Recognizability in Stochastic Monoids

A. Kalampakas ${ }^{a}$, O. Louscou-Bozapalidou ${ }^{b}$, S. Spartalis ${ }^{c}$
${ }^{a, c}$ Department of Production Engineering and Management, Democritus University of Thrace, 67100, Xanthi, Greece
${ }^{b}$ Section of Mathematics and Informatics, Technical Institute of West Macedonia, 50100, Kozani, Greece
akalampakas@gmail.duth.gr
sspar@pme.duth.gr

Abstract

Stochastic monoids and stochastic congruences are introduced and the syntactic stochastic monoid M_{L} associated to a subset L of a stochastic monoid M is constructed. It is shown that M_{L} is minimal among all stochastic epimorphisms $h: M \rightarrow M^{\prime}$ whose kernel saturates L. The subset L is said to be stochastically recognizable whenever M_{L} is finite. The so obtained class is closed under boolean operations and inverse morphisms.

Key words: recognizability, stochastic monoids, minimization.
MSC 2010: 68R01, 68Q10, 20M32.

1 Introduction

A stochastic subset of a set M is a function $F: M \rightarrow[0,1]$ with the additional property $\Sigma_{m \in M} F(m)=1$, i.e., F is a discrete probability distribution. The corresponding class is denoted by $\operatorname{Stoc}(M)$. Our subject of study, in the present paper, are stochastic monoids which were introduced in [4]. A stochastic monoid is a set M equipped with a stochastic multiplication $M \times M \rightarrow \operatorname{Stoc}(M)$ which is associative and unitary. It can be viewed as a nondeterministic monoid (cf. [1, 2, 3]) with multiplication $M \times M \rightarrow \mathcal{P}(M)$ such that for all $m_{1}, m_{2} \in M$ a discrete probability distribution is assigned on the set $m_{1} \cdot m_{2}$.

A congruence on a stochastic monoid M is an equivalence \sim on M such that $m_{1} \sim m_{1}^{\prime}$ and $m_{2} \sim m_{2}^{\prime}$ imply

$$
\sum_{n \in C}\left(m_{1} \cdot m_{2}\right)(n)=\sum_{n \in C}\left(m_{1}^{\prime} \cdot m_{2}^{\prime}\right)(n)
$$

for all \sim-classes C. The quotient M / \sim admits a stochastic monoid structure rendering the canonical function $m \mapsto[m]$ an epimorphism of stochastic monoids. The classical Isomorphism Theorem of Algebra still holds in the stochastic setup, namely
for any epimorphism of stochastic monoids $h: M \rightarrow M^{\prime}$ and every stochastic congruence \sim on M^{\prime} its inverse image $h^{-1}(\sim)$ defined by

$$
m_{1} h^{-1}(\sim) m_{2} \quad \text { iff } \quad h\left(m_{1}\right) \sim h\left(m_{2}\right)
$$

is again a stochastic congruence and the quotient stochastic monoids $M / h^{-1}(\sim)$ and M^{\prime} / \sim are isomorphic. In particular if \sim is the equality, then $h^{-1}(=)$ is the kernel congruence of h (denoted by \sim_{h})

$$
m_{1} \sim_{h} m_{2} \quad \text { iff } \quad h\left(m_{1}\right)=h\left(m_{2}\right)
$$

and the stochastic monoids M / \sim_{h} and M^{\prime} are isomorphic.
We show that stochastic congruences are closed under the join operation. This allows us to construct the greatest stochastic congruence included in an equivalence \sim. It is the join of all stochastic congruences on M included into \sim and it is denoted by $\sim^{\text {stoc }}$. The quotient stochastic monoid $M / \sim^{\text {stoc }}$ is denoted by $M^{\text {stoc }}$ and has the following universal property:
given an epimorphism of stochastic monoids $h: M \rightarrow M^{\prime}$ whose kernel \sim_{h} saturates the equivalence \sim there exists a unique epimorphism of stochastic monoids $h^{\prime}: M^{\prime} \rightarrow M^{\text {stoc }}$ such that $h^{\prime} \circ h=h^{\text {stoc }}$, where $h^{\text {stoc }}: M \rightarrow M^{\text {stoc }}$ is the canonical epimorphism into the quotient.

This result states that $h^{\text {stoc }}$ is minimal among all epimorphisms saturating \sim.
Let M be a stochastic monoid and $L \subseteq M$. Denote by \sim_{L} the greatest congruence of M included in the partition (equivalence) $\{L, M-L\}$, i.e., $\sim_{L}=\{L, M-L\}^{\text {stoc }}$. The quotient stochastic monoid $M_{L}=M / \sim_{L}$ will be called the syntactic stochastic monoid of L and it is characterized by the following universal property.

For every stochastic monoid M and every epimorphism $h: M \rightarrow M^{\prime}$ verifying $h^{-1}(h(L))=L$, there exists a unique epimorphism $h^{\prime}: M^{\prime} \rightarrow$ M_{L} such that $h^{\prime} \circ h=h_{L}$ where $h_{L}: M \rightarrow M_{L}$ is the canonical projection into the quotient.

Recognizability in Stochastic Monoids

A subset L of a stochastic monoid M is stochastically recognizable if there exist a finite stochastic monoid M^{\prime} and a morphism $h: M \rightarrow M^{\prime}$ such that $h^{-1}(h(L))=L$. By taking into account the previous result we get that L is recognizable if and only if its syntactic stochastic monoid is finite. Moreover stochastically recognizable subsets are closed under boolean operations and inverse morphisms.

2 Stochastic Subsets

Some useful elementary facts are displayed. Let $\left(x_{i}\right)_{i \in I},\left(x_{i j}\right)_{i \in I, j \in J},\left(y_{j}\right)_{j \in J}$ be families of nonnegative reals, then

$$
\sup _{i \in I, j \in J} x_{i j}=\sup _{i \in I} \sup _{j \in J} x_{i j}=\sup _{j \in J} \sup _{i \in I} x_{i j}, \quad \sup _{i \in I, j \in J} x_{i} y_{j}=\sup _{i \in I} x_{i} \cdot \sup _{j \in J} y_{j},
$$

provided that the above suprema exist. If $\sup _{I^{\prime} \subset f i n} \Sigma_{i \in I^{\prime}} x_{i}$ exists, then we say that the sum $\Sigma_{i \in I} x_{i}$ exists and we put

$$
\sum_{i \in I} x_{i}=\sup _{I^{\prime} \subseteq \text { fin } I} \sum_{i \in I^{\prime}} x_{i}
$$

where the notation $I^{\prime} \subseteq_{f i n} I$ means that I^{\prime} is a finite subset of I.
It holds

$$
\sum_{i \in I, j \in J} x_{i j}=\sum_{i \in I} \sum_{j \in J} x_{i j}=\sum_{j \in J i \in I} \sum_{i j} x_{i j}, \quad \sum_{i \in I, j \in J} x_{i} y_{j}=\sum_{i \in I} x_{i} \sum_{j \in J} y_{j} .
$$

Let M be a non empty set and $[0,1]$ the unit interval, a stochastic subset of M is a function $F: M \rightarrow[0,1]$ with the additional property that the sum of its values exists and is equal to 1

$$
\sum_{m \in M} F(m)=1
$$

We denote by $\operatorname{Stoc}(M)$ the set of all stochastic subsets of M.
Let $F_{i}: M \rightarrow \mathbb{R}_{+}, i \in I$, be a family of functions such that for every $m \in M$ the sum $\sum_{i \in I} F_{i}(m)$ exists. Then the assignment

$$
m \mapsto \sum_{i \in I} F_{i}(m)
$$

defines a function from M to \mathbb{R}_{+}denoted by $\sum_{i \in I} F_{i}$, i.e.,

$$
\left(\sum_{i \in I} F_{i}\right)(m)=\sum_{i \in I} F_{i}(m), \quad m \in M .
$$

Now let $\left(\lambda_{i}\right)_{i \in I}$ be a family in $[0,1]$ such that $\sum_{i \in I} \lambda_{i}=1$ and $F_{i} \in \operatorname{Stoc}(M)$, $i \in I$. For any finite subset I^{\prime} of I and any $m \in M$, we have

$$
\sum_{i \in I} \lambda_{i} F_{i}(m)=\sup _{I^{\prime} \subseteq f i n} \sum_{i \in I^{\prime}} \lambda_{i} F_{i}(m) \leq 1 .
$$

Thus $\sum_{i \in I} \lambda_{i} F_{i}$ is defined and belongs to $\operatorname{Stoc}(M)$ because

$$
\begin{aligned}
\sum_{m \in M}\left(\sum_{i \in I} \lambda_{i} F_{i}\right)(m) & =\sum_{m \in M} \sum_{i \in I} \lambda_{i} F_{i}(m)=\sum_{i \in I} \sum_{m \in M} \lambda_{i} F_{i}(m) \\
& =\left(\sum_{i \in I} \lambda_{i}\right)\left(\sum_{m \in M} F_{i}(m)\right)=1 \cdot 1=1
\end{aligned}
$$

Thus we can state:
Strong Convexity Lemma (SCL). The set $\operatorname{Stoc}(M)$ is a strongly convex set, i.e., for any stochastic family

$$
\lambda_{i} \in[0,1], \quad F_{i} \in \operatorname{Stoc}(M), i \in I
$$

the function $\sum_{i \in I} \lambda_{i} F_{i}$ is in $\operatorname{Stoc}(M)$.
For arbitrary sets M, M^{\prime} any function $h: M \rightarrow \operatorname{Stoc}\left(M^{\prime}\right)$ can be extended into a function $\bar{h}: \operatorname{Stoc}(M) \rightarrow \operatorname{Stoc}\left(M^{\prime}\right)$ by setting

$$
\bar{h}(F)=\sum_{m \in M} F(m) \cdot h(m)
$$

In particular, any function $h: M \rightarrow M^{\prime}$ is extended into a function \bar{h} : $\operatorname{Stoc}(M) \rightarrow \operatorname{Stoc}\left(M^{\prime}\right)$ by the same as above formula. This formula is legitimate since by the strong convexity lemma

$$
\sum_{m \in M} F(m)=1
$$

and $h(m)$ is a stochastic subset of M.
Hence, for any stochastic subset $F: M \rightarrow[0,1]$ we have the expansion formula

$$
F=\sum_{m \in M} F(m) \hat{m}
$$

where $\hat{m}: M \rightarrow[0,1]$ stands for the singleton function

$$
\hat{m}(n)= \begin{cases}1, & \text { if } n=m \\ 0, & \text { if } n \neq m\end{cases}
$$

Often \hat{m} is identified with m itself.

3 Stochastic Congruences

Our main interest is focused on equivalences in the stochastic setup. Any equivalence relation \sim on the set M, can be extended into an equivalence relation \approx on the set $\operatorname{Stoc}(M)$ as follows: for $F, F^{\prime} \in \operatorname{Stoc}(M)$ we set $F \approx F^{\prime}$ if and only if for each \sim-class C it holds

$$
\sum_{m \in C} F(m)=\sum_{m \in C} F^{\prime}(m)
$$

that is both F, F^{\prime} behave stochastically on C in similar way. The above sums exist because F, F^{\prime} are stochastic subsets of M :

$$
\sum_{m \in C} F(m) \leq \sum_{m \in M} F(m)=1
$$

The equivalence \approx has a fundamental property, it is compatible with strong convex combinations.

Proposition 3.1. Assume that $\left(\lambda_{i}\right)_{i \in I}$ is a stochastic family of numbers in $[0,1]$ and $F_{i}, F_{i}^{\prime} \in \operatorname{Stoc}(M)$, for all $i \in I$. Then

$$
F_{i} \approx F_{i}^{\prime}, \text { for all } i \in I, \quad \text { implies } \quad \sum_{i \in I} \lambda_{i} F_{i} \approx \sum_{i \in I} \lambda_{i} F_{i}^{\prime} .
$$

Proof. By hypothesis we have

$$
\sum_{m \in C} F_{i}(m)=\sum_{m \in C} F_{i}^{\prime}(m)
$$

for any \sim-class C in M, and thus

$$
\begin{aligned}
\sum_{m \in C}\left(\sum_{i \in I} \lambda_{i} F_{i}\right)(m) & =\sum_{m \in C} \sum_{i \in I} \lambda_{i} F_{i}(m)=\sum_{i \in I} \lambda_{i} \sum_{m \in C} F_{i}(m) \\
& =\sum_{i \in I} \lambda_{i} \sum_{m \in C} F_{i}^{\prime}(m)=\sum_{m \in C} \sum_{i \in I} \lambda_{i} F_{i}^{\prime}(m) \\
& =\sum_{m \in C}\left(\sum_{i \in I} \lambda_{i} F_{i}^{\prime}\right)(m)
\end{aligned}
$$

that is

$$
\sum_{i \in I} \lambda_{i} F_{i} \approx \sum_{i \in I} \lambda_{i} F_{i}^{\prime}
$$

as wanted.

Kalampakas, Louscou-Bozapalidou, Spartalis

4 Stochastic Monoids

A stochastic monoid is a set M equipped with a stochastic multiplication, i.e. a function

$$
M \times M \rightarrow \operatorname{Stoc}(M), \quad\left(m_{1}, m_{2}\right) \mapsto m_{1} m_{2}
$$

which is associative

$$
\sum_{n \in M}\left(m_{1} m_{2}\right)(n)\left(n m_{3}\right)=\sum_{n \in M}\left(m_{2} m_{3}\right)(n)\left(m_{1} n\right)
$$

and unitary i.e. there is an element $e \in M$ such that

$$
m e=m=e m, \quad \text { for all } m \in M .
$$

For instance any ordinary monoid can be viewed as a stochastic monoid. In the present study it is important to have a congruence notion. More precisely, let M be a stochastic monoid and \sim an equivalence relation on the set M, such that: $m_{1} \sim m_{1}^{\prime}$ and $m_{2} \sim m_{2}^{\prime}$ implies

$$
\sum_{m \in C}\left(m_{1} m_{2}\right)(m)=\sum_{m \in C}\left(m_{1}^{\prime} m_{2}^{\prime}\right)(m)
$$

for all \sim-classes C, then \sim is called a stochastic congruence on M. This condition can be reformulated as follows: $m_{1} \sim m_{1}^{\prime}$ and $m_{2} \sim m_{2}^{\prime}$ implies

$$
m_{1} m_{2} \approx m_{1}^{\prime} m_{2}^{\prime}
$$

Proposition 4.1. The quotient set M / \sim is structured into a stochastic monoid by defining the stochastic multiplication via the formula

$$
\left(\left[m_{1}\right]\left[m_{2}\right]\right)([n])=\sum_{m \in[n]}\left(m_{1} m_{2}\right)(m) .
$$

Proof. First observe that the above multiplication is well defined. Next for every \sim-class $[b]$ we have

$$
\begin{aligned}
\left(\left(\left[m_{1}\right]\left[m_{2}\right]\right)\left[m_{3}\right]\right)([b]) & =\sum_{[n] \in M / \sim}\left(\left[m_{1}\right]\left[m_{2}\right]\right)([n])\left([n]\left[m_{3}\right]\right)([b]) \\
& =\sum_{[n] \in M / \sim n_{1} \in[n]} \sum_{b_{1}}\left(m_{1} m_{2}\right)\left(n_{1}\right) \sum_{b^{\prime} \in[b]}\left(n m_{3}\right)\left(b^{\prime}\right)
\end{aligned}
$$

Since $n \sim n_{1}$ we get

$$
\begin{aligned}
& =\sum_{[n] \in M / \sim} \sum_{n_{1} \in[n]}\left(m_{1} m_{2}\right)\left(n_{1}\right) \sum_{b^{\prime} \in[b]}\left(n_{1} m_{3}\right)\left(b^{\prime}\right) \\
& =\sum_{[n] \in M / \sim} \sum_{b^{\prime} \in[b]} \sum_{n_{1} \in[n]}\left(m_{1} m_{2}\right)\left(n_{1}\right)\left(n_{1} m_{3}\right)\left(b^{\prime}\right) \\
& =\sum_{b^{\prime} \in[b]} \sum_{n_{1} \in M}\left(m_{1} m_{2}\right)\left(n_{1}\right)\left(n_{1} m_{3}\right)\left(b^{\prime}\right) .
\end{aligned}
$$

By taking into account the associativity of M we obtain:

$$
\begin{aligned}
& =\sum_{b^{\prime} \in[b]} \sum_{n_{1} \in M}\left(m_{2} m_{3}\right)\left(n_{1}\right)\left(m_{1} n_{1}\right)\left(b^{\prime}\right) \\
& =\left(\left[m_{1}\right]\left(\left[m_{2}\right]\left[m_{3}\right]\right)\right)([b])
\end{aligned}
$$

Congruences on an ordinary monoid M coincide with stochastic congruences when M is viewed as a stochastic monoid. The first question arising is whether stochastic congruence is a good algebraic notion. This is checked by the validity of the known isomorphism theorems in their stochastic variant.

Given stochastic monoids M and M^{\prime}, a strict morphism from M to M^{\prime} is a function $h: M \rightarrow M^{\prime}$ preserving stochastic multiplication and units, i.e.,

$$
\bar{h}\left(m_{1} m_{2}\right)=h\left(m_{1}\right) h\left(m_{2}\right), \quad h(e)=e^{\prime},
$$

for all $m_{1}, m_{2} \in M$, where e, e^{\prime} are the units of M, M^{\prime} respectively, and $\bar{h}: \operatorname{Stoc}(M) \rightarrow \operatorname{Stoc}\left(M^{\prime}\right)$ the canonical extension of h defined in Section 2.

Theorem 4.1. Given an epimorphism of stochastic monoids $h: M \rightarrow M^{\prime}$ and a stochastic congruence \sim on M^{\prime}, its inverse image $h^{-1}(\sim)$ defined by

$$
m_{1} h^{-1}(\sim) m_{2} \quad \text { if } \quad h\left(m_{1}\right) \sim h\left(m_{2}\right)
$$

is also a stochastic congruence and the stochastic quotient monoids $M / h^{-1}(\sim$) and M^{\prime} / \sim are isomorphic.

Proof. Assume that

$$
m_{1} h^{-1}(\sim) m_{1}^{\prime} \text { and } m_{2} h^{-1}(\sim) m_{2}^{\prime}
$$

that is

$$
h\left(m_{1}\right) \sim h\left(m_{1}^{\prime}\right) \text { and } h\left(m_{2}\right) \sim h\left(m_{2}^{\prime}\right) .
$$

Then

$$
\bar{h}\left(m_{1} m_{2}\right)=h\left(m_{1}\right) h\left(m_{2}\right) \approx h\left(m_{1}^{\prime}\right) h\left(m_{2}^{\prime}\right)=\bar{h}\left(m_{1}^{\prime} m_{2}^{\prime}\right)
$$

that is for all $C \in M^{\prime} / \sim$, we have

$$
\sum_{c \in C} \bar{h}\left(m_{1} m_{2}\right)(c)=\sum_{c \in C} \bar{h}\left(m_{1}^{\prime} m_{2}^{\prime}\right)(c)
$$

but

$$
\begin{aligned}
\sum_{c \in C} \bar{h}\left(m_{1} m_{2}\right)(c) & =\sum_{c \in C} \sum_{m \in M}\left(m_{1} m_{2}\right)(m) h(m)(c)=\sum_{m \in M}\left(m_{1} m_{2}\right)(m) \sum_{c \in C} h(m)(c) \\
& =\sum_{m \in h^{-1}(C)}\left(m_{1} m_{2}\right)(m) .
\end{aligned}
$$

Recall that all $h^{-1}(\sim)$-classes are of the form $h^{-1}(C), C \in M^{\prime} / \sim$. Consequently,

$$
=\sum_{m \in h^{-1}(C)}\left(m_{1} m_{2}\right)(m)=\sum_{m \in h^{-1}(C)}\left(m_{1}^{\prime} m_{2}^{\prime}\right)(m)
$$

which shows that $h^{-1}(\sim)$ is indeed a congruence of the stochastic monoid M. The desired isomorphism $\hat{h}: M / h^{-1}(\sim) \rightarrow M^{\prime} / \sim$ is given by

$$
\hat{h}\left([m]_{h^{-1}(\sim)}\right)=[h(m)]_{\sim} .
$$

Corolary 4.1. Let $h: M \rightarrow M^{\prime}$ be an epimorphism of stochastic monoids. Then the kernel equivalence

$$
m_{1} \sim_{h} m_{2} \text { if } h\left(m_{1}\right)=h\left(m_{2}\right)
$$

is a congruence on M and the stochastic quotient monoid M / \sim_{h} is isomorphic to M^{\prime}.

Given stochastic monoids M_{1}, \ldots, M_{k} the stochastic multiplication

$$
\left[\left(m_{1}, \ldots, m_{k}\right) \cdot\left(m_{1}^{\prime}, \ldots, m_{k}^{\prime}\right)\right]\left(n_{1}, \cdots, n_{k}\right)=\left(m_{1} m_{1}^{\prime}\right)\left(n_{1}\right) \cdots\left(m_{k} m_{k}^{\prime}\right)\left(n_{k}\right)
$$

structures the set $M_{1} \times \cdots \times M_{k}$ into a stochastic monoid so that the canonical projection

$$
\pi_{i}: M_{1} \times \cdots \times M_{k} \rightarrow M_{i}, \quad \pi_{i}\left(m_{1}, \ldots, m_{k}\right)=m_{i}
$$

becomes a morphism of stochastic monoids. Notice that the above multiplication is stochastic because

$$
\begin{aligned}
\sum_{\substack{n_{i} \in M_{i} \\
1 \leq i \leq k}}\left(m_{1} m_{1}^{\prime}\right)\left(n_{1}\right) \cdots\left(m_{k} m_{k}^{\prime}\right)\left(n_{k}\right) & =\sum_{n_{1} \in M_{1}}\left(m_{1} m_{1}^{\prime}\right)\left(n_{1}\right) \cdots \sum_{n_{k} \in M_{k}}\left(m_{k} m_{k}^{\prime}\right)\left(n_{k}\right) \\
& =1 \cdots 1=1 .
\end{aligned}
$$

Recognizability in Stochastic Monoids

Theorem 4.2. Let \sim_{i} be a stochastic congruence on the stochastic monoid $M_{i}(1 \leq i \leq k)$. Then $\sim_{1} \times \cdots \times \sim_{k}$ is a stochastic congruence on the stochastic monoid $M_{1} \times \cdots \times M_{k}$ and the stochastic monoids $M_{1} \times \cdots \times M_{k} / \sim_{1}$ $\times \cdots \times \sim_{k}$ and $M_{1} / \sim_{1} \times \cdots \times M_{k} / \sim_{k}$ are isomorphic.

5 Greatest Stochastic Congruence Saturating an Equivalence

First observe that, due to the symmetric property which an equivalence relation satisfies, the sumability condition in the definition of a congruence can be replaced by the weaker condition: $m_{1} \sim m_{1}^{\prime}$ and $m_{2} \sim m_{2}^{\prime}$ implies

$$
\sum_{m \in C}\left(m_{1} m_{2}\right)(m) \leq \sum_{m \in C}\left(m_{1}^{\prime} m_{2}^{\prime}\right)(m)
$$

for all \sim-classes C.
Lemma 5.1. The equivalence \sim on the stochastic monoid M is a congruence if and only if the following condition is fulfilled: $m \sim m^{\prime}$, implies

$$
\sum_{b \in C}(m \cdot n)(b) \leq \sum_{b \in C}\left(m^{\prime} \cdot n\right)(b) \quad \text { and } \quad \sum_{b \in C}(n \cdot m)(b) \leq \sum_{b \in C}\left(n \cdot m^{\prime}\right)(b) .
$$

Proof. One direction is immediate whereas for the opposite direction we have: $m_{1} \sim m_{1}^{\prime}$ and $m_{2} \sim m_{2}^{\prime}$ imply

$$
\sum_{b \in C}\left(m_{1} \cdot m_{2}\right)(b) \leq \sum_{b \in C}\left(m_{1}^{\prime} \cdot m_{2}\right)(b) \leq \sum_{b \in C}\left(m_{1}^{\prime} \cdot m_{2}^{\prime}\right)(b) .
$$

Next we demonstrate that stochastic congruences are closed under the join operation. We recall that the join $\bigvee_{i \in I} \sim_{i}$ of a family of equivalences $\left(\sim_{i}\right)_{i \in I}$ on a set A is the reflexive and transitive closure of their union:

$$
\bigvee_{i \in I} \sim_{i}=\left(\bigcup_{i \in I} \sim_{i}\right)^{*} .
$$

Theorem 5.1. If $\left(\sim_{i}\right)_{i \in I}$ is a family of stochastic congruences on M, then their join $\bigvee_{i \in I} \sim_{i}$ is also a stochastic congruence.
Proof. Let \sim_{1}, \sim_{2} be two congruences on M and $\sim=\sim_{1} \vee \sim_{2}$. First we show that $m \sim_{1} m^{\prime}$ implies

$$
\sum_{b \in C}(m \cdot n)(b) \leq \sum_{b \in C}\left(m^{\prime} \cdot n\right)(b),
$$

for all \sim-classes C. From the inclusion $\sim_{1} \subseteq \sim$ we get that C is the disjoint union

$$
C=\bigcup_{j=1}^{m} C_{j}^{1}
$$

where C_{j}^{1} denote \sim_{1}-classes. Then

$$
\sum_{b \in C}(m \cdot n)(b)=\sum_{j=1}^{m} \sum_{b \in C_{j}^{1}}(m \cdot n)(b) \leq \sum_{j=1}^{m} \sum_{b \in C_{j}^{1}}\left(m^{\prime} \cdot n\right)(b)=\sum_{b \in C}\left(m^{\prime} \cdot n\right)(b) .
$$

By a similar argument we show that $m \sim_{2} m^{\prime}$ implies

$$
\sum_{b \in C}(m \cdot n)(b) \leq \sum_{b \in C}\left(m^{\prime} \cdot n\right)(b),
$$

for all \sim-classes C. Now, if $m \sim m^{\prime}$, without any loss we may assume that

$$
m \sim_{1} m_{1} \sim_{2} m_{2} \sim_{1} \cdots \sim_{1} m_{2 \lambda-1} \sim_{2} m^{\prime}
$$

for some elements $m_{1}, \ldots, m_{2 \lambda-1} \in M$. Applying successively the previous facts, we obtain

$$
\sum_{b \in C}(m \cdot n)(b) \leq \sum_{b \in C}\left(m_{1} \cdot n\right)(b) \leq \cdots \leq \sum_{b \in C}\left(m_{2 \lambda-1} \cdot n\right)(b) \leq \sum_{b \in C}\left(m^{\prime} \cdot n\right)(b) .
$$

For an arbitrary set of congruences we proceed in a similar way.
The previous result leads us to introduce the greatest stochastic congruence included into an equivalence \sim of M. It is the join of all stochastic congruences on M included into \sim and it is denoted by $\sim^{\text {stoc }}$. The quotient stochastic monoid $M / \sim^{\text {stoc }}$ is denoted by $M^{\text {stoc }}$ and has the following universal property
Theorem 5.2. Given an epimorphism of stochastic monoids $h: M \rightarrow M^{\prime}$ whose kernel \sim_{h} saturates the equivalence \sim there exists a unique epimorphism of stochastic monoids $h^{\prime}: M^{\prime} \rightarrow M^{\text {stoc }}$ rendering commutative the triangle

Recognizability in Stochastic Monoids

where $h^{\text {stoc }}: M \rightarrow M^{\text {stoc }}$ is the canonical projection $m \mapsto[m]_{\text {stoc }}$ sending every element $m \in M$ on its $\sim^{\text {stoc }}$-class.

Proof. By virtue of the Isomorphism Theorem the stochastic monoid M^{\prime} is isomorphic to the quotient M / \sim_{h}. Since by assumption $\sim_{h} \subseteq \sim^{\text {stoc }}, h^{\prime}$ is the following composition

$$
M^{\prime} \xrightarrow[\rightarrow]{\sim} M / \sim_{h} \xrightarrow{f} M / \sim^{\text {stoc }}=M^{\text {stoc }},
$$

with $f\left([m]_{h}\right)=[m]_{s t o c},[m]_{h}$ being the \sim_{h}-class of m.
The previous result states that $h^{\text {stoc }}$ is minimal among all epimorphisms saturating \sim.

6 Syntactic Stochastic Monoids

Let M be a stochastic monoid and $L \subseteq M$. Denote by \sim_{L} the greatest congruence of M included in the partition (equivalence) $\{L, M-L\}$, i.e.,

$$
\sim_{L}=\{L, M-L\}^{\text {stoc }}
$$

The quotient stochastic monoid $M_{L}=M / \sim_{L}$ will be called the syntactic stochastic monoid of L and it is characterized by the following universal property.

Theorem 6.1. For every stochastic monoid M and every epimorphism h : $M \rightarrow M^{\prime}$ verifying $h^{-1}(h(L))=L$, there exists a unique epimorphism $h^{\prime}:$ $M^{\prime} \rightarrow M_{L}$ rendering commutative the triangle

where h_{L} is the canonical morphism sending every element $m \in M$ to its \sim_{L}-class.

Proof. The hypothesis $h^{-1}(h(L))=L$ means that \sim_{h} saturates L and so the statement follows immediately by Theorem 5.2.

Given stochastic monoids M, M^{\prime} we write $M^{\prime}<M$ if there is a stochastic monoid \bar{M} and a situation

Kalampakas, Louscou-Bozapalidou, Spartalis

$$
M^{\prime} \stackrel{h}{\leftrightarrows} \bar{M} \xrightarrow{i} M
$$

where i (resp. h) is a monomorphism (resp. epimorphism).
Theorem 6.2. Given subsets L_{1}, L_{2}, L of a stochastic monoid M it holds
i) $M_{L_{1} \cap L_{2}}<M_{L_{1}} \times M_{L_{2}}$,
ii) $M_{L}=M_{\bar{L}}$, where \bar{L} designates the set theoretic complement of L,
iii) $M_{L_{1} \cup L_{2}}<M_{L_{1}} \times M_{L_{2}}$,
iv) If $h: M \rightarrow N$ is an epimorphism of ND-monoids and $L \subseteq N$, then $M_{h^{-1}(L)}=M_{L}$.

Proof. The proof follows by applying Theorem 6.1.
A subset L of a stochastic monoid M is stochastically recognizable if there exist a finite stochastic monoid M^{\prime} and a morphism $h: M \rightarrow M^{\prime}$ such that $h^{-1}(h(L))=L$. The class of stochastically recognizable subsets of M is denoted by StocRec (M). By taking into account Theorem 6.1 we get

Proposition 6.1. $L \subseteq M$ is recognizable if and only if its syntactic stochastic monoid is finite, $\operatorname{card}\left(M_{L}\right)<\infty$.

Putting this result together with Theorem 6.2 we yield
Proposition 6.2. The class StocRec (M) is closed under boolean operations and inverse morphisms.

References

[1] I.P. Cabrera, P. Cordero, M. Ojeda-Aciego, Non-deterministic Algebraic Structures for Soft Computing, Advances in Computational Intelligence, Lecture Notes in Computer Science 6692(2011) 437-444.
[2] J. S. Golan, Semirings of Formal Series over Hypermonoids: Some Interesting Cases, Kyungpook Math. J. 36(1996) 107-111.
[3] A. Kalampakas and O. Louskou-Bozapalidou, Syntactic Nondeterministic Monoids, submitted in Pure Mathematics and Applications.
[4] O. Louskou-Bozapalidou, Stochastic Monoids, Applied Mathematical Sciences 3(2007) 443-446.

