On multiplication Γ-modules

A. A. Estaji ${ }^{1}$, A. As. Estaji ${ }^{2}$, A. S. Khorasani ${ }^{3}$, S. Baghdari ${ }^{4}$
1234 Department of Mathematics and Computer Sciences,
Hakim Sabzevari University, PO Box 397, Sabzevar, Iran.
${ }^{1}$ aaestaji@hsu.ac.ir, ${ }^{2}$ a\$_-\$aestaji@yahoo.com
${ }^{3}$ saghafiali21@yahoo.com, ${ }^{4}$ m.baghdari@yahoo.com

Abstract

In this article, we study some properties of multiplication $M_{\Gamma^{-}}$ modules and their prime M_{Γ}-submodules. We verify the conditions of ACC and DCC on prime M_{Γ}-submodules of multiplication $M_{\Gamma^{-}}$ module.

Key words: Γ-ring, multiplication M_{Γ}-module, prime M_{Γ}-submodule, prime ideal.

MSC 2010: 13A15, 16D25, 16N60.

1 Introduction

The notion of a Γ-ring was first introduced by Nobusawa [17]. Barnes [5] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa. After the Γ-ring was defined by Barnes and Nobusawa, a lot of researchers studied on the Γ-ring. Barnes [5], Kyuno [15] and Luh [16] studied the structure of Γ-rings and obtained various generalizations analogous of corresponding parts in ring theory. Recently, Dumitru, Ersoy, Hoque, Öztürk, Paul, Selvaraj, have studied on several aspects in gammarings (see $[10,8,12,14,18,19,20]$).

McCasland and Smith [14] showed that any Noetherian module M contains only finitely many minimal prime submodules. D. D. Anderson [2] generalized the well-known counterpart of this result for commutative rings, i.e., he abandoned the Noetherianness and showed that if every prime ideal minimal over an ideal I is finitely generated, then R contains only finitely many prime ideals minimal over I. Behboodi and Koohy [7] showed that this

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

result of Anderson was true for any associative ring (not necessarily commutative) and also, they extended it to multiplication modules, i.e., if M is a multiplication module such that every prime submodule minimal over a submodule K is finitely generated, then M contains only finitely many prime submodules minimal over K.

In this paper, we study some properties of multiplication left M_{Γ}-modules and their prime M_{Γ}-submodules. This paper is organized as follows: In Section 2, we review some basic notions and properties of Γ-rings. In Section 3, the concept of a moltiplication M_{Γ}-module is introduced and its basic properties are discussed. Also, we show that If L is a left operator ring of the Γ-ring M and A is a multiplication unitary left M_{Γ}-module, then A is a multiplication left L-module. In Section 4, we proved that in fact this result was true for Γ-rings and M_{Γ}-modules.

2 Preliminaries

In this section we recall certain definitions needed for our purpose.
Recall that for additive abelian groups M and Γ we say that M is a Γ-ring if there exists a mapping

$$
\begin{aligned}
& \cdot: M \times \Gamma \times M \longrightarrow M \\
& \left(m, \gamma, m^{\prime}\right) \longrightarrow m \gamma m^{\prime}
\end{aligned}
$$

such that for every $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, the following hold:

1. $(a+b) \alpha c=a \alpha c+b \alpha c, a(\alpha+\beta) c=a \alpha c+a \beta c$ and $a \alpha(b+c)=a \alpha b+a \alpha c ;$
2. $(a \alpha b) \beta c=a \alpha(b \beta c)$.

Note that any ring R, can be regarded as an R-ring. A Γ-ring M is called commutative, if for any $x, y \in M$ and $\gamma \in \Gamma$, we have $x \gamma y=y \gamma x . M$ is called a Γ-ring with unit, if there exists elements $1 \in M$ and $\gamma_{0} \in \Gamma$ such that for any $m \in M, 1 \gamma_{0} m=m=m \gamma_{0} 1$.

If A and B are subsets of a Γ-ring M and $\Theta \subseteq \Gamma$, we denote $A \Theta B$, the subset of M consisting of all finite sums of the form $\sum a_{i} \gamma_{i} b_{i}$, where $\left(a_{i}, \gamma_{i}, b_{i}\right) \in A \times \Theta \times B$. For singleton subsets we abbreviate this notation for example, $\{a\} \Theta B=a \Theta B$.

A subset I of a Γ-ring M is said to be a right ideal of R if I is an additive subgroup of M and $I \Gamma M \subseteq I$. A left ideal of M is defined in a similar way. If I is both a right and left ideal, we say that A is an ideal of M.

For each subset S of a Γ-ring M, the smallest right ideal containing S is called the right ideal generated by S and is denoted by $|S\rangle$. Similarly
we define $\langle S|$ and $\langle S\rangle$, the left and two-sided (respectively) ideals generated by S. For each a of a Γ-ring M, the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $|a\rangle$. We similarly define $\langle a|$ and $\langle a\rangle$, the principal left and two-sided (respectively) ideals generated by a. We have $|a\rangle=Z a+a \Gamma M,\langle a|=Z a+M \Gamma a$, and $\langle a\rangle=Z a+a \Gamma M+M \Gamma a+M \Gamma a \Gamma M$, where $Z a=\{n a: n$ is an integer $\}$.

Let I be an ideal of Γ-ring M. If for each $a+I, b+I$ in the factor group M / I, and each $\gamma \in \Gamma$, we define $(a+I) \gamma(b+I)=a \gamma b+I$, then M / I is a Γ-ring which we shall call the difference Γ-ring of M with respect to I.

Let M be a Γ-ring and F the free abelian group generated by $\Gamma \times M$. Then $A=\left\{\sum_{i} n_{i}\left(\gamma_{i}, x_{i}\right) \in F: a \in M \Rightarrow \sum_{l} n_{i} a \gamma_{i} x_{i}=0\right\}$ is a subgroup of F. Let $R=F / A$, the factor group, and denote the $\operatorname{coset}(\gamma, x)+A$ by $[\gamma, x]$. It can be verified easily that $[\alpha, x]+[\beta, x]=[\alpha+\beta, x]$ and $[\alpha, x]+[\alpha, y]=$ $[\alpha, x+y]$ for all $\alpha, \beta \in \Gamma$ and $x, y \in M$. We define a multiplication in R by $\sum_{i}\left[\alpha_{i}, x_{i}\right] \sum_{J}\left[\beta_{j}, y_{j}\right]=\sum_{i_{J}}\left[\alpha_{i}, x_{i} \beta_{j} y_{j}\right]$. Then R forms a ring. If we define a composition on $M \times R$ into M by $a \sum_{l}\left[\alpha_{i}, x_{i}\right]=\sum_{i} a \alpha_{i} x_{i}$ for $a \in M$, $\sum_{i}\left[\alpha_{i}, x_{i}\right] \in R$, then M is a right R-module, and we call R the right operator ring of the Γ-ring M. Similarly, we may construct a left operator ring L of M so that M is a left L-module. Clearly I is a right (left) ideal of M if and only if I is a right R-module (left L- module) of M. Also if A is a right (left) ideal of $R(L)$, then $\mathrm{MA}(A M)$ is an ideal of M. For subsets $N \subseteq M, \Phi \subseteq \Gamma$, we denote by $[\Phi, N]$ the set of all finite sums $\sum_{i}\left[\gamma_{i}, x_{i}\right]$ in R, where $\gamma_{i} \in \Phi$, $x_{i} \in N$, and we denote by $[(\Phi, N)]$ the set of all elements $[\varphi, x]$ in R, where $\varphi \in \Phi, x \in N$. Thus, in particular, $R=[\Gamma, M]$.

An ideal P of M is prime if, for any ideals U and V of $M, U \Gamma U \subseteq P$ implies $U \subseteq P$ or $V \subseteq P$. A subset S of M is an m-system in M if $S=\emptyset$ or if $a, b \in S$ implies $<a>\Gamma\cap S \neq \emptyset$. The prime radical $\mathcal{P}(A)$ is the set of x in M such that every m-system containing x meets A. The prime radical of the zero ideal in a Γ-ring M is called the prime radical of the Γ-ring M which we denote by $\mathcal{P}(M)$.

An ideal Q of M is semi-prime if, for any ideals U of $M, U \Gamma U \subseteq Q$ implies $U \subseteq Q$.

Proposition 2.1. [15] If Q is an ideal in a commutative Γ-ring with unit M, then $P(Q)$ is the smallest semi-prime ideal in M which contains Q, i.e.

$$
\mathcal{P}(Q)=\bigcap P
$$

where P runs over all the semi-prime ideals of M such that $Q \subseteq P$.
Let P be a proper ideal in a commutative Γ-ring with unit M. It is clear that the following conditions are equivallent.

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

1. P is semi-prime.
2. For any $a \in M$, if $a \gamma_{0} a \in P$, then $a \in P$.
3. For any $a \in M$ and $n \in \mathbb{N}$, if $\left(a \gamma_{0}\right)^{n} a \in P$, then $a \in P$.

Proposition 2.2. [13] Let Q be an ideal in a commutative Γ-ring with unit M and A be the set of all $x \in M$ such that $\left(x \gamma_{0}\right)^{n} x \in Q$ for some $n \in \mathbb{N} \cup\{0\}$, where $\left(x \gamma_{0}\right)^{0} x=x$. Then $A=\mathcal{P}(Q)$.

$3 M_{\Gamma}$-module

Let M be a Γ-ring. A left M_{Γ}-module is an additive abelian group A together with a mapping $\cdot: M \times \Gamma \times A \longrightarrow A$ (the image of (m, γ, a) being denoted by $m \gamma a$), such that for all $a, a_{1}, a_{2} \in A, \gamma, \gamma_{1}, \gamma_{2} \in \Gamma$, and $m, m_{1}, m_{2} \in M$ the following hold:

1. $m \gamma\left(a_{1}+a_{2}\right)=m \gamma a_{1}+m \gamma a_{2}$;
2. $\left(m_{1}+m_{2}\right) \gamma a=m_{1} \gamma m+m_{2} \gamma a$;
3. $m_{1} \gamma_{1}\left(m_{2} \gamma_{2} a\right)=\left(m_{1} \gamma_{1} m_{2}\right) \gamma_{2} a$.

A right M_{Γ}-module is defined in analogous manner. If I is a left ideal of a Γ-ring M, then I is a left M_{Γ}-module with $r \gamma a(r \in M, \gamma \in \Gamma, a \in I)$ being the ordinary product in M. In particular, $\{0\}$ and M are M_{Γ}-modules.
 submodule of A, which we denote by $B \leq A$, provided that B is an additive subgroup of A and $m \gamma b \in B$, for all $(m, \gamma, b) \in M \times \Gamma \times B$.

Definition 3.1. Let A be a left M_{Γ}-module and X a subset of A. Let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be the family of all $M_{\Gamma^{-}}$-submodule of A which contain X. Then $\bigcap_{\lambda \in \Lambda} A_{\lambda}$ is called the M_{Γ}-submodule of A generated by the set X and denoted $\langle X|$.

If $B \subseteq A, N \subseteq M$ and $\Theta \subseteq \Gamma$, we denote $N \Theta B$, the subset of A consisting of all finite sums of the form $\sum n_{i} \gamma_{i} b_{i}$ where $\left(n_{i}, \gamma_{i}, b_{i}\right) \in N \times \Theta \times B$. For singleton subsets we abbreviate this notation for example, $\{n\} \Theta B=n \Theta B$.

If $X=\left\{a_{1}, \ldots, a_{n}\right\}$, we write $\left\langle a_{1}, \ldots, a_{n}\right|$ in place of $\langle X|$. If $A=$ $\left\langle a_{1}, \ldots, a_{n}\right|,\left(a_{i} \in A\right), A$ is said to be finitely generated. If $a \in A$, the M_{Γ}-submodule $\langle a|$ of A is called the cyclic M_{Γ}-submodule generated by a. We have $\langle X|=Z X+M \Gamma X$, where $Z S=\left\{\sum_{i=1}^{k} n_{i} x_{i}: n_{i} \in Z, x_{i} \in\right.$ S and k is an integer $\}$.

Finally, if $\left\{B_{\lambda}\right\}_{\lambda \in \Lambda}$ is a family of $M_{\Gamma^{-}}$submodules of A, then the $M_{\Gamma^{-}}$ submodule generated by $X=\bigcup_{\lambda \in \Lambda} B_{\lambda}$ is called the sum of the M_{Γ}-modules
B_{λ} and usually denoted $\langle X|=\sum_{\lambda \in \Lambda} B_{\lambda}$. If the index set Λ is finite, the sum of B_{1}, \ldots, B_{k} is denoted $B_{1}+B_{2}+\ldots+B_{k}$. It is clear that if $\left\{B_{\lambda}\right\}_{\lambda \in \Lambda}$ is a family of M_{Γ}-submodules of A, then $\sum_{\lambda \in \Lambda} B_{\lambda}$ consists of all finite sums $b_{\lambda_{1}}+\ldots+b_{\lambda_{k}}$ with $b_{\lambda_{j}} \in B_{\lambda_{l}}$.
Proposition 3.1. Let M be a Γ-ring and $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of left ideals of M. If A is a left M_{Γ}-module, then

$$
\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) \Gamma A=\sum_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma A\right) .
$$

Proof. Let $x \in\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) \Gamma A$. Then there exists $a_{1}, \ldots, a_{k} \in A$ and $\gamma_{1}, \ldots, \gamma_{k} \in$ Γ and $x_{1}, \ldots, x_{k} \in \sum_{\lambda \in \Lambda} I_{\lambda}$ such that $x=\sum_{t=1}^{k} x_{t} \gamma_{t} a_{t}$, it follows that for $1 \leq t \leq k, x_{t}=\sum_{j=1}^{k_{t}} i_{\lambda_{j t}}$ with $i_{\lambda_{j t}} \in I_{\lambda_{j t}}$. Hence $x=\sum_{t=1}^{k} \sum_{j=1}^{k_{t}} i_{\lambda_{j t}} \gamma_{t} a_{t} \in$ $\sum_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma A\right)$. Therefore $\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) \Gamma A \subseteq \sum_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma A\right)$. Also, Since for every $\lambda \in \Lambda, I_{\lambda} \Gamma A \subseteq\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) \Gamma A$, we conclude that $\sum_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma A\right) \subseteq$ $\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) \Gamma A$. Hence $\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) \Gamma A=\sum_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma A\right)$.
Definition 3.2. If A is a left M_{Γ}-module and \mathcal{S} is the set of all M_{Γ}-submodules B of A such that $B \neq A$, then \mathcal{S} is partially ordered by set-theoretic inclusion. B is a maximal M_{Γ}-submodule if and only if B is a maximal element in the partially ordered set \mathcal{S}.

Proposition 3.2. If A is a non-zero finitely generated left M_{Γ}-module, then the following statements are hold.

1. If K is a proper M_{Γ}-submodule of A, then there exists a maximal $M_{\Gamma^{-}}$ submodule of A such that contain K.
2. A has a maximal M_{Γ}-submodule.

Proof. (1) Let $A=\left\langle a_{1}, \ldots, a_{n}\right|$ and

$$
\mathcal{S}=\left\{L: K \subseteq L \text { and } L \text { is a proper } M_{\Gamma} \text {-submodule of } A\right\} .
$$

\mathcal{S} is partially ordered by inclusion and note that $\mathcal{S} \neq \emptyset$, since $K \in \mathcal{S}$. If $\left\{L_{\lambda}\right\}_{\lambda \in \Lambda}$ is a chain in \mathcal{S}, then $L=\bigcup_{\lambda \in \Lambda} L_{\lambda}$ is a M_{Γ}-submodule of A. We show that $L \neq A$. If $L=A$, then for every $1 \leq i \leq n$, there exists $\lambda_{i} \in \Lambda$ such that $a_{i} \in L_{\lambda_{i}}$. Since $\left\{L_{\lambda}\right\}_{\lambda \in \Lambda}$ is a chain in \mathcal{S}, we conclude that there exists $1 \leq j \leq n$ such that $a_{1}, \ldots, a_{n} \in L_{\lambda_{j}}$. Therefore $A=L_{\lambda_{j}} \in \mathcal{S}$ which contradicts the fact that $A \notin \mathcal{S}$. It follows easily that L is an upper bound $\left\{L_{\lambda}\right\}_{\lambda \in \Lambda}$ in \mathcal{S}. By Zorn's Lemma there exists a proper M_{Γ}-submodule B of A that is maximal in \mathcal{S}. It is a clear that B a maximal M_{Γ}-submodule of A such that contain K.
(2) By part (1), it suffices we put $K=\langle 0|$.

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

Definition 3.3. A left M_{Γ}-module A is unitary if there exists an element, say 1 in M and an element $\gamma_{0} \in \Gamma$, such that, $1 \gamma_{0} a=a$ and $1 \gamma_{0} m=m=m \gamma_{0} 1$ for every $(a, m) \in A \times M$.

Corolary 3.1. If M is a unitary left (right) M_{Γ}-module, then M has a left (right) maximal ideal.

Proof. It is evident by Proposition 3.2.
Let A be a left M_{Γ}-module. let $X \subseteq A$ and let $B \leq A$. Then the set $(B: X):=\{m \in M: m \Gamma X \subseteq B\}$ is a left ideal of M. In particular, if $a \in A$, then $(0: a):=((0):\{a\})$ is called the left annihilator of a and $(0: A):=((0): A)$ is an ideal of M called the annihilating ideal of A. Furthermore A is said to be faithful if and only if $(0: A)=(0)$.

Definition 3.4. A left M_{Γ}-module A is called a multiplication left M_{Γ}-module if each M_{Γ}-submodule of A is of the form $I \Gamma A$, where I is an ideal of M.

Proposition 3.3. Let B be a M_{Γ}-submodule of multiplication left M_{Γ}-module A. Then $B=(B: A) \Gamma A$.

Proof. It is a clear that $(B: A) \Gamma A \subseteq B$. Since A is a multiplication left $M_{\Gamma^{-}}$ module, we conclude that there exists ideal I of Γ-ring M such that $B=I \Gamma A$, it follows that $B=I \Gamma A \subseteq(B: A) \Gamma A \subseteq B$. Therefore $B=(B: A) \Gamma A$.

Proposition 3.4. Let A be a left M_{Γ}-module. A is multiplication if and only if for every $a \in A$, there exists ideal I in M such that $\langle a|=I \Gamma A$.

Proof. In view of Definition 3.4, it is enough to show that if for every $a \in A$, there exists ideal I in M such that $\langle a|=I \Gamma A$, then A is multiplication. Let B be an M_{Γ}-submodule of A. Then for every $b \in B$, there exists ideal I_{b} in M such that $\langle b|=I_{b} \Gamma A$. By Proposition 3.1, $\left(\sum_{b \in B} I_{b}\right) \Gamma A=\sum_{b \in B}\left(I_{b} \Gamma A\right)=$ $\sum_{b \in B}\langle b|=B$, it follows that A is multiplication.

Proposition 3.5. Let M be a Γ-ring which has a unique maximal ideal Q and A be a unitary multiplication left M_{Γ}-module. If every ideal I in M is contained in Q, then for every $a \in A \backslash Q \Gamma A,\langle a|=A$.

Proof. Suppose that $a \in A \backslash Q \Gamma A$. Since A is multiplication left M_{Γ}-module, we conclude that there exists ideal I in M such that $\langle a|=I \Gamma A$. Clearly $I \nsubseteq Q$ and hence $I=M$, which implies $\langle a|=M \Gamma A=A$.

Corolary 3.2. Let Γ-ring M be a unitary left M_{Γ}-module which has a unique maximal ideal Q and A be a unitary multiplication left M_{Γ}-module. Then for every $a \in A \backslash Q \Gamma A,\langle a|=A$.

Proof. By Propositions 3.2 and 3.5, it is evident.
Proposition 3.6. Let L be a left operator ring of the Γ-ring M and let A be a unitary left M_{Γ}-module. If we define a composition on $L \times A$ into A by $\left(\sum_{l}\left[x_{i}, \alpha_{i}\right]\right) a=\sum_{i} x_{i} \alpha_{i} a$ for $a \in A, \sum_{i}\left[x_{i}, \alpha_{i}\right] \in L$, then A is a left L module. Also, for every $B \subseteq A, B$ is a M_{Γ}-submodule of A if and only if B is a L-submodule of A.

Proof. Suppose that $1 \in M$ and $\gamma_{0} \in \Gamma$ such that for every $(a, m) \in A \times M$, $1 \gamma_{0} a=a$ and $1 \gamma_{0} m=m=m \gamma_{0} 1$. Let $\sum_{i=1}^{t}\left[x_{i}, \alpha_{i}\right]=\sum_{j=1}^{s}\left[y_{j}, \beta_{j}\right] \in L$ and $a=b \in A$. By definition of left operator ring of the Γ-ring M, we conclude that $\sum_{i=1}^{t} x_{i} \alpha_{i} 1=\sum_{j=1}^{s} y_{j} \beta_{j} 1$, it follows that

$$
\begin{aligned}
\left(\sum_{i=1}^{t}\left[x_{i}, \alpha_{i}\right]\right) a & =\sum_{i=1}^{t} x_{i} \alpha_{i} a \\
& =\sum_{i=1}^{t}\left(x_{i} \alpha_{i}\left(1 \gamma_{0} a\right)\right) \\
& =\sum_{i=1}^{t}\left(x_{i} \alpha_{i} 1\right) \gamma_{0} a \\
& =\left(\sum_{i=1}^{t} x_{i} \alpha_{i} 1\right) \gamma_{0} a \\
& =\left(\sum_{j=1}^{s} y_{j} \beta_{j} 1\right) \gamma_{0} b \\
& =\sum_{j=1}^{s} y_{j} \beta_{j} b \\
& =\left(\sum_{j=1}^{s}\left[y_{j}, \beta_{j}\right]\right) b
\end{aligned}
$$

Hence composition on $L \times A$ into A is a well-defined. Let $r=\sum_{i=1}^{t}\left[x_{i}, \alpha_{i}\right]$ and $s=\sum_{j=1}^{s}\left[y_{j}, \beta_{j}\right]$. Then for every $a \in A$,

$$
\begin{aligned}
(r s) a & =\left(\sum_{i, j}\left[x_{i} \alpha_{i} y_{j}, \beta_{j}\right]\right) a \\
& \left.=\sum_{i, j}\left(x_{i} \alpha_{i} y_{j}\right)\right)_{j} a \\
& =\sum_{i, j} x_{i} \alpha_{i}\left(y_{j} \beta_{j} a\right) \\
& =\sum_{i=1}^{t} x_{i} \alpha_{i}\left(\sum_{j=1}^{s} y_{j} \beta_{j} a\right) \\
& =\left(\sum_{i=1}^{t}\left[x_{i}, \alpha_{i}\right]\right)\left(\sum_{j=1}^{s} y_{j} \beta_{j} a\right) \\
& =r\left(\left(\sum_{j=1}^{s}\left[y_{j}, \beta_{j}\right]\right) a\right) \\
& =r(s a)
\end{aligned}
$$

The remainder of the proof is now easy.
Proposition 3.7. Let L be a left operator ring of the Γ-ring M. If A is a multiplication unitary left M_{Γ}-module, then A is a multiplication left L module.

Proof. Let B be a L-submodule of A. By Proposition 3.6, B is a $M_{\Gamma^{-}}$ submodule of A and there exists ideal I of Γ-ring M such that $B=I \Gamma A$. It well known that $[\Gamma, I]$ is an ideal of L. We show that $B=[I, \Gamma] A$. Suppose that $a_{1}, \ldots, a_{t} \in A$, and for every $1 \leq i \leq t, \sum_{j=1}^{k_{i}}\left[x_{i_{j}}, \alpha_{i_{j}}\right] \in[I, \Gamma]$. Then we

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

have $\left.\sum_{i=1}^{t}\left(\sum_{j=1}^{k_{i}}\left[x_{i_{j}}, \alpha_{i_{j}}\right]\right) a_{i}=\sum_{i=1}^{t} \sum_{j=1}^{k_{i}} x_{i_{j}} \alpha_{i_{j}} a_{i}\right) \in B$ and it follows that $[I, \Gamma] A \subseteq B$. Also, if $b \in B$, then there exists $x_{1}, \ldots, x_{t} \in I, \gamma_{1}, \ldots, \gamma_{t} \in \Gamma$, and $a_{1}, \ldots, a_{t} \in A$ such that $b=\sum_{i=1}^{t} x_{i} \gamma_{i} a_{i}=\sum_{i=1}^{t}\left[x_{i}, \gamma_{i}\right] a_{i} \in[I, \Gamma] A$ and we conclude that $B=[I, \Gamma] A$.

Proposition 3.8. Let A be a unitary cyclic left M_{Γ}-module. If L is a left operator ring of the Γ-ring M and for every $l, l^{\prime} \in L$, there exists $l^{\prime \prime} \in L$ such that $l l^{\prime}=l^{\prime \prime} l$, then A is a multiplication left L-module.

Proof. Let B be a L-submodule of A and $I=\{l \in L: l A \subseteq B\}$, then $I A \subseteq B$. Since A is a unitary cyclic left M_{Γ}-module, we conclude that there exists $a \in A$ such that $A=M \Gamma a$. Let $b \in B$. Hence there exists $m_{1}, \ldots, m_{t} \in M$ and $\gamma_{1}, \ldots, \gamma_{t} \in \Gamma$ such that $b=\sum_{i=1}^{t} m_{i} \gamma_{i} a$. In view of operations of addition and multiplication in left L-module A, we have $b=\sum_{i=1}^{t}\left[m_{i}, \gamma_{i}\right] a=\left(\sum_{i=1}^{t}\left[m_{i}, \gamma_{i}\right]\right) a$. We put $l=\sum_{i=1}^{t}\left[m_{i}, \gamma_{i}\right]$ and it follows that $b=l a$. If $a^{\prime} \in A$, then a similar argument shows that there exists $l^{\prime} \in L$ such that $a^{\prime}=l^{\prime} a$. By hypothesis, there exists $l^{\prime \prime} \in L$ such that $l l^{\prime}=l^{\prime \prime} l$. Therefore $l a^{\prime}=l l^{\prime} a=l^{\prime \prime} l a=l^{\prime \prime} b \in B$ and it follows that $l \in I$, this is $b=l a \in I A$. Hence $B=I A$ and the proof is now complete.

Definition 3.5. Let A be a unitary left M_{Γ}-module and B be a M_{Γ}-submodule in A and $P \in \operatorname{Max}(M)$. A is called P-cyclic if there exist $p \in P$ and $b \in B$ such that $(1-p) \gamma_{0} B \subseteq M \Gamma b$ and also, it is clear that $(1-p) \gamma_{0} B=(1-p) \Gamma B$. Define $T_{P} B$ as the set of all $b \in B$ such that $(1-p) \gamma_{0} b=0$, for some $p \in P$.

Lemma 3.1. Let A be a unitary left M_{Γ}-module and B be a M_{Γ}-submodule in A and $P \in \operatorname{Max}(M)$. If M is a commutative Γ-ring, then $T_{P} B$ is a M_{Γ}-submodule in A.

Proof. Suppose $b_{1}, b_{2} \in T_{P} B$. So there exist $p_{1}, p_{2} \in P$ such that $b_{1}=p_{1} \gamma_{0} b_{1}$ and $b_{2}=p_{2} \gamma_{0} b_{2}$. Let $p_{0}=p_{1}+p_{2}-p_{1} \gamma_{0} p_{2}$. It is clear that $\left(1-p_{0}\right) \gamma_{0}\left(b_{1}-b_{2}\right)=$ 0 . Hence $b_{1}-b_{2} \in T_{P} B$. Let $x \in M \Gamma\left(T_{P} B\right)$. So $x=\sum_{i=1}^{n} m_{i} \gamma_{i} b_{i}$, where $n \in \mathbb{N}, b_{i} \in T_{P} B, \gamma_{i} \in \Gamma$ and $m_{i} \in M(1 \leq i \leq n)$. Suppose $i \in\{1, \cdots, n\}$. Since $b_{i} \in T_{P} N$, there exists $p_{i} \in P$ such that $\left(1-p_{i}\right) \gamma_{0} m_{i} \gamma_{i} b_{i}=0$. Hence $m_{i} \gamma_{i} b_{i} \in T_{P} N$. Thus $x \in T_{P} B$. Hence $M \Gamma T_{P} B=T_{P} B$.

Proposition 3.9. Let M be a commutative Γ-ring and let A be a unitary left M_{Γ}-module. A is multiplication M_{Γ}-module if and only if for any ideal $P \in \operatorname{Max}(M)$, either $A=T_{P} A$ or A is P-cyclic.

Proof. Let A be a multiplication ideal and $P \in \operatorname{Max}(M)$. First suppose that $A=P \Gamma A$. Since A is multiplication ideal, we conclude that for every $a \in A$, there exists an ideal I in M such that $\langle a\rangle=I \Gamma A$. Hence $\langle a\rangle=P \Gamma<$
$a>$. So there exists $p \in P$ such that $(1-p) \gamma_{0} a=0$, it follows that $a \in T_{P} B$ and then $A=T_{P} A$.

Now suppose that $A \neq P \Gamma A$ and $x \in A \backslash P \Gamma A$. Then there exists an ideal I in M such that $\langle x\rangle=I \Gamma A$ and $P+I=M$. Obviously, if we assume that $p \in P$, then $(1-p) \gamma_{0} A \subseteq M \Gamma x$. Therefore A is P-cyclic.

Conversely, suppose that B is a M_{Γ}-submodule in A. Define I as the set of all $m \in M$, where $m \gamma_{0} a \in B$ for any $a \in A$. Clearly I is an ideal in M and $I \Gamma A \subseteq B$. Let $b \in B$. Define K as the set of all $m \in M$, where $m \gamma_{0} b \in I \Gamma A$. We claim $K=M$. Assume that $K \subset M$. Hence by Zorns Lemma there exists $Q \in \operatorname{Max}(M)$ such that $K \subseteq Q \subset M$. By hypothesis $A=T_{Q} A$ or A is Q-cyclic. If $A=T_{Q} A$, then there exists $s \in Q$ such that $(1-s) \gamma_{0} b=0$. Hence $(1-s) \in K \subseteq Q$, it follows that $1 \in Q$, a contradiction. If A is Q-cyclic, then there exist $t \in Q$ and $c \in A$ such that $(1-t) \gamma_{0} A \subseteq M \Gamma c=<c>$. Define L as the set of all $m \in M$ such that $m \gamma_{0} c \in(1-t) \gamma_{0} B$. Clearly L is an ideal in M and $L \gamma_{0} c \subseteq(1-t) \gamma_{0} B \subseteq<c>$. Hence $(1-t) \gamma_{0} B \subseteq L \gamma_{0} c$. So $(1-t) \gamma_{0} B=$ $L \gamma_{0} c$, it follows that $(1-t) \gamma_{0} L \gamma_{0} A \subseteq(1-t) \gamma_{0} B \subseteq B$ and $(1-t) \gamma_{0} L \subseteq I$. Therefore $(1-t) \gamma_{0}(1-t) \gamma_{0} B \subseteq I \Gamma A$. Hence $(1-t) \gamma_{0}(1-t) \in K \subseteq Q$. Thus $1-t \in Q$, it follows that $1 \in Q$, a contradiction. Hence $K=M$ and $b \in I \Gamma A$. Thus A is a multiplication ideal.

Let A be a left M_{Γ}-module. A is said to have the intersection property provided that for every non-empty collection of ideals $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of M,

$$
\bigcap_{\lambda \in \Lambda} I_{\lambda} \Gamma A=\left(\bigcap_{\lambda \in \Lambda} I_{\lambda}\right) \Gamma A .
$$

If left M_{Γ}-module of A has intersection property, then for every non-empty collection of ideals $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of M,

$$
\bigcap_{\lambda \in \Lambda} I_{\lambda} \Gamma A=\left(\bigcap_{\lambda \in \Lambda}\left(I_{\lambda}+A n n(A)\right)\right) \Gamma A .
$$

Proposition 3.10. Let M be a commutative Γ-ring and let A be a unitary left M_{Γ}-module.

1. If A has intersection property and for any M_{Γ}-submodule N in A any ideal I in M which $N \subset I \Gamma A$, there exists ideal J in M such that $J \subset I$ and $N \subseteq J \Gamma A$, then A is multiplication left M_{Γ}-module.
2. If A is faithful left multiplication M_{Γ}-module, then A has intersection property and for any M_{Γ}-submodule N in A any ideal I in M which $N \subset I \Gamma A$, there exists ideal J in M such that $J \subset I$ and $N \subseteq J \Gamma A$.

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

Proof. (1) Let N be a M_{Γ}-submodule in A and

$$
\mathcal{S}=\{I: I \text { is an ideal of } M \text { and } N \subseteq I \Gamma A\} .
$$

Clearly $M \in \mathcal{S}$. Since A has intersection property, we conclude from Zorns Lemma that \mathcal{S} has a minimal member I (say). Since $N \subseteq I \Gamma A$ and I is minimal element of \mathcal{S}, we can conclude that $N=I \Gamma A$. It follows that A is a multiplication ideal.
(2) Let $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ be a nonempty collection of ideal in M and $I=\bigcap_{\lambda \in \Lambda} I_{\lambda}$. Clearly $I \Gamma A \subseteq \bigcap_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma A\right)$. Let $x \in \bigcap_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma A\right)$ and we put $L=\{m \in M$: $\left.m \gamma_{0} x \in I \Gamma A\right\}$. We claim $L=M$. Assume that $L \subset M$. By Proposition 3.2, there exists $P \in \operatorname{Max}(M)$ such that $L \subseteq P$. It is clear that $x \notin T_{P} A$. Hence $T_{P} A \neq A$ and by Proposition 3.9, A is P-cyclic. Hence there exist $a \in A$ and $p \in P$ such that $(1-p) \gamma_{0} A \subseteq M \Gamma a=<a>$. Thus $(1-p) \gamma_{0} x \in \bigcap_{\lambda \in \Lambda}\left(I_{\lambda} \gamma_{0} a\right)$ and so for any $\lambda \in \Lambda,(1-p) \gamma_{0} x \in I_{\lambda} \gamma_{0} a$. It is clear that $(1-p) \gamma_{0}(1-p) \in$ $L \subseteq P$, in view of the fact that A is faithful. Hence $1 \in P$, a contradiction. Therefore $L=M$, it follows that $x=1 \gamma_{0} x \in I \Gamma A$ and A has intersection property. Now suppose N be a M_{Γ}-submodule in A and I be an ideal in M which $N \subset I \Gamma A$. Since A is multiplication M_{Γ}-module, there exists an ideal J in M such that $N=J \Gamma A$. Let $K=I \cap J$. Clearly, $K \subset I$ and since A has intersection property, we conclude that $N \subseteq K \Gamma A$. The proof is now complete.

Proposition 3.11. Let A be a faithful multiplication M_{Γ}-module and I, J be two ideals in $M . I \Gamma A \subseteq J \Gamma A$ if and only if either $I \subseteq J$ or $A=[J: I] \Gamma A$.

Proof. Let $I \nsubseteq J$. Note that $[J: I]=\bigcap_{i \in X}[J:<i>]$ where X is the set of all elements $i \in I$ with $i \notin J$. By Proposition 3.10,

$$
[J: I] \Gamma A=\bigcap_{i \in X}([J:<i>] \Gamma A)
$$

If for every $i \in X, A=[J:<i>] \Gamma A$, then $A=[J: I] \Gamma A$, which finishes the proof. Let $i \in X$ and $Q=[J:<i>]$. It is clear that $Q \neq M$. Let Ω denote the collection of all semi-prime ideals P in M containing Q. Suppose that there exists $P \in \Omega$ such that $A \neq P \Gamma A$ and $x \in A \backslash P \Gamma A$. Since A is a multiplication M_{Γ}-module, we conclude that there exists ideal D in M such that $\langle x\rangle=D \Gamma A$ and $D \nsubseteq P$. Thus $c \Gamma A \subseteq<x\rangle$ for some $c \in D \backslash P$. Now we have $c \Gamma a \Gamma A \subseteq J \Gamma<x>$. It is easily to show that for any $\gamma \in \Gamma$, there exists $\gamma_{1} \in \Gamma$ and $b \in J$ such that $\left(c \gamma a-1 \gamma_{1} b\right) \gamma_{0} x=0$, it follows that $\left(c \gamma a-1 \gamma_{1} b\right) \Gamma c \Gamma A=0$. Hence $c \gamma c \in[J:<i>]=Q$. Since P is a semi-prime ideal containing Q, we conclude that $c \in P$, a contradiction. Therefore for every $P \in \Omega, A=P \Gamma A$ and by Propositions 2.1 and 3.10,
$A=P(Q) \Gamma A$. Let $j \in A$. It is easily to show that $<j>=P(Q) \Gamma<j>$. Then there exists $s \in P(Q)$ such that for every $n \in \mathbb{N}, j=\left(s \gamma_{0}\right)^{n} j$. By Proposition 2.2, there exists $t \in \mathbb{N} \cup\{0\}$ such that $\left(s \gamma_{0}\right)^{t} s \in Q$, it follows that $j=\left(s \gamma_{0}\right)^{t} s \gamma_{0} j \in Q \Gamma A$, i.e., $A \subseteq Q \Gamma A$. Hence $Q \Gamma A=A$. The converse is evident.

4 Prime M_{Γ}-submodule

Through this section M and A will denote a commutative Γ-ring with unit and an unitary left M_{Γ}-module, respectively.

Definition 4.1. A prime ideal P in M is called a minimal prime ideal of the ideal I if $I \subseteq P$ and there is no prime ideal P^{\prime} such that $I \subseteq P^{\prime} \subset P$. Let Min(I) denote the set of minimal prime ideals of I in Γ-ring M, and every element of $\operatorname{Min}((0))$ is called minimal prime ideal.

Proposition 4.1. If an ideal I of Γ-ring M is contained in a prime ideal P of M, then P contains a minimal prime ideal of I.

Proof. Let

$$
\mathcal{A}=\{Q: Q \text { is prime ideal of } M \text { and } I \subseteq Q \subseteq P\}
$$

By Zorn's Lemma, there is a prime ideal Q of R which is minimal member with respect to inclusion in \mathcal{A}. Therefore $Q \in \operatorname{Min}(I)$ and $I \subseteq Q \subseteq P$.

Lemma 4.1. Let Γ be a finitely generated group. If I and J are finitely generated ideals of M, then $I \Gamma J$ is finitely generated ideal of M.

Proof. Let $I=\left\langle a_{1}, \ldots, a_{n}\right\rangle, J=\left\langle b_{1}, \ldots, b_{m}\right\rangle$, and $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{k}\right\rangle$. It is clear that $I \Gamma J=\left\langle a_{i} \gamma_{t} b_{j}: 1 \leq i \leq n, 1 \leq t \leq k, 1 \leq j \leq m\right\rangle$.

Proposition 4.2. Let Γ be a finitely generated group. If I is a proper ideal of M and each minimal prime ideal of I is finitely generated, then Min(I) is finite set.

Proof. Consider the set

$$
\mathcal{S}=\left\{P_{1} \Gamma P_{2} \ldots P_{n} ; n \in \mathbb{N} \text { and } P_{i} \in \operatorname{Min}(I), \text { for each } 1 \leq i \leq n\right\}
$$

and set

$$
\Delta=\{K ; K \text { is an ideal of } M \text { and } Q \nsubseteq K, \text { for each } Q \in \mathcal{S}\}
$$

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

which is the non-empty set, since $I \in \Delta .(\Delta, \subseteq)$ is the partial ordered set. Suppose $\left\{K_{\lambda}\right\}_{\lambda \in \Lambda}$ is the chain of Δ in which $\Lambda \neq \emptyset$ and set $K=\bigcup_{\lambda \in \Lambda} K_{\lambda}$. It is clear that K is an ideal of M. Also, if there exits $Q \in \mathcal{S}$ such that $Q \subseteq K$, then by Lemma 4.1, $Q=P_{1} \Gamma P_{2} \ldots P_{n}$ is finitely generated ideal of M, i.e., $Q=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. But $Q \subseteq K$ implies that $x_{1}, x_{2}, \ldots, x_{n} \in K$. Thus there exists $\lambda \in \Lambda$ such that $x_{1}, x_{2}, \ldots, x_{n} \in K_{\lambda}$ and so $Q \subseteq K_{\lambda}$, contradiction. Hence, for each $Q \in \mathcal{S}, Q \nsubseteq K$ and $K \in \Delta$ is the upper band of this chain.

By Zorhn's lemma Δ has maximal element such as Q. Now if $a \notin Q$ and $b \notin Q$ for $a, b \in M$, then $Q \subseteq\langle Q \cup\{a\}\rangle$ and $Q \subseteq\langle Q \cup\{b\}\rangle$. Maximality of Q implies that $\langle Q \cup\{a\}\rangle,\langle Q \cup\{b\}\rangle \notin \Delta$. So there exists Q_{1} and Q_{2} in \mathcal{S} such that $Q_{1} \subseteq\langle Q \cup\{a\}\rangle$ and $Q_{2} \subseteq\langle Q \cup\{b\}\rangle$. It is clear that $Q_{1} \Gamma Q_{2} \subseteq Q$ which is contradiction, since $Q_{1} \Gamma Q_{2} \in \mathcal{S}$. Therefore $\langle a\rangle \Gamma\langle b\rangle \nsubseteq Q$ and Q is a prime ideal of M contained I. By Proposition 4.1, there exists a minimal prime ideal $P \subseteq Q$. But $P \in \mathcal{S}$, contradictory with $Q \in \Delta$. Above contradicts show that there exists $Q^{\prime}=P_{1} \Gamma P_{2} \ldots P_{m} \in \mathcal{S}$ such that $Q^{\prime} \subseteq I$.

Now for each $P \in \operatorname{Min}(I)$ we have $Q^{\prime} \subseteq I \subseteq P$ and $P_{1} \Gamma P_{2} \ldots P_{m} \subseteq P$. It is clear that $P_{j} \subseteq P$ for some $1 \leq j \leq m$. Thus $P_{j}=P$, since P is minimal. Hence $\operatorname{Min}(I)=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ is finite.

Proposition 4.3. For proper M_{Γ}-submodule B of A, the following statements equivalent:

1. For every M_{Γ}-submodule C of A, if $B \subset C$, then $(B: A)=(B: C)$.
2. For every $(m, a) \in M \times A$, if $m \Gamma \subseteq B$, then $a \in B$ or $m \in(B: A)$.

Proof. (1) \Rightarrow (2) Let $(m, a) \in M \times A$ such that $m \Gamma a \subseteq B$ and $a \notin B$. It is clear that $B \subset B+M \Gamma a$. Since $m \Gamma(B+M \Gamma a) \subseteq m \Gamma B+m \Gamma(M \Gamma a)=$ $m \Gamma B+M \Gamma(m \Gamma a) \subseteq B$, we conclude from statement (1) that $m \in(B$: $B+M \Gamma a)=(B: A)$ and the proof is now complete.
(2) \Rightarrow (1) Let C be a M_{Γ}-submodule of A such that $B \subset C$. It is clear that $(B: A) \subseteq(B: C)$. Now, suppose that $m \in(B: C)$. Since $B \subset C$, we infer that there exists $a \in C \backslash B$ such that $m \Gamma a \subseteq B$. By statement (2), $m \in(B: A)$ and the proof is now complete.

Definition 4.2. A proper M_{Γ}-submodule B of A is said to be prime if $m \Gamma a \subseteq$ B for $(m, a) \in M \times A$ implies that either $a \in B$ or $m \in(B: A)$.

Proposition 4.4. If B is a prime M_{Γ}-submodule of A, then $(B: A)$ is a prime ideal of Γ-ring M.

Proof. Let $x, y \in M$ such that $\langle x\rangle \Gamma\langle y\rangle \subseteq(B: A)$ and $x \notin(B: A)$. Then there exists $\gamma \in \Gamma$ and $a \in A$ such that $x \gamma a \notin B$, and also, $y \Gamma(x \gamma a)=$ $(y \Gamma x) \gamma a=(x \Gamma y) \gamma a \subseteq B$. Since B is a prime M_{Γ}-submodule of A and $x \gamma a \notin B$, we conclude that $y \Gamma A \subseteq B$, i. e., $y \in(B: A)$. The proof is now complete.

Proposition 4.5. Let A be a multiplication left M_{Γ}-module, and B, B_{1}, \ldots, B_{k} be M_{Γ}-submodules of A. If B is a prime M_{Γ}-submodule of A, then the following statements are equivalent.

1. $B_{j} \subseteq B$ for some $1 \leq j \leq k$.
2. $\bigcap_{i=1}^{k} B_{i} \subseteq B$.

Proof. (1) \Rightarrow (2) It is clear.
(2) \Rightarrow (1) We have $B_{i}=I_{i} \Gamma A$ for some ideals $I_{i},(1 \leq i \leq k)$ of Γ-ring M. Then $\left(\bigcap_{i=1}^{k} I_{i}\right) \Gamma A \subseteq \bigcap_{i=1}^{k}\left(I_{i} \Gamma A\right)=\bigcap_{i=1}^{k} B_{i} \subseteq B$ and so $\bigcap_{i=1}^{k} I_{i} \subseteq(B: A)$. Since M is a commutative Γ-ring, we infer that for every permutations θ of $\{1,2, \ldots, k\}, I_{1} \Gamma I_{2} \cdots I_{k}=I_{\theta(1)} \Gamma I_{\theta(2)} \cdots I_{\theta(k)}$, it follows that $I_{1} \Gamma I_{2} \cdots I_{k} \subseteq$ $\bigcap_{i=1}^{k} I_{i} \subseteq(B: A)$. Since by Proposition 4.4, $(B: A)$ is prime ideal of Γ-ring M, we conclude that $I_{j} \subseteq(B: A)$ for some $1 \leq j \leq k$. Therefore, by Proposition 3.3, $B_{j}=I_{j} \Gamma A \subseteq B$ for some $1 \leq j \leq k$.

Proposition 4.6. If A is a multiplication left M_{Γ}-module, then for $M_{\Gamma^{-}}$ submodule B of A, the following statements are equivalent.

1. B is prime M_{Γ}-submodule of A.
2. $(B: A)$ is prime ideal of Γ-ring M.
3. There exists prime ideal P of Γ-ring M such that $B=P \Gamma A$ and for every ideal I of $M, I \Gamma A \subseteq B$ implies that $I \subseteq P$.

Proof. (1) \Rightarrow (2) By Proposition 4.4, It is evident.
(2) \Rightarrow (3) We put

$$
\mathcal{M}=\{P: B=P \Gamma A \text { and } P \text { is an ideal of } \Gamma \text {-ring } M\}
$$

Since A is multiplication left M_{Γ}-module, we conclude that (\mathcal{M}, \subseteq) is a nonempty partial order set. Let $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda} \subseteq \mathcal{M}$ be a chain. By Proposition 3.10, $\bigcap_{\lambda \in \Lambda} P_{\lambda} \in \mathcal{M}$ is an upper bound of $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$. By Zorn's Lemma \mathcal{M} has a maximal element. Thus, we can pick a P to be maximal element of \mathcal{M}. Let $x, y \in M$ and $\langle x\rangle \Gamma\langle y\rangle \subseteq P$. Hence $(\langle x\rangle \Gamma\langle y\rangle) \Gamma A \subseteq P \Gamma A=B$ and we infer that $\langle x\rangle \Gamma\langle y\rangle \subseteq(B: A)$. Now, by statement (2), $x \in(B: A)$ or $y \in(B: A)$. Since A is multiplication left M_{Γ}-module, we conclude from the Proposition

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

3.3 that $B=(B: A) \Gamma A$, it follows that $(B: A) \in \mathcal{M}$. On the other hand, clearly $P \subseteq(B: A)$ and so $P=(B: A)$, i.e., $x \in P$ or $y \in P$, Thus P is prime ideal of Γ-ring M.
$(3) \Rightarrow(1)$ Let prime ideal P of Γ-ring M such that $B=P \Gamma A$ and for every ideal I of Γ-ring $M, I \Gamma A \subseteq B$ implies that $I \subseteq P$. It is clear that $P=(B: A)$. Let $m \in M$ and $a \in A$ such that $m \Gamma a \subseteq B$. Since A is a multiplication S-act, we conclude that there exists an ideal I of Γ-ring M such that $\langle a\rangle=I \Gamma A$, it follows that $(m \Gamma I) \Gamma A=m \Gamma(I \Gamma A)=m \Gamma(M \Gamma a)=$ $(m \Gamma M) \Gamma a=(M \Gamma m) \Gamma a=M \Gamma(m \Gamma a) \subseteq B$. Therefore $m \Gamma I \subseteq(B: A)=P$ and it is easy to see directly that $\langle m\rangle \Gamma I \subseteq(B: A)$. Then $m \Gamma A \subseteq B$ or $a \in I \Gamma A \subseteq B$ and the proof is now complete.

Lemma 4.2. Let A be a finitely generated left M_{Γ}-module. If I is an ideal of M such that $A=I \Gamma A$, then there exists $i \in I$ such that $(1-i) \gamma_{0} A=0$.

Proof. If $A=<a_{1}, \ldots, a_{n}>$, then for every $1 \leq i \leq n$, there exists $y_{i 1}, \ldots, y_{i n} \in$ I such that $a_{i}=\sum_{j=1}^{n} y_{i j} \gamma_{0} a_{j}$, it follows that
$-y_{i 1} \gamma_{0} a_{1}-\cdots-y_{i(i-1)} \gamma_{0} a_{i-1}+\left(1-y_{i i}\right) \gamma_{0} a_{i}-y_{i(i+1)} \gamma_{0} a_{i+1}-\cdots-y_{i n} \gamma_{0} a_{n}=0$.
If

$$
B=\left[\begin{array}{cccc}
1-y_{11} & -y_{12} & \cdots & -y_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
-y_{n 1} & -y_{n 2} & \cdots & 1-y_{n n}
\end{array}\right]
$$

then there exists $y \in I$ such that $\operatorname{det}_{\Gamma}(B)=(1+y)$, where

$$
\operatorname{det}_{\Gamma}(B)=\sum \operatorname{sign}(\sigma) b_{1, \sigma(1)} \gamma_{0} b_{2, \sigma(2)} \gamma_{0} \cdots \gamma_{0} b_{n, \sigma(n)}
$$

and σ runs over all the permutation on $\{1,2, \ldots, n\}$ (see [13]). Since for every $1 \leq i \leq n, \operatorname{det}_{\Gamma}(B) \gamma_{0} a_{i}=0$, we conclude that $(1+y) \gamma_{0} A=0$ and by setting $i=-y$ the proof will be completed.

Proposition 4.7. Let A be a finitely generated faitfull multiplication left $M_{\Gamma}{ }^{-}$ module. For proper ideal of P in M, the following statements are equivalent.

1. P is a prime ideal of M.
2. $P \Gamma A$ is a prime M_{Γ}-submodule of A.

Proof. (1) \Rightarrow (2) Let I be an ideal of M such that $I \Gamma A \subseteq P \Gamma A$. Then by Proposition 3.11, either $I \subseteq P$ or $A=[P: I] \Gamma A$. If $A=[P: I] \Gamma A$, then by Lemma 4.2, there exists $i \in[P: I]$ such that $(1-i) \gamma_{0} A=0$. Since A is a
faitfull M_{Γ}-module, we conclude that $i=1$ and $I \subseteq P$. Hence by Proposition 4.6, $P \Gamma A$ is a prime M_{Γ}-submodule of A.
$(2) \Rightarrow(1)$ Since A is a faitfull M_{Γ}-module and $[P \Gamma A: A] \Gamma A \subseteq P \Gamma A$, we conclude from the Proposition 3.11 and Lemma 4.2 that $[P \Gamma A: A] \subseteq P$. Hence $[P \Gamma A: A]=P$ and by Proposition 4.6, P is a prime ideal of M.

Proposition 4.8. Let A be a multiplication left M_{Γ}-module. Then

1. If M satisfies $A C C(D C C)$ on prime ideals, then A satisfies $A C C$ ($D C C$) on prime M_{Γ}-submodules.
2. If A is faitfull M_{Γ}-module and $(B: A)$ is a minimal prime ideal in M, then B is a minimal prime M_{Γ}-submodule of A.

Proof. (1) Assume that $B_{1} \subseteq B_{2} \subseteq \ldots$ is a chain of prime M_{Γ}-submodule of A. By Proposition $4.4,\left(B_{1}: A\right) \subseteq\left(B_{2}: A\right) \subseteq \ldots$ is a chain of prime ideal of Γ-ring M. By hypothesis there exists $k \in \mathbb{N}$ such that for every $i \geq k$, $\left(B_{i}: A\right)=\left(B_{k}: A\right)$. It follows from Proposition 3.3 that $B_{i}=\left(B_{i}: A\right) \Gamma A=$ $\left(B_{k}: A\right) \Gamma A=B_{k}$. Thus A satisfies $A C C$ on prime M_{Γ}-submodules.
(2) assume that B^{\prime} is a prime M_{Γ}-submodule of A such that $B^{\prime} \subseteq B$. By Proposition 4.6, $\left(B^{\prime}: A\right) \subseteq(B: A)$ is a chain of prime ideal of Γ-ring M. By hypothesis $\left(B^{\prime}: A\right)=(B: A)$, it follows from Proposition 3.3 that $B^{\prime}=\left(B^{\prime}: A\right) \Gamma A=(B: A) \Gamma A=B$. Thus B is a minimal prime $M_{\Gamma^{-}}$-submodule of A.

Proposition 4.9. Let A be a finitely generated faitfull multiplication left M_{Γ}-module. Then

1. If A satisfies $A C C(D C C)$ on prime M_{Γ}-submodules, then Γ-ring M satisfies $A C C(D C C)$ on prime ideals.
2. If B is a minimal prime M_{Γ}-submodule of A, then $(B: A)$ is a minimal prime ideal of Γ-ring M.

Proof. (1) Assume that $P_{1} \subseteq P_{2} \subseteq \ldots$ is a chain of prime ideals of Γ-ring M. By Proposition 4.7, $P_{1} \Gamma A \subseteq P_{2} \Gamma A \subseteq \ldots$ is a chain of prime M_{Γ}-submodule of A. By hypothesis there exists $k \in \mathbb{N}$ such that for every $i \geq k, P_{k} \Gamma A=P_{i} \Gamma A$. Since A is a finitely generated faitfull multiplication M_{Γ}-module, we conclude from the Proposition 3.11 and Lemma 4.2 that $P_{k}=P_{i}$.
(2) By Proposition 4.6, $(B: A)$ is a prime ideal of Γ-ring M. Assume that P is a prime ideal of Γ-ring M such that $P \subseteq(B: A)$. Hence by Proposition $3.3, P \Gamma A \subseteq(B: A) \Gamma A=B$. Since by Proposition 4.7, $P \Gamma A$ is a prime $M_{\Gamma^{-}}$ submodule of A, we conclude from our hypothesis that $P \Gamma A=(B: A) \Gamma A$.

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

Since A is a finitely generated faitfull multiplication M_{Γ}-module, we conclude from the Proposition 3.11 and Lemma 4.2 that $P=(B: A)$. The proof is now complete.

Proposition 4.10. Let Γ be a finitely generated group. Let A be a finitely generated faitfull multiplication left M_{Γ}-module.

1. If every prime ideal of Γ-ring M is finitely generated, then A contains only a finitely many minimal prime M_{Γ}-submodule.
2. If every minimal prime M_{Γ}-submodule of A is finitely generated, then Γ-ring M contains only a finite number of minimal prime ideal.

Proof. (1) Assume that $\left\{B_{\lambda}\right\}_{\lambda \in \Lambda}$ is the family of minimal prime M_{Γ}-submodules of A. Set $I_{\lambda}=\left(B_{\lambda}: A\right)$ for $\lambda \in \Lambda$. By Proposition 4.9, each I_{λ} is a minimal prime ideal of Γ-ring M. On the other hand, by Proposition 4.2, M contains only a finite number of minimal prime ideal as $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$. Now suppose that $\lambda \in \Lambda$. So $I_{\lambda}=I_{i}$, for some $1 \leq i \leq n$ and by Proposition 3.3, $B_{\lambda}=I_{\lambda} \Gamma A=I_{i} \Gamma A$. Thus $\left\{I_{1} \Gamma A, I_{2} \Gamma A, \ldots, I_{n} \Gamma A\right\}$ is the finite family of minimal prime M_{Γ}-submodule of A.
(2) Suppose that I and J are two distinct minimal prime ideal of Γ-ring M. By Proposition 3.11 and Lemma $4.2, A \neq I \Gamma A \neq J \Gamma A$ and also, by Proposition 4.7, IГ A and $J \Gamma A$ are prime M_{Γ}-submodules of A. Assume that B_{1} and B_{2} are two prime M_{Γ}-submodules of A such that $B_{1} \subseteq I \Gamma A$ and $B_{2} \subseteq J \Gamma A$. By Proposition 3.3, $B_{1}=\left(B_{1}: A\right) \Gamma A$ and $B_{2}=\left(B_{2}: A\right) \Gamma A$. By Proposition 3.11 and Lemma 4.2, $\left(B_{1}: A\right) \subseteq I$ and $\left(B_{2}: A\right) \subseteq J$. Since I and J are two distinct minimal prime ideal of Γ-ring M, we conclude from the Proposition 4.4 that $\left(B_{1}: A\right)=I$ and $\left(B_{2}: A\right)=J$. This says that $I \Gamma A$ and $J \Gamma A$ are two distinct minimal prime M_{Γ}-submodules of A. Now if Γ-ring M contains infinite many minimal prime ideals, then A must have infinitely many minimal prime M_{Γ}-submodules which is contradiction.

References

[1] J. Aliro and P. Penea, A note on prime module, Divulgaciones Matematicas 8 (2000), 31-42.
[2] D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc., 122 (1994), 13-14.
[3] A. Azizi, Radical formula and prime submodules, J. Algebra 307 (2007), No. 1, 454-460.
[4] A. Barnard, Multiplication Modules, J. Algebra 71 (1981), 174-178.
[5] W. E. Barnes, On the Г-ring of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
[6] M. Behboodi, O. A. Karamzadeh and H. Koohy, Modules whose certain submodules are prime, Vietnam Journal of Mathematics, 32 (2004), 303317.
[7] M. Behboodi and H. Koohy, On minimal prime submodules, Far East J. Math. Sci., 6 (2002), 83-88.
[8] Sahin Ceran and Mustafa Asci, Symmetric bi- (σ, τ) derivations of prime and semi prime gamma rings, Bull. Korean Math. Soc. Vol. 43 (2006), No. 1, 9-16.
[9] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.
[10] M. Dumitru, Gamma-Rings: Some Interpretations Used In The Study Of Their Radicals, U.P.B. Sci. Bull., Series A, Vol. 71 (2009), Iss. 3.
[11] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), 755-779.
[12] B. A. Ersoy, Fuzzy semiprime ideals in Gamma-rings, International Journal of Physical Sciences Vol. 5(4) (2010), 308-312.
[13] A. A. Estaji, A. Saghafi Khorasani and S. Baghdari, Multiplication ideals in Γ-rings, Journal of Hyperstructures 2 (1) (2013), 30-39.
[14] M. F. Hoque and A. C. Paul, On Centralizers of Semiprime Gamma Rings, International Mathematical Forum, Vol. 6 (2011), no. 13, 627 638.
[15] S. Kyuno, On prime gamma ring, Pacific J. Math. 75 (1978), 185-190.
[16] L. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969), 65-75.
[17] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
[18] M. A. Öztürk and H. Yazarl, Modules over the generalized centroid of semi-prime Gamma rings, Bull. Korean Math. Soc. 44 (2007), No. 2, 203-213.

A. A. Estaji, A. As. Estaji, A. S. Khorasani, S. Baghdari

[19] A.C. Paul and Md. Sabur Uddin, Lie Structure in Simple Gamma Rings, Int. J. Pure Appl. Sci. Technol., 4(2) (2010), 63-70.
[20] C. Selvaraj and S. Petchimuthu, Strongly Prime Gamma Rings and Morita Equivalence Of Rings, Southeast Asian Bulletin of Mathematics 32 (2008), 1137-1147.

