C B or
a € ITA C B and the proof is now complete. O

Lemma 4.2. Let A be a finitely generated left Mr-module. If I is an ideal
of M such that A = IT'A, then there exists i € I such that (1 — i)y A = 0.

Proof. If A=< ay,...,a, >, then forevery 1 < i < n, there exists y;1,...,¥yin €
I such that a; = Z?zl YijYoa;, it follows that

—Yi1Yoa1 — -+ — Yi(i—1)YoQi—1 T (1 —=yii)yoa; — Yi(i+1)Y0it1 =+ — YinYoln = 0.
If
L—yn —v2 -+ —Yin
B=| : S N
—Yn1 —Yn2 - 11— Ynn

then there exists y € I such that detr(B) = (1 + y), where

detF(B) = Z Sign(O')bl’Um70b2’0(2)’70 T Wobn’a(n)

and ¢ runs over all the permutation on {1,2,...,n} (see [13]). Since for
every 1 < i < n, detr(B)ya; = 0, we conclude that (14 y)y9A = 0 and by
setting ¢ = —y the proof will be completed. O

Proposition 4.7. Let A be a finitely generated faitfull multiplication left My -
module. For proper ideal of P in M, the following statements are equivalent.

1. P is a prime ideal of M.
2. PT'A is a prime Mrp-submodule of A.

Proof. (1) = (2) Let I be an ideal of M such that IT'A C PT'A. Then by
Proposition 3.11, either / C P or A= [P : [|['A. If A= [P : I|l'A, then by
Lemma 4.2, there exists ¢ € [P : I] such that (1 —i)yA = 0. Since A is a
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faitfull Mpr-module, we conclude that ¢ = 1 and I C P. Hence by Proposition
4.6, PI'A is a prime Mp-submodule of A.

(2) = (1) Since A is a faitfull Mpr-module and [PTA : ATA C PTA,
we conclude from the Proposition 3.11 and Lemma 4.2 that [PT'A: A] C P.
Hence [PT'A : A] = P and by Proposition 4.6, P is a prime ideal of M. [

Proposition 4.8. Let A be a multiplication left Myr-module. Then

1. If M satisfies ACC (DCC) on prime ideals, then A satisfies ACC
(DCC) on prime Mr-submodules.

2. If A is faitfull Mpr-module and (B : A) is a minimal prime ideal in M,
then B is a minimal prime Mrp-submodule of A.

Proof. (1) Assume that By C By C ... is a chain of prime Mp-submodule of
A. By Proposition 4.4, (B; : A) C (By : A) C ... is a chain of prime ideal
of I'-ring M. By hypothesis there exists k& € N such that for every ¢ > k,
(Bi: A) = (By : A). It follows from Proposition 3.3 that B; = (B; : A)TA =
(B : A)'A = By,. Thus A satisfies ACC on prime Mp-submodules.

(2) assume that B’ is a prime Mp-submodule of A such that B’ C B.
By Proposition 4.6, (B’ : A) C (B : A) is a chain of prime ideal of I'-ring
M. By hypothesis (B" : A) = (B : A), it follows from Proposition 3.3
that B' = (B’ : A)TA = (B : A)TA = B. Thus B is a minimal prime
Mrp-submodule of A. H

Proposition 4.9. Let A be a finitely generated faitfull multiplication left
Mr-module. Then

1. If A satisfies ACC (DCC') on prime Mryp-submodules, then T'-ring M
satisfies ACC' (DCC') on prime ideals.

2. If B is a minimal prime Mp-submodule of A, then (B : A) is a minimal
prime ideal of I'-ring M.

Proof. (1) Assume that P, C P, C ... is a chain of prime ideals of I'-ring M.
By Proposition 4.7, PLT'A C P,I'A C ... is a chain of prime Mp-submodule of
A. By hypothesis there exists k € N such that for every i > k, P,I'A = P,I'A.
Since A is a finitely generated faitfull multiplication Mp-module, we conclude
from the Proposition 3.11 and Lemma 4.2 that P, = P;.

(2) By Proposition 4.6, (B : A) is a prime ideal of [-ring M. Assume that
P is a prime ideal of I'-ring M such that P C (B : A). Hence by Proposition
3.3, PTAC (B: A)I'A = B. Since by Proposition 4.7, PTI'A is a prime M-
submodule of A, we conclude from our hypothesis that PT'A = (B : A)T'A.
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Since A is a finitely generated faitfull multiplication Mp-module, we conclude
from the Proposition 3.11 and Lemma 4.2 that P = (B : A). The proof is
now complete. []

Proposition 4.10. Let I" be a finitely generated group. Let A be a finitely
generated faitfull multiplication left Mr-module.

1. If every prime ideal of I'-ring M is finitely generated, then A contains
only a finitely many minimal prime Mr-submodule.

2. If every minimal prime Mrp-submodule of A is finitely generated, then
['-ring M contains only a finite number of minimal prime ideal.

Proof. (1) Assume that { By }aca is the family of minimal prime Mp-submodules
of A. Set Iy = (By : A) for A\ € A. By Proposition 4.9, each I, is a min-
imal prime ideal of I'-ring M. On the other hand, by Proposition 4.2, M
contains only a finite number of minimal prime ideal as {I, I3, ... I,}. Now
suppose that A € A. So I, = I;, for some 1 < i < n and by Proposition
3.3, By=I1I'A=LLT'A. Thus {I,T'A, IL,T'A,..., I, I'A} is the finite family of
minimal prime Mp-submodule of A.

(2) Suppose that I and J are two distinct minimal prime ideal of I'-ring
M. By Proposition 3.11 and Lemma 4.2, A # IT'A # JI'A and also, by
Proposition 4.7, IT A and JI'A are prime Mp-submodules of A. Assume that
By and B, are two prime Mp-submodules of A such that By C IT'A and
B, C JT'A. By Proposition 3.3, By = (By : A)T'A and By = (By : A)TA. By
Proposition 3.11 and Lemma 4.2, (B : A) C [ and (By : A) C J. Since [
and J are two distinct minimal prime ideal of I'-ring M, we conclude from
the Proposition 4.4 that (B; : A) = I and (B : A) = J. This says that IT'A
and JI'A are two distinct minimal prime Mp-submodules of A. Now if I'-ring
M contains infinite many minimal prime ideals, then A must have infinitely
many minimal prime Mp-submodules which is contradiction. O]
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Abstract

It is important for modern businesses to search the ways for contin-
uous improvement in performance of their supply chains. The effective
coordination and integrated decision making across the supply chain
enhances the performance among its various partners in a multi stage
network. The partners considered in this paper are product suppliers,
processing points (PP), distribution centres (DC) and retail outlets
(RO). The network addresses an uncertain environment threatened
by different sources in order to captivate the real world conditions.
The uncertain demand of deteriorating products and its dependent
costs develop uncertainties in the environment. On the other hand,
suppliers and processing points have restricted capacities for the re-
tail outlets’ order amount happened in each period. A bi-objective
non-linear fuzzy mathematical model is developed in which the uncer-
tainties are represented by the fuzzy set theory. The proposed model
shows cost minimization and best supplier selection coordination un-
der the conditions of capacity constraints, uncertain parameters and
product’s deteriorating nature. The fish and fish products give good
examples for the proposed model. To solve, the model is converted
into crisp form and solved with the help of fuzzy goal programming.

Key words: multi stage, supplier selection, processing point,
fuzzy goal programming, supply chain, Bi-objective.
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1 Introduction

With the growing importance of supply chain management (SCM) in en-
terprise development and in the operation of socio-economic systems, cost
management has become a strategic business issue in recent years. It in-
volves not only the financial flows but also the associated material lows and
information flows among supply chain partners. Moreover, it plays an in-
dispensable role in bringing profits and competitive advantage to firms, and
consequently receives increasing attention from both supply chain managers
and academics. Activities in supply chain system consist of transforming
natural resources, raw materials and components into finished product and
their final delivery to the end customers. Most of these economic activities
form an integral part of the value chain. From this view point, cost manage-
ment in supply chains is not limited to individual enterprises, but extends to
all the purchasing, warehousing, production and distribution activities along
the chain. Its goal is to provide a management tool and method to design
the integrated chain, to promote its development and to reduce the total
cost of supply chain system. However, a lot more complexity is involved in
effectively integrating all the supply chain activities in a cost efficient man-
ner owing to shorter life cycle of products and increased competition among
suppliers who are offering different opportunities to the retailer. The un-
certain demand of deteriorating products and their dependent costs creates
uncertainty in the environment and consequently results in an indecisive and
unsure environment for the decision makers. Choosing high level of procured
quantity and inventory to avoid shortages will definitely lead to an immense
increase in the cost of purchase and inventory holding. In this regard, op-
erations management practices and mathematical models provide a sound
framework for effective and integrative decision making across supply chain.
For minimizing the cost and improving the overall performance, major func-
tions considered are economic ordered quantity decisions, supplier selection
decisions, inventory & capacity decisions and transportation policies in multi
periods and for multi products. While economic ordered quantity decisions
aim to minimize the cost of procurement, inventory and transportation, the
intent of supplier selection and transportation policy selection decisions is to
maximize inbound logistics performance by attaining a high degree of quality
and delivery performance. Due to the inherent interdependency among these
decisions, a firm cannot optimize them separately. Hence the main purpose
of this paper is to develop a model addressing above issues i.e. to character-
ize the optimal decisions that each partner in supply chain should adopt to
motivate the chain partners to coordinate so that everyone benefits from the
improved performance of the system.
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Though procurement functions need to consider cost minimization objec-
tive, yet in doing so one cannot compromise on quality and delivery related
criteria. Nowadays, quality and delivery related objectives are being given
higher priority than cost criterion during procurement decisions. Suppliers’
performance on quality and delivery criteria has a significant influence on the
ordered quantity and the total transportation costs. Taking into account the
above observations, in this study we develop a fuzzy bi-objective non-linear
programming model for an integrated economic ordered quantity, supplier
selection and transportation policy problem. We investigate a problem in
which multi products are procured from multiple suppliers in multiple pe-
riods considering limitations on capacity at supplier point and processing
point for deteriorating products. We also incorporate cost of inventory at
distribution centres & retail outlets and transportation cost and policy con-
cepts in one stage to another. Imprecise demand and other uncertain known
parameters make the environment of model uncertain and fuzzy. To summa-
rize the above discussions, the present work shows (1) a fuzzy bi-objective
multi stage non-linear optimization model that includes computation of cost
of procurement, processing, holding and transportation as first objective and
the other objective shows the process to choose best supplier on the basis of
delivery and quality; (2) the coordination among multi stages, i.e. (i) pro-
curement stage; (ii) processing stage constituted of (a) Receiving & Scanning,
(b) Sorting & Packaging & (c) Scanning & Dispatching; (iii) distribution cen-
tres and (iv) retail outlets; (3) transportation policies and minimum cost per
weight from processing stage to distribution centres and transportation cost
per unit from distribution centre to retail outlet; (4) fuzzy set theory to coor-
dinate uncertain parameters; (5) coordination in procurement, demand and
inventory so the zero shortage is ensured.

2 Literature Review

There are vast researches working on supplier selection problems with
different approaches. One of the most important decisions related to pro-
curement operations is supplier evaluation and selection. There are several
factors involved such as price offered by the supplier, lead time, the quality of
items, the capacity of supplier and the geographical location of supplier while
making supplier evaluation and selection decisions (Ho et al., 2010). Ho et al.
(2010), the three most important criteria considered while selecting suppliers
are product quality, delivery lead time and price. Hassini (2008) studies a
lot sizing and supplier selection problem when supplier capacity reservation
dependent on lead time. Ravindran, Bilsel, Wadhwa, and Yang (2010) study
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supplier selection and order allocation considering incremental price breaks.
Liao and Rittscher (2007) propose a multi objective programming model
for supplier selection, procurement lot sizing and carrier selection decisions.
Razmi and Maghool (2010) propose a fuzzy bi-objective model for multiple
items, multiple period, supplier selection and purchasing problem under ca-
pacity constraint and budget limitation. Zhang and Zhang (2011) formulate
a mixed integer programming model for selecting suppliers and allocating
the ordering quantity properly among the selected suppliers to minimize the
selection, purchase and inventory costs. Jolai, Yazdian, Shahanaghi, and
Khojasteh (2011) proposed a two-phase approach for supplier selection and
order allocation problem under fuzzy environment for multiple products from
multiple suppliers in multiple periods. Pal, Sana, and Chaudhuri (2012) ad-
dressed a multi-echelon suppler chain with two suppliers in which the main
supplier may face supply disruption and the secondary supplier is reliable but
more expensive, and the manufacturer may produce defective items. Kilic
(2013) discussed an integrated approach including fuzzy Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) and a mixed integer
linear programming model is developed to select the best supplier in a multi-
item/multi-supplier environment.

Few of the studies have addressed problems having multi objectives and
with fuzziness. Madronero, Peidro, and Vassant (2010) used S-curve mem-
bership functions for Fuzzy aspiration levels for objective functions, maxi-
mum capacity of the vendors as RHS, budget amount allocated to vendors
as RHS with Fuzzy programming by using modified Werner’s fuzzy or op-
erator. Wu, Zhang, Wu and Olson (2010) used Trapezoidal membership
functions for Fuzzy model parameters as objective function coefficients and
right hand side (RHS) constants with Sequential quadratic programming.
Arikan (2011) used Triangular and Right triangular membership functions
for Fuzzy aspiration levels for objective functions and demand level as RHS
with Lai and Hwang’s augmented max—min model. Concerning with multi-
choice goals, decision-making behaviour and limit of resources, Lee, Kang,
and Chang (2009) develop a fuzzy multiple goal programming model to help
downstream companies to select thin film transistor liquid display suppli-
ers for cooperation. They used triangular membership functions for fuzzy
aspiration levels for objective functions. Further, a multi-objective model
for supplier selection in multi-service outsourcing is developed by Feng, Fan,
and Li (2011). A multi objective mathematical model has been discussed by
Seifbarghy and Esfandiari (2013), which includes minimizing the transaction
costs of purchasing from suppliers as well as other objectives as minimizing
the purchasing cost, rejected units, and late delivered units, and maximizing
the evaluation scores of the selected suppliers. The problem is converted into
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single objective using weighting method and solved using meta-heuristics.
Aghai, Mollaverdi and Saddagh (2014), outlined a fuzzy multi-objective pro-
gramming model to propose supplier selection taking quantitative, qualita-
tive, and risk factors into consideration. Also quantity discount has been
considered to determine the best suppliers and to place the optimal order
quantities among them.

From the literature, it is evident that most studies have not paid much
attention to uncertainty in supplier’s information and many problematic cri-
teria in the conditions of multi product, transportation modes and multiple
sourcing. The main purpose of this paper has been outlined as (1) to pro-
pose a fuzzy bi-objective mathematical model to choose the supplier with best
performance on the basis of quality & delivery percentages and to keep the
cost optimum while procurement, processing of products and transportation,
the ideal number of inventory items so that shortages does not take place,
and optimum quantity from suppliers subject to the constraints pertaining
to demand, suppliers capacity, processing capacity and inspection, (2) the
objectives are conflicting in nature as minimization of cost and performance
maximization of the supplier. Because of uncertain parameters the envi-
ronment of the problem becomes fuzzy, for which, fuzzy goal programming
method has been used to solve the mathematical model of cost minimization
and suppliers selection with maximum performance.

3 Problem Definition

To manage different entities to minimize their cost and simultaneously
measuring the suppliers’ performances in the environment of uncertainty, the
current paper presents a fuzzy bi-objective mixed integer non-liner model.
The first objective of the proposed model minimizes the cost of integration
of procurement and distribution. This comprises of multi source (suppliers),
two processing points, multi distribution centres & multi retail outlets and
incorporating transportation costs and policies. The second objective focuses
on performance and selection of suppliers on the bases of on-time delivery
percentage and acceptance percentage of the ordered quantity.

The first stage of first objective explains procurement cost as per optimum
procured quantity from the active suppliers, processing cost per unit in three
levels at processing point. At this point receiving, scanning, sorting and
packing of goods takes time, hence holding cost is included in the processing
cost. The second stage shows the fuzzy cost of holding at distribution centres
and cost of transportation of goods from processing points to distribution
centres which is completed through two modes of transportation as full truck
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load (TL) mode and truck load (TL) & less than truck load (LTL) mode. In
truck load transportation mode, the cost is fixed of one truck up to a given
capacity. In this mode, the company may use less than the capacity available
but cost per truck will not be reduced. However, sometimes the weighted
quantity may not be large enough to corroborate the cost associated with a
TL mode. In such situation, a LTL mode may be used. LTL is defined as
a shipment of weighted quantity which does not fill a truck. In such a case,
transportation cost is taken on the bases of per unit weight. The third stage
includes inspection, fuzzy holding cost at retail outlet and transportation
cost per unit in the account from distribution centres to retail outlet. The
second objective is to find best suppliers with the combination of fuzzy on-
time delivery percentage and fuzzy acceptance percentage of the ordered
quantity.

The model integrates inventory, procurement and transportation mecha-
nism to minimize all costs discussed above and also chooses the best supplier.
In the model, all the co-ordinations among supply chain partners are being
managed under one buyer who is taking care of processing points, distribution
centres and retail outlets but not sources (suppliers) directly. The total cost
of the model becomes fuzzy due to fuzzy holding cost and demand. On the
other hand, performance level is also fuzzy as percentage of on-time delivery
and acceptances are fuzzy. Hence, the model discussed above is fuzzy bi-
objective mixed integer non-linear model. In the solution process, the fuzzy
model is converted into crisp and further fuzzy goal programming approach
is employed where each objective could be assigned a different weight.

4 Proposed Model Formulation

The model is based on following assumptions:

e Finite planning horizon

e Demand at retail outlet is uncertain and no shortages are allowed
e Initial inventory at the beginning of planning horizon is zero

e Inventory at retail outlet deteriorates at constant rate

e Inspection cost of received goods at retail out is fixed

e No transportation cost is discussed as it is considered as part of pur-
chasing cost

e Holding cost is part of processing cost at processing point
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4.1 Sets

Set Cardinality | Index
Product P )
Supplier J Jj
Processing Point A z
Distribution Centre | M m
Retail outlet O 0
Time period T t

4.2 Parameters

6’ : Fuzzy total cost
Co & Cf : Aspiration & Tolerance level of fuzzy total cost

PR : Fuzzy performance of supplier

PRy & PR{ : Aspiration & Tolerance level of fuzzy performance of sup-
plier

]:;{n lt) & HD;py : Fuzzy & Defuzzified holding cost per unit of product ¢ for
t'" period at m' distribution centre

©ijz + Unit purchase cost for i'" product in t** period from supplier j for
2" processing point

A: Cost per weight of transportation in LTL policy

K.t : Fixed freight cost for each truck load in period tfrom processing
point z to distribution centre m

TCimer - Transportation cost for unit in period tfrom distribution centre
m to retail outlet o

H {% & HR;y : Fuzzy & defuzzified holding cost per unit of product ¢ for
t'" period at retail outlet o
Aiot © Inspection cost per unit of product i in period t at retail outlet o

13 & Doy : Fuzzy & defuzzified demand at retail outlet o for product i in
perizgtd t

IN ;;: Initial Inventory processing point z in beginning of planning hori-
zon for product ¢

n : Deterioration percentage of i product at retail outlet

w;: Per unit weight of product @

w : Weight transported in each full truck
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D? & DTj.; : Fuzzy & defuzzified percentage of on-time delivery time
ijz
for product ¢ in period ¢ for supplier j for processing point z

ég & Eijzt : Fuzzy & defuzzified percentage of acceptance for product
7 in period t for supplier j for processing point z

d4j.: Capacity at supplier j for product ifor 2" processing point

izt © Capacity of Receiving & Scanning level (r) at 2z processing point
for product i in period t

Cizrt » Cost of Receiving & Scanning level (r) at 2" processing point for
product i in period t

Bi-st + Capacity of Sorting & Packing level (s) at z'* processing point for
product i in period t

Ci.st : Cost of Sorting & Packing (s) at 2 processing point for product
iin period t

Yizar : Capacity of Scanning & Dispatching level (d) at 2" processing
point for product i in period t

Cizar + Cost of Scanning & Dispatching (d) at 2" processing point for
product i in period t

4.3 Decision Variable

Xijz + Optimum ordered quantity of product ¢ ordered in period tfrom
supplier j transported to processing point z

Vije: If ordered quantity is procured by active supplier j for product 7 in
period tthen the variable takes value 1 otherwise zero

U,me: Usage of modes, either TL & LTL mode (value is 1) or only TL
mode (value is 0)

4.4 Operating Variables

Y;.: : Procured quantity reached at Receiving & Scanning level of zth
processing point from all the active suppliers

Aiz - Goods moved to Sorting & Packaging from Receiving & Scanning
level at z" processing point

E;: : Goods reaching at m!”* distribution centre from all processing points

J=mt © Total number of truck loads in period ¢ from processing point z to
distribution centre m

Q.m: : Weighted quantity in excess of truckload capacity

G : Total quantity reached at retail outlet o from all distribution centres

I;,; : Inventory at processing point in period t for product i

L - Inventory at distribution centre in period t for product i
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L, - Inventory at retail outlet in period t for product i

Bi.m: : Quantity of product i shipped from z** processing point to m!"

distribution centre in period t

Fimot : Quantity of product i shipped from m!" distribution centre to o*

retail outlet in period t

L.m: : Weighted quantity transported from 2! processing point to m!"

distribution centre in period t

4.5 Fuzzy Optimization Model Formulation

Fuzzy dependent environment with respect to uncertain independent vari-
ables cannot be quantified by Crisp mathematical programming approaches.
Fuzzy optimization approach permits adequate solutions of real problems in
the presence of vague information by defining the mechanisms to quantify
uncertainties directly. Therefore, we formulate fuzzy optimization model for
vague aspiration levels on cost, demand, on-time delivery percentage and
acceptance percentage the decision maker may decide the aspiration and tol-
erance levels on the basis of past experience and knowledge.

4.5.1 Formulation of objectives

Initially a bi-objective fuzzy model is formulated which discusses about
fuzzy total cost and performance of the suppliers. The first objective of the
model minimizes the total cost, consisting of procurement cost of goods from
supplier, processing cost, holding cost at distribution centres, transportation
cost from processing point to distribution centres and further to retail out-
lets, holding cost at retail outlets and finally inspection cost of the reached
quantity at retail outlets.

P
§ (pijtiijth;jzt

1

T Zz
— =
R

Z zzrtY;zt + (Z szst + Z C’LZdt) izt
T M P
Y Z > HD By
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The second objective discusses the performance of suppliers and maximizes
the performance percentage of supplier as per on-delivery time percentage
and acceptance percentage of ordered quantity.

z
Mazximize PNR = ZZ

t=1 z=1 j

B!

J
(57 +4¢) iy
— 172t 152t

(2

4.5.2 Constraint Formulation

All the suppliers must have enough capacity to fulfil the orders. The
following equation ensures that the active supplier shall have enough capacity
to complete the orders from processing point.

Xijat < 0ij:Vijr Vi,7, 2,1

Next equation ensures that only one supplier can be active for a particular
product in a period. However, same supplier can be active again in next
period.

J
Z‘/ijzt =1 VZ, i,z
j=1

Goods are reaching at z" processing point from all the suppliers.

J
Yrizt = ZXijzt VZ, t,Z

Jj=1

At Receiving & Scanning level in processing point, 2% from each lot is re-
jected and removed.
Aizt = 0981/12)5 Vz, t,Z

t

Quantity dispatched from z'™ processing point is being transported to all

distribution centres.

M
Aizt = Z Bizmt VZ, Z, t

m=1
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Goods reaching at m'" distribution centre are transported from all the pro-
cessing points.

Z
Eimt - Z Bizmt VZ, m, t

z=1

Goods are transported from m'® distribution centre to all the retail outlets.

o
Eimt = Z Emot VZ, m, t

o=1

Goods reaching at o'® retail outlets Eiot are transported from all the distri-
bution centres

M
Giot = Z Emot Vl> o, t
m=1

Following three equations explain the capacities in processing point at all the
levels respectively i.e. Receiving and Scanning level, Sorting & Packaging
level and Scanning and Dispatching level.

Yizt S Qizrt VZ, Z,t,’l"

Aizt S Bizst VZ7 t,Z,S
Aizt S Yizdt \V/Z, tu Z, d

Next three equations show balancing equations at Processing Point, which
also takes care of no shortages assumption. First two equations of the set
calculate inventory at end of the period with respect to quantity reached at
receiving and scanning level from the supplier and quantity sent to sorting &
packaging level. The third equitation takes care of the shortages by balancing
the quantity between the two levels discussed above.

[izt = Iiztfl + Y;zt - Aizt \V/Z, t> 17 z

[izt - IN’izt + Y:izt - Aizt \V/Z, = 17 z

T T T
Zlizt + Zifzzt Z ZAzzt V’L, <
t=1 t=1 t=1
Balancing at distribution centres have been discussed in next three equation,

where assumption of no shortages has also been taken care of.

0]
Limt = Timt—1 + Eimi = Y Fimo Vi, t > 1,m

o=1
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Iiml =0 Vz,m

T T T O
Z ]imt + Z Eimt Z Z Z -Fimot Vz,m
t=1 t=1

t=1 o=1

At retail outlets also, inventory has been balanced with respect to the received
quantity and demand.

Iiot = Iiotfl + Giot - B _nIiot VZ, t> 17 0
1ot

11'01:0 Vi,O
T T T
(1_77)Z[iot+ZGiotZZDt Vi,0
—1 —1 ~ i

Following equation is an integrator and calculates the weighted quantity
which is to be transported from processing point to distribution centres.

P
Lzmt = szBzzmt VZ, t7m

i=1

The next equation finds out transportation policy as per the weighted quan-
tity. Here, the costs of TL policy and TL&LTL policy are compared as per
the weight.

Lzmt S (szt + jzmtw) Umit + (.]zmt + 1) w (1 - uzmt) VZ, m, t
The calculation of overhead quantity in TL&LTL policy is calculated by

comparing total weighted quantity with total number of full truck loads as
per weight is discussed in following equation.

Lzmt - szt + jzmtw \V/Z, m, 1

Lastly, describing the nature of decision variables and enforcing the binary
and non-negative restrictions to them.

Xijzta Y;zta Aizt7 Eimt> Emot, Gi0t7 Lzmt Z 07 ‘/z’jz:‘n Uzmit € [07 1]a

[imtu [iotv [izta szh .jzmt are 1Htegel"~
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4.5.3 Formulated Model

Minimize 5 = Z

P
Z Z Pijet Xijet Vijat
Z CZZTtY;Zt + (Z szst + Z szdt) int

T M P
3N S HD By
t;l m];l z;l
+ Z Z Z [(Aszt + ]zthzmt> Uzmt + (]zmt + 1) szt (1 uzmt)]
tj“l mO:1 Z]\:41 P T O P T O
+ Z Z Z Z Tczmothmot + Z Z Z HR [zot + Z Z Z )\zotth
t=1 o=1 m=1 i=1 t=1 o=1 i=1 t=1 o=1 i=1

N T Z J -~ o
Masimize PR= Y353 (D7+4¢) Vi
- ijz jz

J
Subject to Xjj.e < 045 Vijr Vi, J, 2,6 Y Viju=1 Vi, t,2
j=1
J
inzt == Z Xijzt VZ, t,Z
j=1

Aizt = 098}/;% VZ, t, z
M

Aizt - Z Bizmt VZ, 2, t
m=1

Z
E’imt = Z Bizmt VZJ m, t

z=1

Eimt - z Emot \V/Za m, t

o=1

M
Giot = Z Emot VZ7 0, t

m=1

Y;zt S Azt VZ, Z7t7T

Aizt S ﬁizst V’L, t; <8

Aizt < Vizdt Vl, t; 2, d

]izt = ]izt—l + Y;'zt - Aizt VZ7 > 1a z

[izt = INizt + Y;zt - Aizt VZ, = 17 Z
T T

T
Z [izt + Z Yvizt Z Z Aizt VZ>Z
t=1 t=1 t=1

o1



Gandhi, Jha

o]
Iimt = Iimt—l + Eimt - Z Emot \V/Z, t> ]-7m

o=1
Izml =0 \V/Z m
T O
Z Izmt + Z Ezmt Z Z imot ‘v’z,m
Iiot = Iiot—l + Giot - D _nIiot VZ, t> ]-7 o
1ot

[zol — O Vz o
( )Z]zot+ZGzot>Zl)t \V/ZO
~ t—=1 10
P t=
Lzmt - Z wiBizmt Vz,t,m
i=1

Lzmt < (szt + jzmtw) Uzmt + (jzmt + 1) w (1 - uzmt) VZ, m,t
zmt szt +]zmtw vz m, t

Xijots Yizt, Aizty Eimt, Fimots Gioty Lamt = 05 Vijat, Ueme € [0, 1];

[imtu [iot7 [izta szt7 .jzmt are integer'

5 Solution Algorithm

5.1 Fuzzy Solution Algorithm

In following algorithm by Zimmermann (1976) specifies the sequential
steps to solve the fuzzy mathematical programming problems.

Step 1. Compute the crisp equivalent of the fuzzy parameters using a
defuzzification function. Here, ranking technique is employed to defuzzify
the parameters as

Fy(A) = (i + 2a., + ay) /4,

where a;, a,,, a, are the Triangular Fuzzy Numbers (TFN).
Let D be the defuzzified value of D and (DL,, D2, D3 ) for each i, 0 & t be

! . iot? 1oty ~iot
1ot 10t

triangular fuzzy numbers then,D, , = (D}, +2D?, + D} ) /4. Similarly, H D

1ot

and H. {% are defuzzified aspired holding cost at warehouse and destination.
1o}

Step 2. Since industry is highly volatile and customer demand changes in
every short span, a precise estimation of cost and performance aspirations is
a major area of discussion. Hence, a better way to come out of such situation
is to incorporate tolerance and aspiration level with the main objectives. The
model discussed in section 4.5.3 can thus be re-written as follows:

Find X,

XesS
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( )ZIZOt+ZGZOt>Zl)t VZO
~ t=1 10

C(X)<Co

PR> PR,

Xz'jzt7 }/;ztv Aizt; Eimtu ~Fimot7 Giotv Lzmt Z 0, V;jztv Uzmt € [07 1]7

Iimt; ]iotv Iizta szta jzmt are integer.
Step3. Define appropriate membership functions for each fuzzy inequal-

ities as well as constraint corresponding to the objective functions.

1;C(X )<(J0
po(X) = %f ; Co < C(X) <Gy,
0; C(X)>C¢

1: PR> PR,
npr(X) = pr—pre i PRy < PR < PRy
0; PR < PR;

1; Li(X) > Dy

H’Iiot(X) = % D S ]zot<X) < EO

0; L (X) > D,

_ T O __ .,
Where Dy = > > Dinis the aspiration and D is the tolerance level to
t=1o=1
inventory constraints.

Step4. Employ extension principle to identify the fuzzy decision, which
results in a crisp mathematical programming problem given by

Maximize o

Subject to p.(X) > «,

ppr(X) = a,

Ko (X ) 2 «,

XesS

Where a represents the degree up to which the aspiration of the decision-
maker is met. The above problem can be solved by the standard crisp math-
ematical programming algorithms.

Step5. Following Bellman and Zadeh (1970), while solving the problem
following steps 1-4, the objective of the problem is also treated as a constraint.
Each constraint is considered to be an objective for the decision-maker and
the problem can be looked as a fuzzy bi-objective mathematical programming
problem. Further, each objective can have a different level of importance and
can be assigned weight to measure the relative importance. The resulting
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problem can be solved by the weighted min max approach. On substituting
the values for upg(x) and puc(z)the problem becomes
Maximize o

subject to

PR(z) > PRy — (1 — wya)(PRy — PR})

C(z) < Co+ (1 —wea)(Cy — Cp) (P1)
;o (X) e

XesS

wyp >0, wy >0, wy +wy =1, € [0, 1]

Step6. If a feasible solution is not obtained for the problem in Step 5,
then we can use the fuzzy goal programming approach to obtain a compro-
mised solution given by Mohamed (1997). The method is discussed in detail
in the next section.

5.2 Fuzzy Goal Programming Approach

On solving the problem, we found that the problem (P1) is not feasible;
hence the management goal cannot be achieved for a feasible value of «[0,1].
Then, we use the fuzzy goal programming technique to obtain a compro-
mised solution. The approach is based on the goal programming technique
for solving the crisp goal programming problem given by Mohamed (1997).
The maximum value of any membership function can be 1; maximization of
«[0,1] is equivalent to making it as close to 1 as best as possible. This can be
achieved by minimizing the negative deviational variables of goal program-
ming (i.e., ) from 1. The fuzzy goal programming formulation for the given
problem (P1) introducing the negative and positive deviational variables 7,
& p; is given as

Minimize u

subject to 1 pr(X) +m —p1 =1

po(X) +m—pa=1

u>w;*xn;  J=1,2

ni*xpi=0 j=12

wy + wy = 1

a=1—-u

nj,p; > 0; X € S;ue|0,1];wy,wy >0

6 Case Study

Fish is a highly perishable food which needs proper handling and preser-
vation if it is to have a long shelf life and also retain a desirable quality and
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its nutritional value. The central concern of fish processing is to prevent
fish from deterioration. When fish are captured or harvested for commercial
purposes, they need some pre-processing so they can be delivered to the next
part of the supply chain in a fresh and undamaged condition. This means,
for example, that fish caught by a fishing vessel need handling so they can
be stored safely until the boat lands the fish on shore. Some of the methods
to preserve and process fish and fish products include control of temperature
using ice, refrigeration or freezing, sorting and grading, chilling, storing the
chilled fish. The model is validated for the case on fish and fish products.
Case is taken for two suppliers, two processing points, three distribution cen-
tres and three retail outlets for three time periods. Each processing point has
its own internal three stages i.e. Receiving & Scanning, Sorting & Packing
and Scanning & Dispatching. At processing point, fish products are received
and scanned, which have been pre-processed to reduce the deterioration per-
centage. Afterwards, they are sorted as per quality checks and packed and
further sent to the next stage for final scanning before dispatching to the dis-
tribution centres. The objectives include minimizing the cost of procurement,
processing, transportation and inventory by obtaining the optimal ordered
quantity, transportation weights & minimum inventory and maximizing the
performance of procurement by choosing the best supplier on the basis of
delivery and quality. The data on cost of procurement from suppliers, pro-
cessing cost, transportation cost from one stage to another, cost of inspection
and inventory carrying cost has been discussed.

Three types of fish have been discussed in the case are Rohu, Katle and
Pomfret which are ranging from Rs.80 to Rs.190 per kg. In the case, uncertain
parameters are performance parameters, holding cost and demand. Further,
defuzzified holding costs at all distribution centres and retail outlets are
Rs.14, Rs.8 and Rs.8 for three fish types respectively in all the periods. The
capacity at both the suppliers is 300 and 380 packets for fish type ‘Rohu’, 370
and 390 packets for fish type ‘Katle’ and 360 and 380 packets for fish type
‘Pomfret’. In processing stage, the costs of receiving & scanning, sorting &
packing and scanning & dispatching are Rs.1, Rs.2 and Rs.2.5 respectively
per packet. Inspection cost per packet is Rs.2 and deterioration percentage
is constant with 3% deterioration cost.
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Product Type
Supplier Rohu | Katle | Pomfret
Supplier 1 | 134 90 190
Supplier 2 | 185 85 185
Table 1: Purchase Cost in all periods and at all processing points
Product Type
Processing Point | Rohu | Katle | Pomf
PP 1 320 310 300
PP 2 355 275 245
Table 2: Capacity at all stages in processing point for all periods
Supplier 1 to PP1 & PP2
Product Type | Period 1 Period 2 Period 3
AC |DT |AC |DT |AC |DT
Rohu 093 |10.98 |0.93 |0.98 |0.93 |0.98
Katle 0.99 1098 |0.99 |0.98 |[0.99 |0.98
Pomfret 0.95 [ 098 | 095 |0.98 |0.95 | 0.98
Supplier 2 to PP1 & PP2
Product Type | Period 1 Period 2 Period 3
AC |DT |AC | DT |AC |DT
Rohu 0.95 1099 | 095 |0.99 |0.95 |0.99
Katle 093 |0.97 |0.93 |0.97 |0.93 |0.97
Pomfret 0.95 | 097 | 0.95 [0.97 |0.95 | 097

Table 3:

De-fuzzified Delivery time (DT) and Acceptance (AC) Probabilities

Distribution Centre
Processing Point | DC1 | DC2 | DC3
PP 1 2000 2500 2500
PP 2 2200 2900 2400

Table 4: Transportation cost per truck
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Retail Outlet

Distribution Centre | RO1 | RO2 | RO 3
DC 1 2 2.2 1.9
DC 2 2.2 2.9 2.1
DC 3 1.9 1.8 2

Table 5: Transportation cost per packet from DC to RO

Product Type

Retail Outlet | Rohu | Katle | Pomfret
RO 1 100 160 140
RO 2 110 150 135
RO 3 105 170 150

Table 6: De-fuzzified demand in all time periods

Truckload per truck is 250kg. Overhead quantity transportation cost is
Rs.9 per packet.

6.1 Results and Managerial Implications

The model helps company to provide minimum total cost incurred co-
ordinating all the entities. Rs. 1085767 is the total cost which consists
of holding cost at distribution centres as Rs.65758, procurement cost of
Rs.856600, processing cost of Rs.33001, cost of transportation from process-
ing point to distribution centres of Rs.76588, holding cost at retail outlets of
Rs.28015.63, cost of transportation from distribution centres to retail outlets
of Rs.13848.80 and finally inspection cost of Rs.11956. It is observed from the
results that highest proportion is of the cost of procurement, which clearly
validates the requirement of supplier selection. Further, keeping a valid track
of transportation polices is equally important as the second highest portion
in the cost is due to the transportation cost only. Next observation is towards
the impact of the product’s nature as holding cost at distribution centre con-
tributes towards the third highest portion in the cost. To prevent the over
valuation of cost, the aspiration and tolerance level have been considered as
Rs.950000 and Rs.1220000. As validated with the help of cost, the suppli-
ers’ performance is second objective of the model which is a combination of
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on-time delivery and acceptance percentage of the suppliers. The higher the
performance of the supplier, better the performance of the company. Keeping
the aspiration level of suppliers’ performance as 39 and tolerance as 30, the
performance level of suppliers obtained is 35.04. The model tries to activate
the high performers to procure ordered quantity so that uncertainty in the
environment can be managed. Nearby 78% of the aspiration level of cost and
performance has been attained which makes the environment more certain
and crisp for future decisions.

Processing Point 1

Per. 1 Per. 2 Per. 3
Pr.T. S1 [ S2 | S1 |[S2 | S1 |S2
Rohu 0 350 | 0 350 | 0 350
Katle 350 | 0 350 | 0 350 [0
Pomfret | 350 | O 350 | 0 350 | 0
Processing Point 2
Per. 1 Per. 2 Per. 3
Pr.T. S1 [ S2 | S1 |[S2 |S1 |S2
Rohu 0 350 | 0 350 | 0 150
Katle 350 | 0 350 | 0 350 [0
Pomfret | 350 | O 350 | 0 350 | 0

Table 7: Optimum ordered quantity from supplier (S1-S2)

In Table 7, the positive ordered quantity indicates the active supplier
to supply goods as he has the highest performance percentage between the
two suppliers on the bases of on-time delivery, acceptance percentage and
capacity. It can help in reducing the procurement cost and making the
process smooth in further echelon.

Tables 8 and 9 shows ending inventory at processing points and retail
outlets, which ensures no shortages in the case of unexpected demand. It is
observed that at second retail outlet, storage capacity and infrastructure is
better as well as the cost of holding is also low, hence inventory is higher at
this outlet in comparison to others. Inventory at distribution is not discussed
as no inventory was leftover at any of the distribution centres.

While transporting weighted quantity to distribution centres, the policy
type, number of trucks and overhead weights are to be checked as each of
them incurs cost. In the Table 10 it is observed that while transporting
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Processing Point
Period 1 Period 2 Period 3

Product Type | PP1 | PP2 | PP1 | PP2 | PP1 | PP2
Rohu 7 7 14 14 21 21
Katle 7 7 14 14 21 21
Pomfret 3 7 10 14 17 21

Table 8: Inventory at processing points (in packets)

Retail Outlet

Period 1 Period 2 Period 3
ProductType | RO1| RO2 | RO3| RO1| RO2| RO3| RO1| RO2| RO3
Rohu 0 0 0 112 | 171 | 78 11 1698 |1
Katle 0 0 0 131 {69 |0 2 317 | 75
Pomfret 0 0 0 144 |58 |51 |5 487 | 8

Table 9: Inventory at retail outlets (in packets)

from processing point 1 to distribution centre 1 in period 2, only Truckload
(T*) policy is used as 250kg can be transported by 1 truck. In this case,
LTL policy will become expensive. On the other side, transporting from
processing point 1 to distribution centre 1 in period 1, TL & LTL’ policy
is used as 49kg should be transported as per unit weight. In the case of
TL&LTL policy, if overhead weighted quantity is transported through full
truckload, the cost of transportation will become much higher than using
LTL policy.

Where TL & LTL is indicated as TLT and only TL is indicated as T.

Some more operational variables who helped in smooth process of goods
from one level to other are as follows:

7 Conclusion

In the emerging business scenario, the concepts of time, volume and ca-
pacity become even more essential to the managerial decision-making. Cus-
tomers are more sensitive to delivery times and service quality. The coordi-
nation among the members of the chain helps them to make a cost-effective
procurement and distribution network as well as better response to the cus-
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Distribution Centre 1
Period 1 Period 2 Period 3

PP1 | PP2 | PP1 | PP2 | PP1 | PP2
Tpt Quantity 49 7 250 |0 329 | 250
No. of Trucks 0 0 1 0 1 0
Tpt Mode TLT?| TLT | T* T TLT
Qty Overhead | 49 7 0 0 79 0

Distribution Centre 2
Period 1 Period 2 Period 3

PP1 | PP2 | PP1 | PP2 | PP1 | PP2
Tpt Quantity 749 | 761 | 752 | 1000 | 686 | 500
No. of Trucks 2 3 3 4 2 2

Tpt Mode TLT | TLT | TLT | T T
Qty Overhead | 249 | 11 2 0 186 |0

Distribution Centre 3
Period 1 Period 2 Period 3
PP1 | PP2 | PP1 | PP2 | PP1 | PP2
Tpt Quantity 35 261 | 27 29 14 279
No. of Trucks 0 1 0 0 0 1
Tpt Mode TLT | TLT | TLT | TLT | TLT | TLT
Qty Overhead | 35 11 27 29 14 29

Table 10: Transported quantity, no. of trucks, transportation mode, over-
head quantity

E,,.. | Period1 Period 2 Period 3

Dis.C. | Rohu| Katle| Pomf | Rohu | Katle| Pomf | Rohu | Katle| Pomf
DC1 |18 16 22 94 144 12 1 0 578
DC2 | 451 |634 |425 |544 |534 |674 |657 |421 | 108
DC3 | 217 | 36 43 48 8 0 28 266 |0

Table 11:
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G, | Period 1 Period 2 Period 3

R.O. | Rohu | Katle| Pomf| Rohu| Katle| Pomf | Rohu | Katle| Pomf
RO1|0 35 0 215 1295 | 288 |0 31 1

RO 2 | 641 | 647 |426 |286 |221 |[195 | 658 |408 | 578
RO 3 | 45 4 64 185 | 170 | 203 | 28 247 | 107

Table 12:

tomers’ demand. The authors explain the coordination among many entities
of supply chain. As mentioned in the objectives of this study, the main
plan of this research is to find optimum quantity from the best suppliers
under fuzzy environment to develop an optimum coordination among multi
supplier, multi processing points, multi distribution centres and multiple
number of retail outlets. To attain the objective, a fuzzy bi-objective mathe-
matical model is formulated with objective functions of cost and combination
of timely delivery & acceptance of lot, keeping the constraints as supplier ca-
pacity, processing capacity, deteriorating nature of the product and truck
capacity. The parameters in study as holding cost, consumption, delivery
time and acceptance percentage are fuzzy in nature. To handle the issues of
uncertainty and fuzziness, the model is converted into crisp form with the
help of membership functions of fuzzy modeling. The parameters are also
converted into crisp form by using triangular fuzzy numbers. To obtain the
solutions, a fuzzy goal programming is employed. Hence, the current study
is able to find a balance between minimum cost and best performed supplier.
The proposed model was validated by applying to the real case study data.
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Abstract

Stochastic monoids and stochastic congruences are introduced and
the syntactic stochastic monoid M, associated to a subset L of a
stochastic monoid M is constructed. It is shown that My is mini-
mal among all stochastic epimorphisms h : M — M’ whose kernel
saturates L. The subset L is said to be stochastically recognizable
whenever M7, is finite. The so obtained class is closed under boolean
operations and inverse morphisms.

Key words: recognizability, stochastic monoids, minimization.

MSC 2010: 68R01, 63Q10, 20M32.

1 Introduction

A stochastic subset of a set M is a function F' : M — [0,1] with the
additional property X,,cpF(m) = 1, i.e., F is a discrete probability distri-
bution. The corresponding class is denoted by Stoc(M). Our subject of
study, in the present paper, are stochastic monoids which were introduced in
[4]. A stochastic monoid is a set M equipped with a stochastic multiplication
M x M — Stoc(M) which is associative and unitary. It can be viewed as a
nondeterministic monoid (cf. [1, 2, 3]) with multiplication M x M — P(M)
such that for all m;, my € M a discrete probability distribution is assigned
on the set m; - ma.
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A congruence on a stochastic monoid M is an equivalence ~ on M such
that my ~ mj and my ~ mj imply
2, (ma-ma)(n) = 3 (my - mj)(n)
neC neC
for all ~-classes C'. The quotient M/ ~ admits a stochastic monoid structure
rendering the canonical function m +— [m] an epimorphism of stochastic

monoids. The classical Isomorphism Theorem of Algebra still holds in the
stochastic setup, namely

for any epimorphism of stochastic monoids h : M — M’ and every
stochastic congruence ~ on M’ its inverse image h~'(~) defined by

mih™t(~)my it h(my) ~ h(my),

is again a stochastic congruence and the quotient stochastic monoids
M/h='(~) and M’/ ~ are isomorphic. In particular if ~ is the equality,
then h=!(=) is the kernel congruence of h (denoted by ~y,)

my ~p Mo iff h(ml) = h(mg),
and the stochastic monoids M/ ~, and M’ are isomorphic.

We show that stochastic congruences are closed under the join operation.
This allows us to construct the greatest stochastic congruence included in an
equivalence ~. It is the join of all stochastic congruences on M included into
~ and it is denoted by ~*°¢. The quotient stochastic monoid M/ ~*°¢ ig
denoted by M**¢ and has the following universal property:

stoc

given an epimorphism of stochastic monoids h : M — M’ whose kernel
~, saturates the equivalence ~ there exists a unique epimorphism of
stochastic monoids A’ : M’ — M?$%*¢ such that k' o h = h**¢, where

hstoc . M — M#t¢ is the canonical epimorphism into the quotient.

This result states that ~25°¢ is minimal among all epimorphisms saturating ~.

Let M be a stochastic monoid and L C M. Denote by ~ the greatest
congruence of M included in the partition (equivalence) {L, M — L}, i.e.,
~p={L, M — L}*". The quotient stochastic monoid M, = M/ ~p will be
called the syntactic stochastic monoid of L and it is characterized by the
following universal property.

For every stochastic monoid M and every epimorphism h : M — M’
verifying h~'(h(L)) = L, there exists a unique epimorphism h’ : M’ —
M; such that A’ o h = h; where h; : M — M; is the canonical
projection into the quotient.
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A subset L of a stochastic monoid M is stochastically recognizable if there
exist a finite stochastic monoid M’ and a morphism A : M — M’ such that
h=Y(h(L)) = L. By taking into account the previous result we get that L is
recognizable if and only if its syntactic stochastic monoid is finite. Moreover
stochastically recognizable subsets are closed under boolean operations and
inverse morphisms.

2 Stochastic Subsets

Some useful elementary facts are displayed. Let (z;)ier, (%ij)icr jes, (Y;)jes
be families of nonnegative reals, then

SUpP Tjj = SUP SUP Tij = SUP SUP Tjj, Sup T;y; = Sup x; + Sup Yy,
icljed i€l jeJ jeJ i€l i€ljed i€l =Y

provided that the above suprema exist. If sup ;cpx; exists, then we say

I/gfinl
that the sum Y;c;x; exists and we put
Yx;= sup X x;
1€ I'Crinl iel’

where the notation I’ Cy;, I means that I’ is a finite subset of 1.
It holds

Do Tip =00 D0 Ty = )Y Tij, Do Ty =D Ty, Yy

iel jeJ i€l jEJ jeJiel il jeg i€l jEJ

Let M be a non empty set and [0, 1] the unit interval, a stochastic subset
of M is a function F': M — [0, 1] with the additional property that the sum
of its values exists and is equal to 1

> F(m)=1.

We denote by Stoc(M) the set of all stochastic subsets of M.
Let F; : M — Ry, ¢ € I, be a family of functions such that for every
m &€ M the sum ), Fij(m) exists. Then the assignment

m ZE(m)

i€l
defines a function from M to R, denoted by > .., F;, i.e.,
(D-F)m) =Y Fi(m), meMm.

el i€l
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Now let (A;)ier be a family in [0, 1] such that .., A\; = 1 and F; € Stoc(M),
1 € I. For any finite subset I’ of I and any m € M, we have

Z)\iFi(m) = supIZ)\iE-(m) < 1.

’ .
iel Igfzn el

Thus ) .., \iF; is defined and belongs to Stoc(M) because

S OoNE)m) =D NFim) = >0 Y AiFi(m)

meM i€l meM iel i€l meM
= N (D _F(m)=1-1=1
icl meM

Thus we can state:

Strong Convexity Lemma (SCL). The set Stoc(M) is a strongly convex
set, i.e., for any stochastic family

i €10,1], F; € Stoc(M), iel
the function Y, ; \iF; is in Stoc(M).
For arbitrary sets M, M" any function h : M — Stoc(M’) can be extended
into a function h : Stoc(M) — Stoc(M') by setting
h(F) =Y F(m)-h(m).
meM

In particular, any function h : M — M’ is extended into a function h :
Stoc(M) — Stoc(M') by the same as above formula. This formula is legiti-
mate since by the strong convexity lemma

> F(m)=1

and h(m) is a stochastic subset of M.
Hence, for any stochastic subset F' : M — [0, 1] we have the expansion

formula
F =Y F(m)
meM

where 1 : M — [0, 1] stands for the singleton function

(n) = 1, ifn=m;
=N 0, if n#m.

Often m is identified with m itself.
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3 Stochastic Congruences

Our main interest is focused on equivalences in the stochastic setup. Any
equivalence relation ~ on the set M, can be extended into an equivalence
relation & on the set Stoc(M) as follows: for F, F' € Stoc(M) we set F' ~ F"
if and only if for each ~-class C' it holds

Y F(m)=) F(m),
meC meC

that is both F, F” behave stochastically on C' in similar way. The above sums
exist because F, F' are stochastic subsets of M:

Y F(m)< > F(m)=1
meC meM

The equivalence ~ has a fundamental property, it is compatible with strong
convex combinations.

Proposition 3.1. Assume that (\;)ier is a stochastic family of numbers in
[0,1] and F;, F! € Stoc(M), for alli € I. Then

F, = F!, foralli e I, implies Y NF,~=> NF].

el el
Proof. By hypothesis we have
> _Fi(m) =) F/(m)
meC meC

for any ~-class C'in M, and thus

5 (So08) () = S S = Sn 3 o

meC \iel meC icl icl  meC
=D A _Fi(m) =) > \F{(m)
el meC meC el
-3 (o)
meC \ i€l
that is
Y NFi Y NF]
icl icl
as wanted. O
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4 Stochastic Monoids

A stochastic monoid is a set M equipped with a stochastic multiplication,
i.e. a function

M x M — Stoc(M), (my,ma) — mimy

which is associative

Z (mimo)(n)(nms) = Z (mamg)(n)(min)

neM neM

and unitary i.e. there is an element e € M such that
me =m = em, forallm e M.

For instance any ordinary monoid can be viewed as a stochastic monoid. In
the present study it is important to have a congruence notion. More precisely,
let M be a stochastic monoid and ~ an equivalence relation on the set M,
such that: m; ~ m/ and my ~ m), implies

> (mumg)(m) = Y (mims)(m)

meC meC

for all ~-classes C, then ~ is called a stochastic congruence on M. This
condition can be reformulated as follows: m; ~ m} and my ~ m/, implies

/ /
mime R MyMs.

Proposition 4.1. The quotient set M/ ~ is structured into a stochastic
monoid by defining the stochastic multiplication via the formula

(Ima]lma])([n]) = ) (mama)(m).

me[n]

Proof. First observe that the above multiplication is well defined. Next for
every ~-class [b] we have

(fma]fme]) [ma]) (1) = Y ([l [ma])([n]) (] [ma])([8])

[n]eM/~
Z D (mumz)(m) p_ (nms)(V)
n]eM/~ ni€[n] b elb]
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Since n ~ n; we get

Y (mama) ()Y (nams) (V)
]

[nJeM/~ni1€[n b’ eb]

= YT (mma)m) () (1)

[n]eM/~ b/ €[b] n1€[n]

=3 > (mama) () (nama) ().

belb) nieM

By taking into account the associativity of M we obtain:

= 37" (mams) (1) (mama ) (8)

belb) nieM

= ([ma]([ma][ma])) ([6))- 0

Congruences on an ordinary monoid M coincide with stochastic congru-
ences when M is viewed as a stochastic monoid. The first question arising is
whether stochastic congruence is a good algebraic notion. This is checked by
the validity of the known isomorphism theorems in their stochastic variant.

Given stochastic monoids M and M’, a strict morphism from M to M’ is
a function h : M — M’ preserving stochastic multiplication and units, i.e.,

h(mymg) = h(my)h(ms), h(e) =€,

for all my,my € M, where e, ¢/ are the units of M, M’ respectively, and
h: Stoc(M) — Stoc(M') the canonical extension of h defined in Section 2.

Theorem 4.1. Given an epimorphism of stochastic monoids h : M — M’
and a stochastic congruence ~ on M, its inverse image h™*(~) defined by

mlhfl(N)mQ if  h(mi) ~ h(my)

is also a stochastic congruence and the stochastic quotient monoids M/h™(~
) and M’/ ~ are isomorphic.

Proof. Assume that
mih ™ (~)m} and moh~t(~)ml

that is
h(my) ~ h(m}) and h(msy) ~ h(ml).
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Then B B
h(mamy) = h(ma)h(me) & h(my)h(m) = h(mym3),
that is for all C € M’/ ~, we have

> h(mama)(e) =Y h(mymb)(e),

ceC ceC
but
S hmima)(e) = 325 tmmz)m)hm)(e) = S (muma)(m)S h(m)(e)
ceC ceCmeM meM ceC
= Z (mamg)(m).
meh—1(C)

Recall that all h=!(~)-classes are of the form h=(C), C € M’/ ~. Conse-
quently,

— Z (mymg)(m) = Z (mimy)(m)
meh=1(C) meh=1(C)

which shows that h~'(~) is indeed a congruence of the stochastic monoid
M. The desired isomorphism h : M/h™'(~) — M’/ ~ is given by

h([mln-1(v) = [h(m)]~. O

Corolary 4.1. Let h : M — M’ be an epimorphism of stochastic monoids.
Then the kernel equivalence

my ~p Mo Zf h(ml) = h(mg)

is a congruence on M and the stochastic quotient monoid M/ ~y, is isomor-
phic to M'.

Given stochastic monoids M, ..., M} the stochastic multiplication
[(ma, . comi) - (my, e om)] (- ) = (mamy) (na) - - - (mgmy) (ng)
structures the set M; x- - -x M}, into a stochastic monoid so that the canonical
projection
7TZ‘IM1X"'XM]€—>MZ‘, Wi(ml,...,mk):mi

becomes a morphism of stochastic monoids. Notice that the above multipli-
cation is stochastic because

> (i) () - (mgmi) (ng) = Y (mamy) () ==+ Y (mygmi) (ny,)

n; €M; ni€EM; ng €My,
1<i<k

=1---1=1.
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Theorem 4.2. Let ~; be a stochastic congruence on the stochastic monoid
M; (1 <i < k). Then ~y X---xX ~y is a stochastic congruence on the
stochastic monoid My X - - -x My, and the stochastic monoids My X -+ X M/ ~4
X oo X ~vpoand My/ ~1 X -+« X My/ ~y are isomorphic.

5 Greatest Stochastic Congruence Saturat-
ing an Equivalence

First observe that, due to the symmetric property which an equivalence
relation satisfies, the sumability condition in the definition of a congruence
can be replaced by the weaker condition: m; ~ m/ and my ~ mi, implies

> (mima)(m) <Y (mimb)(m)
meC meC
for all ~-classes C.

Lemma 5.1. The equivalence ~ on the stochastic monoid M is a congruence
if and only if the following condition is fulfilled: m ~ m/', implies

> (men)(b) <Y (m'-n)(b) and Y (n-m)(b) <Y (n-m)(b).

beC beC beC beC

Proof. One direction is immediate whereas for the opposite direction we have:
my ~ m} and my ~ m}, imply

D (my-mo)(b) < Y (my - ma)(0) < Y (my - m)(b). 0

beC beC beC

Next we demonstrate that stochastic congruences are closed under the
join operation. We recall that the join \/,.; ~; of a family of equivalences
(~;)icr on a set A is the reflexive and transitive closure of their union:

*
icl el

Theorem 5.1. If (~;)icr is a family of stochastic congruences on M, then
their join \/,c; ~; is also a stochastic congruence.

Proof. Let ~1,~9 be two congruences on M and ~=~ V ~5. First we show
that m ~; m’ implies

S (m-n)b) < 3 (- n)(b),

beC beC
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for all ~-classes C'. From the inclusion ~yC~ we get that C' is the disjoint
union
m
c=Jc
j=1

where C} denote ~q-classes. Then

> (m }:Z:mn 2: n)(b) =3 (m' - n)(b).
: Cl

beC J=1 b

(S

\‘H
=
m
Q

By a similar argument we show that m ~y m’ implies
Y (m-n)() <Y (m'-n)(b),
beC beC

for all ~-classes C. Now, if m ~ m/, without any loss we may assume that
M~y My~ Mg~y -~ Migy_p ~g T

for some elements mq,...,moy_1 € M. Applying successively the previous
facts, we obtain

S mem) < 30 m e m)) << 3 s w)(B) < ()
beC beC beC beC

For an arbitrary set of congruences we proceed in a similar way. O

The previous result leads us to introduce the greatest stochastic congru-
ence included into an equivalence ~ of M. It is the join of all stochastic
congruences on M included into ~ and it is denoted by ~*%°¢. The quo-
tient stochastic monoid M/ ~%°¢ is denoted by M** and has the following
universal property

Theorem 5.2. Given an epimorphism of stochastic monoids h : M — M’
whose kernel ~y, saturates the equivalence ~ there exists a unique epimor-
phism of stochastic monoids h' : M' — M?*"°¢ rendering commutative the

triangle
/ Ytoc

M/ % Mstoc
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where h¥°¢ : M — M is the canonical projection m + [m]so. sending
every element m € M on its ~*"°-class.

Proof. By virtue of the Isomorphism Theorem the stochastic monoid M’ is
isomorphic to the quotient M/ ~y,. Since by assumption ~, C~%°¢ k' is the
following composition

/ :} M/ Nhi> M/ Nstoc: Mstoc’
with f([m]n) = [m]stec, [m]n being the ~j-class of m. O

The previous result states that h*°¢ is minimal among all epimorphisms
saturating ~.

6 Syntactic Stochastic Monoids

Let M be a stochastic monoid and L C M. Denote by ~, the greatest
congruence of M included in the partition (equivalence) {L, M — L}, i.e.,

~p={L,M — L}***,

The quotient stochastic monoid My = M/ ~ will be called the syntactic
stochastic monoid of L and it is characterized by the following universal

property.

Theorem 6.1. For every stochastic monoid M and every epimorphism h :
M — M’ wverifying h=*(h(L)) = L, there exists a unique epimorphism h' :
M' — My, rendering commutative the triangle

where hy, is the canonical morphism sending every element m € M to its
~r-class.

Proof. The hypothesis h~'(h(L)) = L means that ~;, saturates L and so the
statement follows immediately by Theorem 5.2. U

Given stochastic monoids M, M’ we write M’ < M if there is a stochastic
monoid M and a situation
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ML M
where ¢ (resp. h) is a monomorphism (resp. epimorphism).
Theorem 6.2. Given subsets Ly, Lo, L of a stochastic monoid M it holds
i) Mp,np, < Mp, x Myp,,
ii) My = My, where L designates the set theoretic complement of L,
iit) My,on, < My, X My,

i) If h : M — N s an epimorphism of ND-monoids and L C N, then

Proof. The proof follows by applying Theorem 6.1. O

A subset L of a stochastic monoid M is stochastically recognizable if there
exist a finite stochastic monoid M’ and a morphism h : M — M’ such that
h=Y(h(L)) = L. The class of stochastically recognizable subsets of M is
denoted by StocRec(M). By taking into account Theorem 6.1 we get

Proposition 6.1. L C M is recognizable if and only if its syntactic stochastic
monoid is finite, card(M) < oo.

Putting this result together with Theorem 6.2 we yield

Proposition 6.2. The class StocRec(M) is closed under boolean operations
and inverse morphisms.
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Abstract

The 3z + 1 problem is a difficult conjecture dealing with quite a
simple algorithm on the positive integers. A possible approach is to go
beyond the discrete nature of the problem, following M. Chamberland
who used an analytic extension to the half-line RT. We complete his
results on the dynamic of the critical points and obtain a new for-
mulation the 3x 4+ 1 problem. We clarify the links with the question
of the existence of wandering intervals. Then, we extend the study of
the dynamic to the half-line R™, in connection with the 3x — 1 pro-
blem. Finally, we analyze the mean behaviour of real iterations near
+oo. It follows that the average growth rate of the iterates is close to
(24 v/3)/4 under a condition of uniform distribution modulo 2.

Key words : 3z + 1 problem, one-dimensional dynamics, attrac-
ting cycles, asymptotic analysis.

MSC 2010 : 37E05.

1 Introduction

Genéralement attribué a Lothar Collatz, le probléeme 3x + 1 est aussi
appelé conjecture de Syracuse, en référence a I’Université du mame nom. Il
se rapporte a la fonction 7' définie sur les entiers positifs par

| (3n+1)/2 sin est impair,
(1.1) Tn) = { n/2 sinon.
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FiGg. 1 — Arbre inverse du probleme 3z + 1 représentant ’ensemble des
antécédents de 1 sur sept itérations.

Il s’agit de prouver que toute itération de T a partir d’un entier positif n
arbitraire conduit nécessairement a la valeur 1. Cette valeur est cyclique de
période 2 : T(T'(1)) = 1.

Conjecture 1.1. Probléeme 3x + 1
Pour tout entier n > 0, il existe un entier k > 0 tel que T*(n) = 1.1

La figure 1 représente toutes les orbites qui aboutissent a 1 en un maxi-
mum de sept itérations.

Le probleme 3x 4 1 se ramene entierement aux deux conjectures 1.2 et
1.3 sur la dynamique de la fonction T

Conjecture 1.2. Absence de trajectoires divergentes
Tout entier positif n a une orbite {T%(n)},-, bornée.

Conjecture 1.3. Absence de cycles non-triviauz
Il n'existe pas d’entiers n > 2 et k > 0 tels que T*(n) = n.

1On note T*(n) le kAme jtéré de T
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La conjecture 1.2 implique que tout entier positif a une orbite cyclique a
partir d'un certain rang par itération de 7. La conjecture 1.3 stipule que le
seul cycle possible est le cycle (1,2).

Généralement, on convient de stopper les itérations lorsque la valeur 1
est atteinte. Ainsi on appelle temps de vol de n le plus petit entier k tel que
T*(n) = 1.

T. Oliveira e Silva a vérifié par des calculs sur ordinateur que tout entier
positif n < 5 - 2% a un temps de vol fini [7].

Les conjectures 1.2 et 1.3, bien qu’abondamment étudiées, ne sont tou-
jours pas résolues. On pourra se référer aux ouvrages de J. Lagarias [7] et
G.J. Wirsching [10] pour une synthese détaillée des résultats partiels relatifs
au probleme 3x + 1 et diverses variantes.

R. E. Crandall [4] a avancé un argument heuristique basé sur I'idée de
promenade aléatoire : si l’'on considere uniquement la sous-suite des itérés
impairs d’un entier n assez grand, on s’attend a ce que ’ensemble des rapports
possibles entre deux termes successifs impairs, a savoir 3/2, 3/4, 3/8, ...,
alent pour probabilités respectives les valeurs 1/2, 1/4, 1/8, .... On obtient
comme rapport moyen la valeur 3/4. Ceci découle de 'égalité

RN RO RERE

Cet argument plaide fortement en faveur de la conjecture 1.2.

Dans le cadre de notre étude, nous appellerons vitesse moyenne d’une
séquence finie {n,T(n),---,T%(n)} la quantité (Tk(n)/n)l/k.

Un raisonnement analogue [2] a celui de Crandall suggere que la vitesse
moyenne d’'une séquence arbitraire non-cyclique a statistiquement une valeur
proche de v/3/2 ~ 0.866. .., moyenne géométrique de 1/2 et 3/2. En effet,
la croissance d’une séquence dépend principalement de la parité des itérés
successifs. Or, on s’attend a ce que les parités soient équiréparties sur un
grand nombre d’itérations.

Ainsi le temps de vol k d’un entier n serait tel que (1/n)"/* ~ v/3/2 et
I’on obtiendrait la valeur moyenne

N

2Inn

STy ey

en 'absence de cycle [7, p. 7).

Ces estimations sont confortées par les calculs numériques. Il semble donc
qu’'un tel raisonnement permette de saisir 1’essentiel de la dynamique asymp-
totique du probleme 3z + 1.
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2 Extension sur les réels positifs

Une approche possible du probleme 3z + 1 est de sortir du cadre discret
et d’étendre T' par une fonction analytique sur ’ensemble des nombres réels
3] ou complexes [5, 8]. Nous opterons pour I’extension réelle? qui nous parait
la plus naturelle, définie par 1’équation (2.1) ci-apres, et nous expliciterons
les liens étroits qu’entretiennent la dynamique sur les réels et le probleme
3z + 1.

Chamberland [3] a étudié la dynamique sur la demi-droite R* de la fonc-
tion analytique

(2.1) fla)=a+ }1 - (g + i) cos(nz)

qui vérifie f(n) = T'(n) pour tout entier n, et f (RT) =R™ . Il a ainsi obtenu
plusieurs résultats significatifs :

(2.2) Le point fixe 0 est attractif ainsi que les cycles A; := {1,2} et
Ay = {1.192...,2.138...} de période 2.
(2.3) La dérivée Schwartzienne de f est négative sur RT.
2.4) Les intervalles [0, p1] et [u1, pi3] sont invariants par f, ou
= 0.277. .. et pus = 2.445. .. sont des points fixes répulsifs.
(2.5) Tout cycle d’entiers positifs est attractif.
2

.6) Il existe des orbites monotones non-bornées sur R*.

Par ailleurs, il énonce la conjecture “Stable Set” [3] ci-dessous :

Conjecture 2.1. Cycles attractifs sur Rt
La fonction f n’admet aucun cycle attractif sur Uintervalle [uz, +00).

Une conséquence immédiate de (2.5) est que la conjecture 2.1 entraine la
conjecture 1.3 du probleme 3z + 1.

Puis, il définit ’ensemble des orbites non-bornées

(2.7) U = {x € RT : limsup f*(z) = oo} .

k—oo

2Le deuxiéme auteur (O. Rozier) avait antérieurement suggéré I'étude de 'extension
(2.1) dans le plan complexe et obtenu des représentations graphiques des bassins d’attrac-
tion [1].
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Le résultat (2.6) prouve que UF° est infini, et 'on démontre que U7® contient
un ensemble de Cantor dans chaque intervalle [n, n+1] pour tout entier n > 2
[8]. Il suit que Uz n’est pas dénombrable.

Conjecture 2.2. Orbites non-bornées sur R*
L’ensemble U]?° est dintérieur vide.

La conjecture 2.2 est une formulation faible de la conjecture “Unstable
Set” [3]. Nous allons montrer qu’elle a des liens logiques avec le probleme
3z + 1.

Lemme 2.1. Soit {c,},., l'ensemble des points critiques de f dans R,
ordonnés de telle sorte que 0 < ¢y < co < .. ..
Alors on a

n——— <c, <n, sin est pair;
m4n

3 _ . .
n<c, <n-+-—, sin est impair.
m3n

Démonstration. (indications) Soit n un entier positif. On a

X

fllw)=1- %cos(mv) +m (5 + i) sin ()

et on vérifie facilement que n — % < ¢, <mnsin est pair, et n < ¢, <n+ %
si n est impair.
De plus, on a toujours f’(n) > 0 et on montre que

1 20 — 672 1
f (n— ><< mn)n + < 0, si n est pair,

m3n 247203

3 18 — 6m*n)n +9
fln+ < ( Jn+ < 0, si n est impair,
w2n 8m2n3
en utilisant les encadrements 1 — % < cost < 1lett— % < sint < t pour
0<t<l. N
Lemme 2.2. On considére la famille d’intervalles J¢ := [n,n—i— ﬁ} pour

tout entier n > 0 et tout réel a tel que % <a<6.

Alors on a f(J?) C J}l(n) pour tout entier n assez grand.
Si de plus a = %, alors 'inclusion est vraie pour tout n > 0.
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Démonstration. Soit un entier n > 0 et un réel a tel que %7 < a < 6.

1°" cas : n est pair, f(n) = 5 et f est croissante sur J;;. On vérifie alors
que
( iL)<fmy+ ¢ _+A-B
/ n+7r2n - w2 f(n)
avec a , ,
= Sris et B=7"n(2(a—6)n+a)+2a

en utilisant 'inégalité 1 — cost < % pour 0 <t < 1. Comme a — 6 < 0, il est
clair que A - B < 0 pour n suffisamment grand.

Si de plus a = %, alors B < % — 1372 < 0 pour tout n.

2° cas : n est impair, f(n) = 2 et f est croissante sur [n,c,] et

décroissante sur [cn, n+ #] On vérifie alors que

f(n+ =)= s -A-B

A et B étant défini comme précédemment, donc A - B < 0 pour n suffisam-
ment grand. Si de plus a = %, alors A- B < 0 pour tout n > 3, et dans le cas
n=1ona

7
f(1+§§>:20B“.>fﬂ)

D’apres le lemme 2.1, on a ¢, =n + # avec 0 < b < 3. Il vient

f@»—ﬂmézin—g(“”“(£9>

puis en utilisant I'inégalité 1 — cost > % — 5 pour 0 <t <1,

b(6 — b) b* 9 27
Hen) =F0) < 2o+ Brid < T T Tomind
On obtient C
a
flen) < fln) + 72f(n) D
avec

C = 47*n? (27 — 8a)n + 9) + 81n + 27 et D = 167*n*(3n + 1).

On voit que C' < 0 pour n suffisamment grand. Si de plus a = g et n > 11,
on a alors
C =47°n*(9 —n) +81n +27 <0
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et dans les cas oun = 1, 3, 5, 7 ou 9, on vérifie numériquement que

7
n) — - <0
en utilisant les valeurs ¢; = 1.180938..., c3 = 3.084794..., ¢5 = 5.054721...,
c7 = 7.040311... et cg = 9.031889.... ]

On déduit du lemme 2.2 un lien logique entre les conjectures 1.2 et 2.2 :

Théoréme 2.1. La conjecture 2.2 implique la conjecture 1.2 (absence d’or-
bites non-bornées) du probleme 3z + 1 .

Démonstration. Supposons que la conjecture 2.2 soit vraie et que la conjec-
ture 1.2 soit fausse. Alors il existe un entier positif ng tel que

lim sup f*(ng) = oc.
k—oo

D’apres le lemme 2.2, une simple récurrence donne
k(75 3
f <Jno) C Jfk(no)

7
pour tout entier £ > 0. Donc I'ensemble Uz contient U'intervalle Ji,, ce qui
est en contradication avec notre hypothese que Ug® soit d’intérieur vide. [

3 Dynamique des points critiques

Les résultats (2.3) et (2.5) entrainent que le bassin d’attraction immédiat
de tout cycle d’entiers strictement positifs contient au moins un point critique
[3]. Pour cette raison, Chamberland a effectué des calculs numériques relatifs
aux orbites des points critiques ¢, pour n < 1000. Il énonce la conjecture
“Critical Points” ci-dessous :

Conjecture 3.1. Points critiques
Tous les points critiques c,, n > 0, sont attirés par l'un des cycles Ay ou As.

Nous complétons ici les résultats numériques de Chamberland. Une précision
de 1500 chiffres décimaux en virgule flottante est requise pour le calcul de
certaines orbites (cgs¢ par exemple). Nous avons vérifié nos résultats avec
deux logiciels différents, Mathematica et Maple.

D’apres nos calculs, les cycles A; et As attirent tous les points critiques
¢, pour n < 2000. Plus précisément, ¢, est attiré par A, pour > n = 1,

3En gras les valeurs déja obtenues par Chamberland.
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3, 5, 382, 496, 502, 504, 508, 530, 550, 644, 646, 656, 666, 754, 830, 874,
1078, 1150, 1214, 1534, 1590, 1598, 1614, 1662, 1854, et par A; pour toutes
les autres valeurs de n < 2000. Nous avons observé que l'orbite de ¢, est
toujours proche de l'orbite de n, sauf pour n = —2 (mod 64) et pour n=54,
334, 338, 366, 390, 442, 444, 470, 484, 486, 496, 500, .. ..

Les résultats numériques suggerent la conjecture suivante?* :

Conjecture 3.2. Points critiques d’ordre impair
Les points critiques ¢, sont attirés par le cycle Ay = {1,2} pour tout entier
n > 7 impair.

Nous montrons a présent que la conjecture 3.2 suffit pour reformuler
completement le probleme 3x + 1.

Théoréme 3.1. Soit un entier impair n > 7 dont l'orbite contient 1. Alors
le point critique ¢, est attiré par le cycle A.

Démonstration. Considérons un entier impair n > 7 dont ’orbite contient 1.
La construction de I’arbre des orbites inverses de 1, représenté sur la figure 1,
montre que l'orbite de n contient I'un des entiers 12, 13, 16 ou 40. On déduit
de regles itératives modulo 3 sur les entiers que les antécédents de 12 sont
des entiers pairs. Il vient que f*(n) = 13, 16 ou 40 pour un entier k£ > 0. Les

lemmes 2.1 et 2.2 entrainent que ¢, appartient & J;7 et f¥(c,) se trouve dans
7 7 7
7
1% cas : f*(n) = 13, f*(c,) € J3. La séquence des itérés de f¥(n) est
13—-20—-10—-5—-8—4—-2—1.
Soit m un entier pris dans cette séquence. La fonction f est unimodale

7
sur Jy; avec un maximum en c¢,, lorsque m est impair, et strictement crois-
sante lorsque m est pair. Ce comportement permet de déterminer les images

7

successives de J3 en fonction de ¢i3 = 13.022478. . ..
T
/ <J123> = [20, f(c13)]

f? <J1%3) =[5, F*(cr3)]
avec f3(013) =5.0249... < c5 = 5.0547. ...
17 (74) = [1. £ (@)

4Dans [5], une conjecture analogue avec davantage d’hypotheses est formulée relative-
ment a une autre extension de la fonction 7" sur les réels.
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avec f7(c13) = 1.0184.. ..

De plus la fonction f? est strictement croissante sur U'intervalle (1, ¢;) avec
une unique point fixe x1 = 1.023686 . .. qui est répulsif. Il suit que I'intervalle
[1,27) fait partie du bassin d’attraction immédiat du cycle A; et que ¢, est
attiré par Aj.

2¢ cas : f¥(n) =16, f*(c,) € 1%6. On a la séquence 16 — 8 — 4 — 2 — 1.
Comme précédemment, on obtient 'image

f4< 176) B {1’]”4 (16+ 327%2)}

avec f4 (16 + ) = 1.0227... < x1. Donc ¢, est attiré par A;.

3272

7
3¢ cas : fF(n) = 40, f*(c,) € J2, et la séquence des itérés est 40 —
20— 10 - 5 —8 =4 — 2 — 1. De la mame maniere, on itere les images

successives
3 Z) 3 7
JZA ] =15 40
f ( 40 { 2 ( + 8072

avec f2 (40 + o) = 5.0118... < ¢5 = 5.0547. .,

8072
7 7
)= (00 )]

avec f7 (40 + 807”2) = 1.0047... < x;. Ainsi ¢, est attiré par A; dans tous

les cas. O]

Remarque 3.1. Dans cette démonstration, il n’est pas possible de fusionner
7
les cas 1 et 3 en partant de l'entier 20 car f° <J220> = [l,f6 (20 + L )} =

4072
[1,1.023691...] n’est pas inclus (de trés peu) dans le bassin d’attraction de
Ay délimité par v = 1.023686. . ..

Corollaire 3.1. La conjecture 3.2 est logiquement équivalente au probléme
3r 4+ 1.

Démonstration. Une conséquence immédiate du théoreme 3.1 est que la conjec-
ture 1.1 (probléme 3x + 1) implique la conjecture 3.2 sur la dynamique des
points critiques d’ordre impair. On démontre a présent la réciproque.

Considérons un entier n > 0. Son orbite contient au moins un entier
impair f* (n), ki > 0. Si f¥(n) < 5, alors Porbite de n contient le point 1
(cf. figure 1). On considere & présent le cas f* (n) > 7.
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Supposons que la conjecture 3.2 soit vraie. Alors il existe un entier positif
ko tel que

ka (kal(n)) < 2.
De plus, le lemme 2.2 donne par récurrence l'inclusion

7

f* (creim) € ‘]]?k1+’f2(n)'

Il découle I'égalité
ffth ) =1. O

4 Intervalles errants

L’existence d’intervalles errants [9] dans la dynamique de l'extension f
est une question ouverte avec d’importantes implications pour le probléeme
3z + 1.

Conjecture 4.1. Absence d’intervalles errants
La fonction f n’admet pas d’intervalles errants dans R,

Elle est au coeur du théoréme ci-dessous.

Théoréme 4.1. On a les relations suivantes entre conjectures :
(a) la conjecture 2.2 entraine la conjecture 4.1,
(b) la conjecture 4.1 entraine la conjecture 1.2.

Démonstration. Par I'absurde.

(a) Supposons que la conjecture 2.2 soit vraie et que la conjecture 4.1 soit
fausse. Cela implique que la fonction f admette une famille d’intervalles er-
rants sur une partie bornée de R*. Or ce serait en contradiction avec la
propriété (2.3) : la dérivée Schwartzienne de f est négative sur RT.

(b) Supposons que la conjecture 1.2 soit fausse. Alors il existe un entier
positif n tel que lim; o, f*(n) = +o0o. D’apres le lemme 2.2, les intervalles

{ f (J,Z/ 2>} sont inclus dans les intervalles {J;/(i)} , deux a deux dis-
i i=0

=0
joints. Il s’agit d’une famille d’intervalles errants. O

Une synthese des liens logiques entre conjectures est donnée en annexe.

86



Dynamique du probleme 3z + 1 sur la droite réelle

5 Extension sur les réels négatifs

L’ensemble R~ des réels négatifs est également invariant par la fonction
f définie par (2.1). La dynamique sur les entiers négatifs est alors identique,
au signe pres, a celle de la fonction “3z — 17, notée U et définie sur les entiers
positifs par

[ (3n—1)/2 sin est impair,
(5-1) Uln) := { n/2 sinon.

En effet, on a la relation de conjugaison f(—n) = —U(n) pour tout entier
n positif. La fonction U admet le point fixe 1 et a deux cycles connus :
{5,7,10} de période 3 et {17,25,37,55,82,41,61,91, 136, 68,34} de période
11. Cela conduit a formuler le “probleme 3x — 17 :

Conjecture 5.1. Probleme 3x — 1
Pour tout entier n > 0, il existe un entier k > 0 tel que U¥(n) = 1,5 ou 17.

Les valeurs de f sur R et (—oo, —1] sont liées pas I’équation fonctionnelle
(5.2) flx)—f(-1—2z)=2zx+1

de sorte que les points fixes de f sur (—oo, —1] sont exactement les points
vi = —1 — p;, ou {p;}2, désigne 'ensemble des points fixes de f sur RT,
M0:0<M1<1<M2<2<....

Néanmoins, la dynamique de f sur R~ differe partiellement de celle que
I'on a pu décrire sur R, comme le montrent les propriétés (5.3) a (5.7).

(5.3) Les points fixes 0 et v; = —1.277... sont attractifs, ainsi que les
cycles
By := {z, f(z), f*(z)} oz = —5.046002...,

By = {x, f(z), f*(z)} ouz=—-4.998739...,

Bs = {z, f(z),...,["%(z)} otz =—17.002728...,

By:={z, f(z),...,[(x)} otz =—-16.999991.....

(5.4) La dérivée Schwartzienne de f n’est pas partout négative sur R™.
(5.5) Les intervalles [—1,0] et [v4, —1] sont invariants par f.

(5.6) Tout cycle d’entiers négatifs est répulsif.

(5.7) 1l existe des orbites monotones non-bornées sur R™.
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Point ou cycle attractif | Période | Multiplicateur
0 1 0.5
41 1 0.385708.. ..
By 3 0.036389 ...
Bs 3 0.866135 . ..
B 11 0.003773 ...
B, 11 0.926287 . ..

TaB. 1 — Coefficients multiplicateurs des points et cycles attractifs sur les
réels négatifs.

Démonstration. (indications)

Propriété (5.3) : Les vitesses d’attraction sont données dans le tableau 1.

Propriété (5.4) : La dérivée Schwartzienne est positive sur un intervalle conte-
nant le point -0.2. On a en effet Sf(—0.2) = 39.961..., ou

@) 3 (f”(x))?

C fl) 2\ S

Propriété (5.5) : La fonction f est strictement croissante sur I'intervalle [y, 0]
contenant le point fixe répulsif -1.

Sf(x)

Propriété (5.6) : Voir les indications dans [3, p.16].

Propriété (5.7) : La démonstration est similaire a celle de (2.6). O

Remarque 5.1. Les cycles By et By sont tres faiblement attractifs car leur
multiplicateur est proche de 1 (cf. tableau 1). On vérifie également que les
cycles contenant les points -5 et -17 sont trés faiblement répulsifs, avec pour
multiplicateurs respectifs les rationnels 9/8 et 2187/2048.

Comme précédemment, on note ¢, les points critiques proches des entiers
n < 0, et on peut montrer que les itérés successifs de ¢, pour n impair
négatif restent proches des itérés de n, par valeurs inférieures. Nous avons
vérifié numériquement pour tout entier n, —1000 < n < 0, que
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— si m est impair et f*(n) = —1 (resp. -5, -17) pour un entier k, alors
lorbite de ¢, converge vers vy (resp. By, Bs);
— sin est pair et f¥(n) = —1 (resp. -5, -17) pour un entier k, alors 'orbite
de ¢, converge vers 0 (resp. Bs, B,), sauf pour n=-34, -66, -98, -130,
-132, -162, -174, -194, -202, -226, ... ou 'orbite de ¢, converge vers Bs,
By, Bs, vi, B3, By, v, By, vi, vy, ... respectivement. On note que les
entiers n = —2 (mod 32) semblent toujours faire partie des exceptions.
Le plus souvent, lorsque n < 0 est pair, 'orbite de ¢, reste proche de
I'orbite de n, par valeurs supérieures. Pour n=-34, -98, -132, -162, -202, ...
les itérés de ¢, finissent pas atre inférieurs aux itérés de n, sans s’en éloigner
pour autant. Pour n=-66, -130, -174, -194, -258, ... les orbites de n et de
¢, sont décorrélées apres un nombre fini d’itérations. Dans ce dernier cas,
on observe une répartition des orbites de ¢, dans chacun des six bassins
d’attraction de R™ : 0, 14, By, Ba, B3 et B,.

Conjecture 5.2. Points critiques d’ordre négatif impair
Les points critiques c,, sont attirés soit par le point fize vy, soit par ['un des
cycles By ou Bs, pour tout entier n < 0 impair.

6 Dynamique asymptotique

Dans cette partie, nous étudions le comportement moyen de séquences
finies ou infinies d’itérations de f, afin de déterminer la vitesse moyenne
asymptotique (i.e. au voisinage de 4+00).

Nous dirons ainsi qu’une séquence infinie S = { f(x)}3°, est uniformément,
distribuée modulo 2 (u. d. mod 2) si et seulement si la discrépance a I’origine
de {f*(z) mod 2}-; dans l'intervalle [0, 2], notée D} (S mod 2), vérifie®

lim D7 (S mod 2) = 0.

Dans le cas d’une séquence finie S = {f*(z)}",, nous dirons de maniére
informelle que S est u. d. mod 2 deés lors que D} (S mod 2) < 1.

On rappelle que la notion de discrépance est une mesure de 'uniformité
de la distribution d’une séquence de points X = {z1,...,z,} € [a,b]" et est
définie par
L aptNlae) c—a

|{l’1,.
6.1 DX (X) =
(6.1) n(X) Sup " P

Elle intervient notamment dans I'inégalité de Koksma [6] :

®0On note 2 mod 2 la valeur modulo 2 de tout réel z, définie par  mod 2 := z — 2| %].

89



N. Lygeros, O. Rozier

Théoréme 6.1. (Koksma) Soit [ : [a,b] — R wune fonction a variation
(totale) V (f) bornée. Alors pour toute séquence X = {x1,...,2z,} € [a,b]",

on a
1 & 1 b
ﬁizlf(%)—m/a f(t)dt

Nous considérons dorénavant que la fonction f définie par (2.1) s’applique
sur R tout entier. Comme f ne s’annule qu’en 0, il suit que f"(x) est de mame
signe que x pour tout réel x # 0 et tout entier n.

Notre approche consiste a approximer f(x)/x par son asymptote sinusoidale

<V(f)D,(X)

cos(mx)
(6.2) g(x):=1- —
dont on détermine la moyenne géométrique.

Lemme 6.1. La moyenne géométrique T de la fonction réelle g(x) = 1 —
cos(mx)/2 sur [0,2] est égale a o /4, ot o = 2+ /3 est racine du polynome
X2 —4X +1.

Démonstration. On cherche a calculer 7 := exp <% f02 In(g(t)) dt> avec

g(t) =1 —cos(nt)/2 = (v — ™) (= ™) /(4a) = |a — e”tf /(4ar).
On obtient

2
lnT:/ In o — €| dt — In (4av) .
0

La formule de Jensen relative aux fonctions analytiques sur le disque de
centre a et de rayon 1 donne le résultat attendu

InT =2lna —In(4a) =1n (%) . O

On montre a présent qu’au voisinage de +oo toute séquence d’itérations
. d. mod 2 de f décroit avec une vitesse moyenne proche de 7 = (24++/3) /4 ~
0.933....

Théoréme 6.2. Soit une séquence finie d’itérations S = { f'(z)}", telle que
min{|f*(z)|}5) > M pour un réel M > L. Alors on a

1 (fn@) “lInt

n i

. 1
<2(In3)D; (S mod2) —In (1 — 3_M) :
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Démonstration. On considere la formulation f(t) = g(t) (t + h(t)) ou h est
la fonction périodique
1-— 1-—
h(t) = cos(mt) _ cos(mt) |
4g(t) 4 — 2 cos(7t)

On a donc

1

(g nlopivl, n— ' h(fi(x
B - 1 - [Ls (@) (155

Il vient alors

lhrl (f”(x)) —InTt=A+B

n x
avec B
A= %Zln (9(f'(z))) —In7
=0
et

e h(f'(@))
B= EZln (1+ e )
D’apres le lemme 6.1,

Inr— %/0 In (g(t)) dt

On applique I'inégalité de Koksma :
|A] < V() Dy, (S mod 2)

ou V(¢) est la variation totale de la fonction ¢(t) := In (g(t)) sur [0, 2], soit
V(#) = 2¢(1) = ¢(2) = ¢(0) = 2In3.

Pour majorer |B|, on vérifie que la fonction A(t) est a valeur dans [0, 1/3]
avec un maximum en ¢t = 1. On en déduit que

1 1 1
< — e — —_— = — _— .
|B|_max( 1n<1 3 ),ln(l—i-g? )) ln(l 3M> O

Le théoreme 6.2 est inopérant pour les séquences d’entiers, dont la vitesse
moyenne attendue est v/3/2, strictement inférieure & 7. Il permet toutefois
d’établir un lien entre la vitesse moyenne et la distribution modulo 2 des
itérations.
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Théoreme 6.3. Soit © un réel d’orbite { f*(x)}2, telle que

1

Alors lorbite de x n’est pas uniformément distribuée modulo 2.

Démonstration. 11 existe un entier positif N et un réel a > 1 tels que

a

pour tout ¢ > N.

On considere les séquences finies S, = {f!(z)}'*0 pour tout n entier

positif, et on pose M,, := min{|f*(z)|}"=5 .

D’apres le théoreme 6.2,

! I (f;;]z(f)) —In7 < 2(In3)D (S, mod 2) — In (1 - 3}\2) .

Il vient
2(In3)D; (S, mod 2) > A, + B,

A= (f}???()))

avec

B,=—-—InTt+1n (1

)

D’une part, on vérifie aisément que liminf, .., A, > 0. D’autre part, on

Bn2—1n7+ln(1—1_7—> :ln(1+(a_1)<1_7)) > 0.

a aT

On obtient donc le résultat souhaité :

m( +(a 1)(1 T))
liminf D* (S, d2)>
i Dn(Snmed 2) 2 =5y

>0. O

L’existence d’orbites tendant vers I'infini a été prouvée par Chamberland
pour la fonction f et le corollaire 6.1 donne une condition nécessaire sur
I’ensemble des valeurs modulo 2 d’une telle orbite.
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Corollaire 6.1. Soit x un réel d’orbite { f*(x)}2, divergente telle que
lim | /()] = +o0.
Alors lorbite de x n’est pas u. d. mod 2.

Ce résultat renforce la conjecture 2.2. En effet, on peut s’attendre a ce que
la condition de distribution uniforme modulo 2 des itérations de f soit le plus
souvent valide au voisinage de o0, compte tenu des propriétés suivantes :

— le diametre et la densité des zones contractantes tend vers 0,

— l'amplitude des oscillations devient infiniment grande.
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Annexe

La figure 2 ci-dessous résume quelques-uns des principaux résultats de cet
article sous la forme de liens logiques entre diverses conjectures.

Conjecture 3.2

Points critiques ——

d'ordre impair

Conjecture 1.1

Probléme 3x+1

I
Conjecture 2.1 [ Conjecture 1.3
|
Cycles attractifs i Cycles
positifs non-triviaux

Conjecture 2.2 Conjecture 1.2

Orbites non-bornées >| Trajectoires
positives ! divergentes

Conjecture 4.1

Absence d'intervalles
errants

Fia. 2 — Liens logiques entre conjectures. La partie gauche concerne le cadre
continu R* et la partie droite le cadre discret Z*.
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Abstract

Supplier selection is an important concern of a firm’s competi-
tiveness, more so in the context of the imperative of supply-chain
management. In this paper, we use an approach to a multiobjective
supplier selection problem in which the emphasis is on building sup-
plier portfolios. The supplier evaluation and order allocation is based
upon the criteria of expected unit price, expected score of quality and
expected score of delivery. A fuzzy approach is proposed that relies on
nonlinear S-shape membership functions to generate different efficient
supplier portfolios. Numerical experiments conducted on a data set of
a multinational company are provided to demonstrate the applicabil-
ity and efficiency of the proposed approach to real-world applications
of supplier selection.

Key words: Multiobjective optimization, Fuzzy supplier selec-
tion, Nonlinear optimization, Membership functions.

MSC 2010: 90C30, 90C70.

1 Introduction

Supplier selection or vendor selection is a multi-criteria decision making
(MCDM) problem. One of the well known studies on supplier selection by
Dickson [10] discusses 23 important evaluation criteria for supplier selection.
It has been pointed out that quality, delivery, and performance history are the
three most important criteria. Other important studies that highlights the
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importance of evaluation criteria for supplier selection includes the works of
Ghodsypour and O’Brien [13], Ho et al. [16], Weber et al. [35]. Many authors
have discussed optimization models of supplier selection problem. Parthiban
et al. [26] developed an integrated model based on 10 criteria including qual-
ity, delivery, productivity, service, costs for the supplier selection problem.
Punniyamoorthy et al. [27] applied 10 criteria for supplier evaluation includ-
ing quality, technical capability, financial position. Karpak et al. [19] used a
goal programming model to minimize costs and maximize delivery reliability
and quality in supplier selection when assigning order quantities to each sup-
plier. Weber and Current [36] used multi-objective linear programming for
supplier selection to systematically analyze the trade-off between conflicting
factors. Recently, Feng et al. [12] proposed a multiobjective model to se-
lect desired suppliers and also developed a multiobjective algorithm based on
Tabu search for solving it. Reviews of supplier selection criteria and methods
can be found in studies carried out by Aissaoui et al. [1] and Chai et al. [§].

In real-world, for supplier selection problem, decision makers do not have
exact and complete information related to various input parameters. In such
cases the fuzzy set theory (FST) [38] is considered one of the best tools
to handle uncertainty. The supplier selection formulations have benefited
greatly from the FST in terms of integrating quantitative and qualitative
information, subjective preferences and knowledge of the decision maker. A
review of literature on applications of FST in supplier selection shows that a
variety of approaches are being used. Kumar et al. [20] presented fuzzy goal
programming models to capture uncertainty related to the supplier selection
problem. Amid et al. [2, 3] developed a weighted additive fuzzy model for
supplier selection problem. Bayrak et al. [6] presented a fuzzy multi-criteria
group decision making approach to supplier selection based on fuzzy arith-
metic operation. Chen et al. [9] extended the concept of TOPSIS method
to develop a methodology for solving supplier selection problems in fuzzy
environment. Erol et al. [11] and Li et al. [24] discussed the applications
of FST in supplier selection. Kwang et al. [21] introduced a combined scor-
ing method with fuzzy expert systems approach for determination of best
supplier. Kahraman et al. [18] developed a fuzzy AHP model to select the
best supplier firm providing the most satisfaction for the criteria determined.
Shaw et al. [30] proposed an integrated approach that combines fuzzy AHP
and fuzzy multiobjective linear programming for selecting the appropriate
supplier. Toloo and Nalchigar [32] proposed a new integrated data envelop-
ment analysis model which is able to identify most appropriate supplier in
presence of both cardinal and ordinal data. Tsai and Hung [33] proposed a
fuzzy goal programming approach that integrates activity-based costing and
performance evaluation in a value-chain structure for optimal green supply
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chain supplier selection and flow allocation. Yiicel and Giineri [37] developed
a weighted additive fuzzy programming approach for multi-criteria supplier
selection. Recently, Amid et al. [4] developed a weighted maxmin fuzzy
model to handle effectively the vagueness of input data and different weights
of criteria in a supplier selection problem. Arikan [5] proposed a fuzzy math-
ematical model and a novel solution approach to satisfy the decision maker’s
aspirations for fuzzy goals.

In all the studies mentioned thus far, supplier selection is driven by non-

portfolio based approaches only. This type of framework is restrictive as
it does not provide the decision maker with an opportunity to leverage the
supplier diversity with reference to preferences in respect of cost, quality and
delivery. Recently, Guu et al. [15] discussed supplier selection problem with
interval coefficients using portfolio based approach. In this paper, we con-
sider three supplier’s selection criteria, namely, expected unit price, expected
score of quality and expected score of delivery. The proposed fuzzy optimiza-
tion model simultaneously minimize the expected unit cost and maximize the
expected score of quality and expected score of delivery. The model is con-
strained by several realistic constraints, namely, demand constraint, maximal
and minimal fraction of the total order allocation to a single supplier, number
of suppliers held in the portfolio. Note that in comparison to the approach
used in Guu et al. [15], the proposed approach is capable of generating many
efficient supplier portfolios using different shape parameters of the nonlinear
S-shape membership functions from which the decision maker may choose
the one according to his/her preferences.
The paper is organized as follows. In Section 2, we present multiobjective
programming model of supplier selection based on portfolio theory. In Section
3, we present fuzzy optimization models of supplier selection using nonlinear
S-shape fuzzy membership functions. The proposed models are test-run in
Section 4. This section also includes a discussion of the results obtained.
Finally in Section 5, we submit our concluding observations.

2 The supplier selection problem

Here, we assume that the decision maker allocate orders among n sup-
pliers offering different price, quality and delivery. We use the following
variables and parameters in the supplier selection model:

x;: the proportion of total order allocated to i-th supplier,
p;: the per unit net purchase price from ¢-th supplier,

q;: the percentage of quality level of i-th supplier,
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d;: the percentage of on-time-delivery level of i-th supplier,

y;: the binary variable indicating whether the i-th supplier is contained in
the supplier portfolio or not, i.e.,

{1, if +-th supplier is contained in the supplier portfolio,
Yi =

0, otherwise,

u;: the maximal fraction of the total order allocated to the i-th supplier,
l;: the minimal fraction of the total order allocated to the i-th supplier .

2.1 Objectives

e Expected unit price

The expected unit cost is the weighted average of the prices quoted by dif-
ferent suppliers, the fractions of the overall quantity ordered to them serving
as the respective weights. Here, we consider the overall demand as 1 which
overcomes the dependence of supplier selection problem on the units of mea-
surement of the commodities [15].

The expected unit price of the supplier portfolio is expressed as

f1($) = sz‘%‘ .
i=1

e Expected score of quality

Quality of the supplies is measured in terms of the extent of satisfaction
(fraction) with quality. We use the expected score of quality which in effect
is the average of the satisfaction of the established standards by different
suppliers as an objective of supplier selection [15]. The expected score of
quality of the supplier portfolio is expressed as

f2($) = Z q;%; .
i=1

e Expected score of delivery
A supplier’s compliance (fraction of 1) with on-time-delivery schedule is re-
garded as his/her score of delivery. Using the fraction of quantity allocated
to different suppliers as weight [15], the expected score of delivery of the
supplier portfolio is expressed as

f3(9€) = Z d;x; .
i=1
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2.2 Constraints

e Total order constraint on the suppliers:
n
i=1

e Maximal fraction of the total order that can be allocated to a single supplier:

T <uy;, =12 ....n.

e Minimal fraction of the total order that can be allocated to a single supplier:

xZleyl, i:1,2,...,n.

The constraints corresponding to lower bounds /; and upper bounds wu; on
the allocation to individual suppliers (0 < l;,u; < 1, l; < u;, Vi) are included
to avoid a large number of very small allocations (lower bounds) and at
the same time to ensure a sufficient diversification of the allocation (upper

bounds) [15].

e Number of suppliers held in a supplier portfolio:

Zyi =h
i=1

where h is the number of suppliers that the decision maker chooses to include
in the supplier portfolio [15]. Of all the suppliers from a given set, the decision
maker would pick up the ones that are likely to yield the desired satisfaction
of his/her preferences. It is not necessary that all the suppliers from a given
set may configure in the supplier portfolio as well.

e No negative proportions of total orders:

>0, i=12....n.
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2.3 The decision problem

The mixed-integer model for purchasing a single item in multiple sourcing
networks is presented as follows:

(P1)  min fi(x) = Zpixi
i=1

max fo(x) = Z qiT;
i=1

max f3(z) = Z dixi
i1

subject to

d =1, (1)
i=1

i=1

nguzyl, Z:1,2,,77,, (3)
xZleyl, Z:LQ,,W,, (4)
x; >0, 1=1,2,...,n, (5)
y; €4{0,1}, i=1,2,...,n. (6)

It may be noted that the basic framework of the supplier selection model (P1)
is similar to the one used in [15]; however, instead of using interval coeffi-
cients for an uncertain environment as in [15], we rely on fuzzy membership
functions to generate supplier selection strategies that meets the preferences
of the decision maker.

3 Supplier portfolio selection models based
on fuzzy set theory

Operationally, formulating an supplier portfolio requires estimation of dis-
tributions of price, quality and delivery for the various suppliers. Distributed
randomly as they are over the chosen time horizon, such estimates, at best,
represent decision maker’s subjective interpretation of the information avail-
able at the time of decision making. Note that the same information may
be interpreted differently by different decision makers. Under such circum-
stances, the issue of constructing a supplier portfolio becomes the one of a
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choice from a ‘fuzzy’ set of subjective interpretations, the term ‘fuzzy’ being
suggestive of the diversity of both the decision maker’s objective functions
as well as that of the constraints.

Here, we formulate fuzzy multiobjective supplier portfolio selection prob-
lem based on vague aspiration levels of decision makers to determine a sat-
isfying supplier portfolio selection strategy. We assume that decision makers
indicate aspiration levels on the basis of their prior experience and knowledge.
As the aspiration levels are vague, we may refer to the fuzzy membership
functions, for example, linear [39, 40], piecewise linear [17], exponential [23],
tangent [22]. A linear membership function is most commonly used because
it is simple and it is defined by fixing two points: the upper and lower levels of
acceptability. However, there are some difficulties in using linear membership
functions as pointed out by Watada [34]. Further, if the membership function
is interpreted as fuzzy utility of the decision maker, describing the behavior
of indifference, preference or aversion towards uncertainty, then a nonlinear
membership function provides a better representation. It may also be noted
that nonlinear membership functions are much more desirable for real-world
decision making, as unlike linear membership functions, for nonlinear mem-
bership functions, the marginal rate of increase (or decrease) of membership
values as a function of model parameters is not constant-a technique that
reflects reality better than the linear case.

In this paper, we use logistic function [34], i.e., a nonlinear S-shape mem-
bership function to express vague aspiration levels of decision makers. This
function has several advantages over other nonlinear membership functions
and is considered an appropriate choice in portfolio selection, see Gupta et
al. [14].

We now define the following nonlinear S-shape membership function of
the goal of net price:

1
o ,(x) = - ;
1+ exp (ap (Z Dii — pm)>
i=1

where p,, is the mid-point (middle aspiration level for the net price) at which
the membership function value is 0.5 and «, is provided by decision makers
based on their degree of satisfaction of the goal (see Fig. 1).
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Pm p(x)
Figure 1. Membership function of the goal of net price

The membership function of the goal of quality is given by
1

e (o () )

where ¢, is the mid-point and a4 is provided by decision makers based on
their degree of satisfaction regarding the level of quality (see Fig. 2).

dm a(x)

Figure 2. Membership function of the goal of quality

Similarly, we define membership functions of the goal of delivery as fol-
lows:

1
Md(x) = n )
1+ exp (—(xd (Z diz; — dm))
i=1

where d,, is the respective mid-point and «y is provided by decision makers.
Note that the membership function of the goal of delivery as described above,
have shape similar to that of the membership function defining the goal of
quality:.
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Using Bellman and Zadeh’s maximization principle [7] with the above
defined fuzzy membership functions, the fuzzy supplier portfolio selection
problem for selecting suppliers is formulated as follows:

(P2) max n
subject to
n < pp(),
N < pglz),
n < pa(z),
0<n<l,
and Constraints (1) — (6) .

The problem (P2) is a nonlinear programming problem. It can be trans-

formed into a linear programming problem by letting 6 = log ] ' , so that
—n
n = —— . Since, the logistic function is monotonically increasing,
1+ exp(—0)

hence, maximizing 17 makes § maximize. Therefore, the problem (P2) can be
transformed into the following equivalent linear programming problem:

(P3)  max¥
subject to

0 <a,|pm— ipﬂz‘
i—1

I

N—

Y

N———

0 < Qq i qiTi — gm
=1

I

0 S (%] i dZZL'Z — dm
i=1

and Constraints (1) — (6) .

N—

Note that 6 €] — 0o, +00[. The fuzzy supplier portfolio selection problem
(P2)/(P3) leads to a fuzzy decision that simultaneously satisfies all the fuzzy
objectives. Then, we determine the maximizing decision as the maximum de-
gree of membership for the fuzzy decision. In this approach, the relationship
between various objectives in a fuzzy environment is considered fully sym-
metric [40], i.e., all fuzzy objectives are treated equivalent. This approach
is efficient in computation but it may provide ‘uniform’ membership degrees
for all fuzzy objectives even when achievement of some objective(s) is more
stringently required. Therefore, we use the ‘weighted additive model’ pro-
posed in [31] to incorporate relative importance of various fuzzy objectives
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in supplier portfolio selection. The weighted additive model of the fuzzy
supplier portfolio selection problem is formulated as follows:

3
(P4)  max Z Wy
r=1

subject to

m < Mp(x) )
m2 < pg(z),
s < pa(z) ,
0<n <1, r=123
and Constraints (1) — (6),
where w, is the relative weight of the r-th objective given by decision makers

3
such that w, > 0 and Zwr =1.

r=1
The max-min approach used in the formulation of the problems

(P2)/(P3) and (P4) possesses good computational properties. However, the
approach does not ensure fuzzy-efficient solution. To ensure efficiency of the
solution, we take recourse to the two-phase approach proposed in [25]. As
a result, it becomes possible to choose explicitly a minimum degree of satis-
faction (taken to be equal to the solution of the max-min approach) for each
fuzzy objective function and examine whether the same can be improved
upon or not. Hence, we solve the problems (P5) and (P6) corresponding to
the problems (P3) and (P4) respectively in the second-phase.

3
(P5)  max Z w0,
r=1

subject to
(") -
log———~= <0 <y |pm—) pizi|,
1= pp(a*) : 221

,uq(x*) -
log————— <0, <a GTi — Gm |
1= pg(z*) ! Z

fa(x”) -
log —————— < 6; < a dix;i —d,, |,
OT ey =0 Z )

and Constraints (1) — (6),

where z* is an optimal solution of (P3), w; = wy = w3, w, > 0, Zwr =1

r=1
and 0, €] — oo, +oo[ r =1,2,3.
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3
(P6)  max Z Wy
r=1

subject to

pp(z™) << pp(a)
fg(2™) < m2 < pg()
pa(z™) < s < pa(w)
0<n <1, r=1,23
and Constraints (1) — (6),

where 2** is an optimal solution of (P4), w, is the relative weight of the r-th
3

objective given by decision makers such that w, > 0 and Zwr =1

r=1
The problems (P3) and (P5) are linear programming problems which can

be solved using the LINDO software [28]. The problems (P4) and (P6) are
nonlinear programming problems. Although, for medium or large-sized prob-
lems, one may suspect that solving these nonlinear programming problems
could be computationally difficult, this is not the case, as many excellent
softwares are available to solve them. We can use LINGO [29] to solve (P4)
and (P6).

4 Numerical illustration

In this section, we present an illustration of the developed supplier portfo-
lio selection decision procedure for a multinational company. The purchasing
manager of the company have identified 10 potential suppliers. The manager
will select the most favorable suppliers(s) and allocate various proportion of
total order among selected suppliers(s) such that to minimize the net price
of purchasing and to maximize total quality and delivery level of purchased
items.

4.1 Supplier allocation

The 10 suppliers form the population from which we attempt to construct
a supplier portfolio comprising 5 suppliers. The suppliers profiles shown in
Table 1 represents the estimated values of their net price (p;), quality level
(¢;) and delivery level (d;) along with the estimated values of lower and upper
bounds.
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Table 1 Input data of suppliers

Price Quality Delivery Lower bound Upper bound

(Rs) (%) (%) () (ui)
Supplier 1 13 0.82 0.80 0.03 0.22
Supplier 2 12.5 0.78 0.75 0.06 0.33
Supplier 3 11.5 0.70 0.80 0.03 0.20
Supplier 4 14 0.88 0.90 0.027 0.22
Supplier 5 15 0.84 0.92 0.2 1.17
Supplier 6 16 0.95 0.88 0.06 0.27
Supplier 7 14.5 0.80 0.78 0.05 0.4
Supplier 8 15.5 0.92 0.84 0.017 0.17
Supplier 9 13.5 0.85 0.85 0.03 0.25
Supplier 10 12 0.75 0.78 0.06 0.30

We now present the computational results.

Corresponding to p,, = 13.3, ¢, = 0.83 and d,,, = 0.82, we obtain supplier
portfolio selection strategy by solving the problem (P3). To check efficiency of
the solution obtained, we use the two-phase approach and solve the problem
(P5). If the purchasing manager is not satisfied with the supplier portfolio
obtained, more supplier portfolios can be generated by varying the values
of the shape parameters in the problem (P3). The computational results
summarized in Table 2 are based on three different sets of values of the
shape parameters. Note that all the three solutions obtained are efficient,
i.e., their criteria vector are nondominated. Table 3 presents proportions of
the total order allocated to suppliers in obtained supplier portfolios

Table 2 Summary results of supplier portfolio selection

Shape parameters & variables Net price Quality level — Delivery level

n 0 o 0 0y

0.85900 1.80700 200 600 600 13.29095 0.83301 0.84703
0.58128 0.32803 100 100 100 13.29671 0.83328 0.84720
0.52087 0.08353 6 30 30 13.28609 0.83278 0.84688
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Table 3 The proportions of the total order allocated to suppliers in obtained
supplier portfolios

Shape parameters Suppliers

o, o Qg S1 S2 S3 5S4 S5 S6 S7 S8 S9  S10
200 600 600 0.220.27635 0 022 0 0 0 0.03365 0.25 0
100 100 100 0.220.27443 0 022 0 0 0 0.03557 0.25 0O

6 30 30 0.220.27797 0 022 0 0 0 0.03203 0.25 0

Next, we present computational results considering preferences of the
purchasing manager for the three objectives.

e Case 1

We consider the following weights of the fuzzy goals of expected net price
(w1), expected quality level (wq) and expected delivery level (ws): wy = 0.6,
wy = 0.25, wg = 0.15. Corresponding to p,, = 13.3, ¢,, = 0.81 and d,, =
0.88, we obtain supplier portfolio selection strategy by solving the problem
(P4). The efficiency of the solution is verified by solving the problem (P6)
in the second phase. The corresponding computational results are listed in
Tables 4-5. The achievement levels of the various membership functions are
m = 0.95744, ne = 0.41261, n3 = 0.31576. Note that these achievement levels
are consistent with the purchasing manager preferences, i.e., (n; > 1y > 13)
agrees with (w1 > wy > w3).

e Case 2

Here, we consider the weights as w; = 0.15, wy = 0.6, ws = 0.25. By
taking p,, = 13.3, ¢, = 0.81 and d,, = 0.88, we obtain supplier portfolio
selection strategy by solving the problem (P4). The solution is verified for
efficiency. The corresponding computational results are listed in Tables 4-5.
The achievement levels of the various membership functions are n; = 0.00023,
12 = 0.90362, n3 = 0.70285 which are consistent with the purchasing manager
preferences.

e Case 3

As performed above in case 1 and case 2, corresponding to the weights w; =
0.15, wy = 0.2, wg = 0.65 and p,, = 13.3, ¢,, = 0.81, d,, = 0.88, we obtain
portfolio selection strategy by solving the problem (P4). The solution is
found to be efficient. The corresponding computational results are listed in
Tables 4-5. The achievement levels of the various membership functions are
m = 0.00028, ny = 0.77664, n3 = 0.78516 which are consistent with the
purchasing manager preferences.
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Table 4 Summary results of supplier portfolio selection incorporating pur-
chasing manager preferences

Case Shape parameters  Price Quality level — Delivery level
a, ay ay

Case 1 6 30 30 12.78110  0.79823 0.85422

Case 2 6 30 30 14.69752  0.88460 0.90870

Case 3 6 30 30 14.66650 0.85154 0.92320

Table 5 The proportions of the total order allocated to suppliers in obtained
supplier portfolios incorporating purchasing manager preferences

Class Suppliers
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Class 1 0.0661 0 0.2 022 0 0 0 O 0.25 0.2639

Class 2 0 0 0 022 0.21496 0.27 0 0.04504 0.25 O
Class 3 0 0 0 0.027 0.646 0.06 0 0.017 025 0

The foregoing analysis of the various decision situations from the stand
point of decision makers preferences demonstrates that the supplier portfolio
selection models developed in this paper discriminate among decision makers.
Thus, it is possible to construct efficient portfolios with reference to the
diversity of decision maker preferences.

5 Conclusions

This paper proposed a flexible approach to multiobjective supplier selec-
tion problems. We used the criteria of expected unit price, expected score
of quality and expected score of delivery for supplier evaluation and order
allocation. Further, the benefits of supplier diversification using trade-offs
among the three chosen criteria have been achieved. The upper bounds and
lower bounds are used for fractions of order that may be assigned to a partic-
ular supplier in order to ensure supplier diversification as well as to avoid the
situations where very small fractions of the ordered quantity are obtained.
Recognizing that supplier selection involves MCDM in an environment that
befits more fuzzy approximation than deterministic formulation, we have
transformed the supplier portfolio selection model into a fuzzy model us-
ing nonlinear S-shape fuzzy membership functions. Numerical illustrations
based on 10-supplier universe have been presented to illustrate the effective-
ness of the proposed models. The efficiency of the obtained solutions was

108



A multiobjective optimization model for optimal supplier selection

verified using the two-phase approach.

The main advantage of the proposed models is that if decision maker
is not satisfied with any of the supplier portfolios, more portfolios can be
generated by varying the values of the shape parameters. These parameters
may be configured to suit decision makers preferences. Thus, the fuzzy sup-
plier portfolio selection models proposed in this paper can provide satisfying
portfolio selection strategies according to vague aspiration levels, degrees of
satisfaction and relative importance of the various objectives.
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Abstract

The largest class of hyperstructures is the one which satisfy the
weak properties. These are called H,-structures introduced in 1990
and they proved to have a lot of applications on several applied sci-
ences. In this paper we present a construction of the hyperstructures
used in the Lie-Santilli admissible theory on square matrices.
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1 Introduction

We deal with hyperstructures called H,-structures introduced in 1990
[30], which satisfy the weak axioms where the non-empty intersection replaces
the equality.

Some basic definitions are the following:

In a set H equipped with a hyperoperation (abbreviation hyperoperation
= hope)

-+ Hx H— P(H) - {2},

we abbreviate by
WASS the weak associativity: (zy)z Nx(yz) # &,Vx,y,z € H and by
COW the weak commutativity: xy Nyx # I, Vr,y € H.
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The hyperstructure (H,-) is called an H,-semigroup if it is WASS, it is
called H,-group if it is reproductive H,-semigroup, i.e.,

xH =Hxr=H,Vx € H.

The hyperstructure (R, +, -) is called an H,-ring if (+) and (-) are WASS, the
reproduction axiom is valid for (+) and (-) is weak distributive with respect
to (4):

z(y+z)N(ey+22) # 9, (x+y)zN(rz+yz) # 9, Vo,y,z € R.

Motivations. The motivation for H,-structures is the following: We
know that the quotient of a group with respect to an invariant subgroup
is a group. F. Marty from 1934, states that, the quotient of a group with
respect to any subgroup is a hypergroup. Finally, the quotient of a group
with respect to any partition (or equivalently to any equivalence relation) is
an H,-group. This is the motivation to introduce the H,-structures [24].

In an H,-semigroup the powers of an element h € H are defined as follows:

Rt ={h},h* =h-h,..,h" =hoho..oh,

where (o) denotes the n-ary circle hope, i.e. take the union of hyperproducts,
n times, with all possible patterns of parentheses put on them. An H,-
semigroup (H,-) is called cyclic of period s, if there exists an element h,
called generator, and a natural number s, the minimum one, such that

H=h'URh%...UR.

Analogously the cyclicity for the infinite period is defined [23]. If there is
an element h and a natural number s, the minimum one, such that H = h?,
then (H,-) is called single-power cyclic of period s.

For more definitions and applications on H,-structures, see the books
2],[8],124],[4],[1] and papers as [3],[28],]21],[22],[26],[9],[14],[13].

The main tool to study hyperstructures are the fundamental relations (3*,
~* and €*, which are defined in H,-groups, H,-rings and H,-vector spaces,
resp., as the smallest equivalences so that the quotient would be group, ring
and vector space, resp. These relations were introduced by T. Vougiouklis
[30],[24],[29]. A way to find the fundamental classes is given by theorems as
the following [24],[21],[25],[22],[7],]9],[20]:

Theorem 1.1. Let (H,-) be an H,-group and denote by U the set of all finite
products of elements of H. We define the relation ( in H by setting xBy iff
{z,y} C w where uw € U. Then * is the transitive closure of (3.
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Analogous theorems for the relations v* in H,-rings, €* in H,-modules
and H,-vector spaces, are also proved. An element is called single if its
fundamental class is singleton [24].

Fundamental relations are used for general definitions. Thus, an H,-ring
(R,+,-) is called H,-field if R/~* is a field.

Let (H,-),(H,*) be H,-semigroups defined on the same set H. The hope
(+) is called smaller than the hope (x), and (%) greater than (-), iff there
exists an

f € Aut(H, *) such that zy C f(x *xy), Vz,y € H.

Then we write - < % and we say that (H,x) contains (H,-). If (H,-) is
a structure then it is called basic structure and (H,*) is called Hj-structure
and (x) is called b-hope.

Theorem 1.2. (The Little Theorem). Greater hopes than the ones which
are WASS or COW, are also WASS or COW, respectively.

Definition 1.1. [20],/25] Let (H,-) be hypergroupoid. We remove h € H, if
we consider the restriction of (-) in the set H — {h}. h € H absorbs h € H
if we replace h by h and h does not appear in the structure. h € H merges
with h € H, if we take as product of any x € H by h, the union of the results
of x with both h, h, and consider h and h as one class with representative h,
therefore, h does not appear in the hyperstructure.

For several definitions and applications of hyperstructures in mathematics
or in sciences and social sciences one can see [11],[15],[13],[3].

2 The theta (0) hopes

In [19],[32],[11],[15] a hope, in a groupoid with a map f on it, denoted
0y, is introduced. Since there is no confusion, we write simply theta 0. The
symbol ”0” appears in Greek papyrus to represent the letter ”theta ”usually
in middle rather than the beginning of the words.

Definition 2.1. Let H be a set equipped with n operations (or hopes) @1, ..., @y,
and a map (or multivalued map) f: H — H (or f : H— P(H) — (), respec-
tively), then n hopes 01,0s,...,0, on H can be defined, called theta-operations
(we rename here theta-hopes and we write -hope) by putting

xO0y ={f(2) @y, 2 ®; fly)},Ve,y € H and i € {1,2,...,n}
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or, in case where ®; is hope or f is multivalued map, we have

if ®; is associative then 0; is WASS.

Analogously one can use several maps f, instead than only one.

Let (G,-) be a groupoid and f; : G — G,i € I, be a set of maps on G.
Take the map f, : G — P(G) such that f,(zx) = {f;(x)|i € I} and we call
it the union of the f;(x). We call union 0-hopes, on G if we consider the
map fu(z). A special case is to take the union of f with the identity, i.e.
f = fuU(id), so f(x) = {z, f(x)},Vz € G, which is called b-0-hope. We
denote the b-0-hope by (9), so

xy = {zy, f(x) -y, z- f(y)},Vo,y € G

This hope contains the operation (+) so it is a b-hope. If f: G — P(G) —
{0}, then the b-0-hope is defined by using the map f(z) = {z}Uf(z),Vr € G.

Motivation for the definition of the theta-hope is the map derivative
where only the multiplication of functions can be used. Therefore, in these
terms, for two functions s(x), t(x), we have sot = {s't, st} where (') denotes
the derivative.

For several results one can see [19],[32].

Examples. (a) Taking the application on the derivative, consider all
polynomials of up to first degree g;(z) = a;x + b;. We have

91892 = {alagx + Cble, a1aox + blag},

so this is a hope in the first degree polynomials. Remark that all polynomials
x+c, where ¢ be a constant, are units.

(b) The constant map. Let (G,-) be group and f(z) = a, thus xdy =
{ay,za},Vx,y € G. If f(x) = e, then we obtain zdy = {z,y}, the smallest
incidence hope.

Properties. If (G,-) is a semigroup then:

(a) For every f, the 0-hope is WASS.
(b) For every f, the b-0-hope (9) is WASS.
(c) If f is homomorphism and projection, then (9) is associative.
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Properties.

Reproductivity. 1If (+) is reproductive then (0) is also reproductive.

Commutativity. If (-) is commutative then (0) is commutative. If f is into
the centre of G, then (9) is commutative. If (-) is COW then, (9) is COW.

Unit elements. The elements of the kernel of f, are the units of (G,0).

Inverse elements. For given x, the elements 2’ = (f(z)) 'u and 2/ =
u(f(z))™!, are the right and left inverses, respectively. We have two-sided
inverses iff f(x)u = uf(x).

Proposition. Let (G,-) be a group then, for all maps f : G — G, the
hyperstructure (G, 0) is an H,-group.

Definition 2.2. Let (R,+,-) be a ring and f : R — R, g : R — R be two
maps. We define two hopes (04) and (0-), called both theta-hopes, on R as
follows

0y ={f(x) +y, o+ f(y)} and 20y = {g(v) -y, z - g(y)}, Yo,y € G.

A hyperstructure (R, +,-), where (+), (-) are hopes which satisfy all H,-
ring axioms, except the weak distributivity, will be called H,-near-ring.

Propositions.

(a) Let (R,+,-) be aring and f : R — R, g : R — R be maps. The
(R,0)4,0.), called theta, is an H,-near-ring. Moreover (0, ) is commu-
tative.

(b) Let (R,+,-) bearingand f : R — R, g : R — R maps, then (R,0,,0.),

is an H,-ring.

Properties. (Special classes). The theta hyperstructure (R, 0y, 0.) takes
a new form and has some properties in several cases as the following ones:

(a) If f is a homomorphism and projection, then

20.(y042)N(20.y) 0, (v0.2) = {f(2) f(y)+ [ (x)2, [ (2)y+[(2)f(2)} # 0.
Therefore, (R,0)4,0.) is an H,-ring.

(b) If f(x) = x,Vo € R, then (R, +,0.) becomes a multiplicative H,-ring:
20.(y + 2) N (20.y) + (20.2) = {g(x)y + g(x)z} # 0.

If, moreover, f is a homomorphism, then we have a "more” strong
distributivity:

20.(y + 2) N ((x0y) + (20.2)) = {g(x)y + g(x)z, 29(y) + xg(2)} # 0.
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Now we can see theta hopes in H,-vector spaces and H,-Lie algebras:

Theorem 2.1. Let (V,+,-) be an algebra over the field (F,+,-) and f :
V — V be a map. Consider the 0-hope defined only on the multiplication
of the vectors (-), then (V,4,0) is an H,-algebra over F, where the related
properties are weak. If, moreover f is linear then we have

AMzdy) = (Ax)dy = x0(\y).

Another well known and large class of hopes is given as follows [23],[24]:
Let (G,-) be a groupoid then for every P C G, P # &, we define the
following hopes called P-hopes: for all z,y € G

P:xPy= (vP)yUx(Py),

P, :zP.y= (zy)PUz(yP), P,:xzPy=(Px)yUP(zy).

The (G, P),(G, P,) and (G, P,) are called P-hyperstructures. The most usual
case is if (G, -) is semigroup, then xPy = (xP)y U 2(Py) = 2Py and (G, P)
is a semihypergroup but we do not know about (G,P,) and (G,P;). In
some cases, depending on the choice of P, the (G, P,) and (G, P,) can be
associative or WASS.

A generalization of P-hopes, introduced by Davvaz, Santilli, Vougiouklis
in [7],[6] is the following:

Construction 2.1. Let (G,-) be an abelian group and P any subset of G
with more than one elements. We define the hope X P as follows:

{xxpy:x-P-y:{x-h-yVLGP} ifv#eandc+#e
T X,y =

-y ifr=eandy=e
we call this hope P.-hope. The hyperstructure (G, x,) is an abelian H,-group.

Matrix Representations

H,-structures are used in Representation Theory of H,-groups which can
be achieved either by generalized permutations or by H,-matrices [28],[24].
Representations by generalized permutations can be faced by translations.
In this theory the single elements are playing a crucial role. H,-matrix is
called a matrix if has entries from an H,-ring. The hyperproduct of H,-
matrices is defined in a usual manner. In representations of H,-groups by
H,-matrices, there are two difficulties: To find an H,-ring and an appropriate
set of H,-matrices.
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Most of H,-structures are used in Representation (abbreviate by rep)
Theory. Reps of H,-groups can be considered either by generalized permu-
tations or by H,-matrices [24]. Reps by generalized permutations can be
achieved by using translations. In the rep theory the singles are playing a
crucial role.

The rep problem by H,-matrices is the following:

H,-matrix is called a matrix if has entries from an H,-ring. The hyper-
product of H,-matrices A= (a;;) and B= (b;;), of type m x n and n x r,
respectively, is a set of m x r H,-matrices, defined in a usual manner:

A+ B = (ai) - (bij) = {C = (cij)l(cij) € B ain - bis},
where (@) denotes the n-ary circle hope on the hyperaddition.

Definition 2.3. Let (H,-) be an H,-group,(R,+,-) be an H,-ring R and
consider a set Mp = {(a;j)|a;; € R} then any map

T:H — MR ch— T(h) with T(h1h2> N T(hl)T(hQ) 7é @,th hg € H.

is called H,-matriz rep. If T'(hihy) C T(h1)T'(h2), then T is an inclusion
rep, if T'(hiha) = T(h1)T(hs), then T is a good rep.

3 The general H,-Lie Algebra

Definition 3.1. Let (F,+,-) be an H,-field, (V,+) be a COW H,-group and

there exists an external hope
 FxV — PV)—A{0}: (a,x) — zx
such that, for all a,b in F and z,y in V we have
a(z +y)N(ax +ay) # 0, (a+ b)x N (ax + bx) # O, (ab)x N a(bz) # 0,

then V is called an H,-vector space over F. In the case of an H,-ring instead
of an H,-field then the H,-modulo is defined. In these cases the fundamental
relation €* is the smallest equivalence relation such that the quotient V/e* is
a vector space over the fundamental field F'/~v*.

The general definition of an H,-Lie algebra was given in [31] as follows:

Definition 3.2. Let (L,+) be an H,-vector space over the H,-field (F,+, "),
¢ : ' — F/vy* the canonical map and wrp = {x € F : ¢(x) = 0}, where 0
is the zero of the fundamental field F/~. Similarly, let wy, be the core of the
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canonical map ¢ : L — L/e* and denote by the same symbol 0 the zero of
L/e*. Consider the bracket (commutator) hope:

L] Lx L — P(L): (z,y) = [z,y]
then L 1s an H,-Lie algebra over F if the following axioms are satisfied:
(L1) The bracket hope is bilinear, i.e. Yx,x1,22,Y,Y1,Y2 € L, A1, g € F
(A1 + Aoz, y] N (Ai[z1, y] + A2[z2,y]) # @
[2, Ayn + Ao N (Mafz, 1] + Aoz, 92]) # 2,
(L2) [z,2]Nwy # 9, Vrel
(L3) ([, [y, 2] + [y, [z, 2]] + [, [2,9]]) Nwi # &, Va,y € L

Definition 3.3. Let (A, +,-) be an algebra over the field F. Take any map
f:A— A, then the 0-hope on the Lie bracket [x,y| = xy — yx, is defined as
follows

2y = {f(x)y — fW)z, f(@)y —yf(x), 2f(y) — fy)z, 2 f(y) —yf(2)}.

Remark that if we take the identity map f(x) = x,Vx € A, then xdy =
{zy — yz}, thus we have not a hope and remains the same operation.

Proposition. Let (A, +,-) be an algebra F and f : A — A be a linear
map. Consider the 0 — hope defined only on the multiplication of the vectors
(+), then (A,+,-) is an H,-algebra over F, with respect to the d-hopes on
Lie bracket, where the weak anti-commutativity and the inclusion linearity
is valid.

Proposition. Let (A, +,-) be an algebra and f: A — A : f(x) = a be
a constant map. Consider the d-hope defined only on the multiplication of
the vectors (-), then (A, +,0) is an H,-Lie algebra over F.

In the above theorem if one take a=e, the unit element of the multiplica-
tion, then the properties become more strong.

4 Santilli’s admissibility

The Lie-Santilli isotopies born to solve Hadronic Mechanics problems.
Santilli proposed [16] a "lifting” of the trivial unit matrix of a normal theory
into a nowhere singular, symmetric, real-valued, new matrix. The original
theory is reconstructed such as to admit the new matrix as left and right unit.
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The isofields needed correspond to H,-structures called e-hyperfields which
are used in physics or biology. Definition: Let (H,,+,-) be the attached
H,-field of the H,-semigroup (H,-). If (H,-) has a left and right scalar unit
e then (H,,+,) is e-hyperfield, the attached H,-field of (H,-).

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic
Mechanics problems. Santilli proposed a ”lifting” of the n-dimensional triv-
ial unit matrix of a normal theory into a nowhere singular, symmetric, real-
valued, positive-defined, n-dimensional new matrix. The original theory is
reconstructed such as to admit the new matrix as left and right unit. The
isofields needed in this theory correspond into the hyperstructures were in-
troduced by Santilli and Vougiouklis in 1996 [5],[17] and they are called
e-hyperfields. The H,-fields can give e-hyperfields which can be used in the
isotopy theory in applications as in physics or biology. We present in the
following the main definitions and results restricted in the H,-structures.

Definition 4.1. A hyperstructure (H, ) which contain a unique scalar unit e,
15 called e-hyperstructure. In an e-hyperstructure, we assume that for every
element z, there exists an inverse v~ %, i.e. e € x-xz ' Na~t-z. Remark that

the inverses are not necessarily unique.

Definition 4.2. A hyperstructure (F,+,-), where (4) is an operation and
() is a hope, is called e-hyperfield if the following axioms are valid:

1. (F,+) is an abelian group with the additive unit 0,

2. (+) 1s WASS,

3. (+) is weak distributive with respect to (+),

4. 01s absorbing element: 0-x =x-0=0,Vx € F,

5. ewist a multiplicative scalar unit 1, i.e. 1-x =x-1=x,Vx € F,

6. for every v € F there exists a unique inverse x~, such that 1 € x -
rtnatox.

The elements of an e-hyperfield are called e-hypernumbers. In the case
that the relation: 1 = z-27! = 27! - z, is valid, then we say that we have a
strong e-hyperfield.

Now we present a general construction which is based on the partial
ordering of the H,-structures and on the Little Theorem.
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Definition 4.3. The Main e-Construction. Given a group (G, -), where e is
the unit, then we define in G, a large number of hopes (®) as follows:

r®y={xy, 1,92, ...},Vr,y € G—{e}, and g1, 9>, ... € G —{e}

g1, g2,-.. are not necessarily the same for each pair (x,y). Then (G,®) be-
comes an H,-group, actually is an Hy-group which contains the (G,-). The
H,-group (G,®) is an e-hypergroup. Moreover, if for each x,y such that
xy = e, so we have x ® y = xy, then (G,®) becomes a strong e-hypergroup

The proof is immediate since we enlarge the results of the group by putting
elements from G and applying the Little Theorem. Moreover one can see that
the unit e is a unique scalar and for each x in G, there exists a unique inverse
271, such that 1 € o -2~ 'Na~! -z and if this condition is valid then we have
1==z-27' =271 2. So the hyperstructure (G, ®) is a strong e-hypergroup.

5 Mathematical Realisation of type A,

The representation theory by matrices gives to researchers a flexible tool
to see and handle algebraic structures. This is the reason to see Lie-Santilli’s
admissibility using matrices or hypermatrices to study the multivalued (hy-
per) case. Using the well known P-hyperoperations we extend the Lie-
Santilli’s admissibility into the hyperstructure case. We present the problem
and we give the basic definitions on the topic which cover the four following
cases:

Construction 5.1. [18] Suppose R, S be sets of square matrices (or hy-
permatrices). We can define the hyper-Lie bracket in one of the following
ways:

1. [v,y]lrs = xRy — ySx (General Case)
2. [z,ylr = xRy — yx

8. [z,yls = vy — ySu

4. [z,ylrr = 2Ry — yRx

The question is when the conditions, for all square matrices (or hyperma-
trices) z, y, z,
[z,2]rs 0
[z, [y, 2|rs]rs + [y, [2, %|rs]rs + [2, [T, Y] rs]rRs D0

of a hyper-Lie algebra are satisfied [18].
We apply this generalization on the Lie algebras of the type A,,.
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We deal with Lie-Algebra of type A, of traceless matrices M (Tr(M)=0),
which is a graded algebra, using the principal realisation used in Infinite
Dimensional Kac Moody Lie Algebras introduced in 1981[10] by Lepowsky
and Wilson, Kac [12]. In this special algebra examples on the above described
hyperstructure theory are being presented.

Denote as

EZJ(Z,j = 1, ,n)

the n X n matrix which is 1 in the ij-entry and 0 everywhere else and by
ei=FEi; —Eiyi141,1=1,...,n—1
The Simple base of the above type is the following:
Base of Level 0 : ¢;, 1 =1,2,....,.n — 1
Base of Level 1 : E; ;41,1 =1,2,...,n

Base of Level 2 : E; ;49,1 =1,2,...,n

Base of Level n-1: E; ;1 (n—1), 1 =1,2,...,n

Denote that all the subscripts are mod n.
Therefore the levels are in bold as follows:

Level O :
a;; 0 O 0
0 ago 0 0
0 0 O 0
0 0O 0 . Qnn
Level 1 :
0 aig 0 0
0 0 a3 0
0 0 0 An—_1,n
a, 0 0 0
Level 2 :

123



P. Nikolaidou, Th. Vougiouklis

0 0 ais 0

0 0 0 asn
Adn-—-1.1 0 0 0

0 ane 0 0

Level n-1 :

0O 0 O Ain
azl 0 0 0

0O 0 O . 0

0 0 ... agna O

For our examples the Konstant’s Cyclic Element E is being used as the
sum of First Level’s Simple Base [10].

E=FEyy+Ex+ L3+ ...+ FEy 1, +Ey

This element is shifting every element of level L to the next level L + 1
[10],[27]. The base of the first level as well as for every level, except zero,
has n elements. Level 0 has a n — 1 dimension because of the limitation of
the zero trace. The cyclic element gets different element from the base and
goes to different ellement of the next level, creating an 1-1 correspondance.
The element E shifts level n — 1 to the Level 0 and because, as already
remarked, Level 0 has n — 1 elements, contrary with every other level, the
1-1 correspondance is being corrupted.

To summarize, according to the related theory, removing from every level
(except Level-0), all the powers of E until n — 1 (E, E?,..., E"!), an one to
one complete correspondance between all levels, Level-0 included, is being
created.

We denote the first power :

[E7En1]1 = EETLI _Enl B = Al

the second power:

and inductively by the n-power:
[EJ Enl]n = [E, An—l] = An

One can prove the following:
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Theorem 5.1.
[Ea Enl]n =
=diag(("y"), (D' ("), (D", ) (CD"2(0,), (CD)" (D)
The above theorem helps as to find the basic element of first Level’s base

and based on this theorem all the n*” powers of the elements of the first level
can also be found.

Theorem 5.2. Based on this theory and P-hyperstructures a set P with
two elements can be used, either from zero or first level, but only with two
elements. In this case the shift is depending on the level, so if we take P from
Level-0, the result will not change, although the result will be multivalued. In
case of different level insted, the shift will be analogous to the level of P.

In the general case in Construction 5.1(1), one can notice the possible
cardinality of the result, checking the Jacoby identity is very big. Even in
the small case when |R| = |S| = |P| = 2 in the anticommutativity x Pz —x Px
could have cardinality 4 and the left side of the Jacoby identity is

(xP(yPz — 2Py) — (yPz — zPy)Pz) + (yP(2Px — xPz)—
—(2Px —xPz)Py) + (:P(xPy — yPzx) — (xPy — yPz)Pz)
could have cardinality 2'®. The number is reduced in special cases.

Theorem 5.3. In the case of the Lie-algebra of type A,,, of traceless matrices
M, we can define a hyper-Lie-Santilli-admissible bracket hope as follows:

[zylp = Py — yPx

where P = {p,q}, with p,q elements of the zero level. Then we obtain a
hyper-Lie-Santilli-algebra.

Proof
We need only to proof the anticommutativity and the Jacobi identity as
in the hyperstructure case. Therefore we have

(a) [zylp = 2Py — yPx = {0,2pr — zqx,xqr — xpr} > 0, so the "weak”
anticommutativity is valid, and
(b) [z, [y, 2lplp + [y, [z, =lplp + [z, [, ylplp =
(xP(yPz — zPy) — (yPz — zPy)Pz) + (yP(2Px — xPz)—
—(2Px —xPz)Py) + (:P(xPy — yPzx) — (xPy — yPz)Pz).
But this set contains the element
TPYpz — TPZPY — YPZpT + ZPYpr + Ypapr — yprpz—
—zpxpy + xpzpy + 2prpy — 2pypr — wpypz + yprpz =0
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So the "weak” Jacobi identity is valid.

Thus, zero belongs to the above results, as it has to be, but there are

more elements because it is a multivalued operation.
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