Rough Set Theory Applied To Hyper $B C K$-Algebra

R. Ameri ${ }^{a}$, R. Moradian ${ }^{b}$ and R. A. Borzooei ${ }^{c}$
${ }^{a}$ School of Mathematics, Statistics and Computer Science, College of Sciences, University of Tehran, P.O. Box 14155-6455, Teheran, Iran ameri@ut.ac.ir
${ }^{b}$ Department of Mathematics, Payam Noor University, Tehran, Iran
rmoradian58@yahoo.com
${ }^{c}$ Department of Mathematics, Shahid Beheshti University, Tehran, Iran

borzooei@sbu.ac.ir

Abstract

The aim of this paper is to introduce the notions of lower and upper approximation of a subset of a hyper $B C K$-algebra with respect to a hyper $B C K$-ideal. We give the notion of rough hyper subalgebra and rough hyper $B C K$-ideal, too, and we investigate their properties.

Key words: rough set, rough (weak, strong) hyper $B C K$-ideal, rough hyper subalgebra, regular congruence relation.

MSC 2010: 20N20, 20N25.

1 Introduction

In 1966, Y. Imai and K. Iseki [2] introduced a new notion, called a $B C K$ algebra. The hyper structure theory (called also multi algebras) was introduced in 1934 by F. Marty [6] at the 8th Congress of Scandinavian Mathematicians. In [3], Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei applied the hyper structures to $B C K$-algebras and they introduced the notion of hyper $B C K$-algebra (resp. hyper K-algebra) which is a generalization of $B C K$-algebra (resp. hyper $B C K$-algebra). They also introduced the notion of hyper $B C K$-ideal, weak hyper $B C K$-ideal, hyper K-ideal and weak
hyper K-ideal and gave relations among them. In 1982, Pawlak introduced the concept of rough set (see [7]). Recently Jun [5] applied rough set theory to $B C K$-algebras. In this paper, we apply the rough set theory to hyper $B C K$-algebras.

2 Preliminaries

Let U be a universal set. For an equivalence relation Θ on U, the set of elements of U that are related to $x \in U$, is called the equivalence class of x and is denoted by $[x]_{\Theta}$. Moreover, let U / Θ denote the family of all equivalence classes induced on U by Θ. For any $X \subseteq U$, we write X^{c} to denote the complement of X in U, that is the set $U \backslash X$. A pair (U, Θ) where $U \neq \phi$ and Θ is an equivalence relation on U is called an approximation space.
The interpretation in rough set theory is that our knowledge of the objects in U extends only up to membership in the class of Θ and our knowledge about a subset X of U is limited to the class of Θ and their unions. This leads to the following definition.

Definition 2.1. [7] For an approximation space (U, Θ), by a rough approximation in (U, Θ) we mean a mapping Apr : P(U) $\longrightarrow P(U) \times P(U)$ defined for every $X \in P(U)$ by $\operatorname{Apr}(X)=(\underline{\operatorname{Apr}}(X), \overline{\operatorname{Apr}}(X))$, where

$$
\begin{aligned}
& \underline{\operatorname{Apr}}(X)=\left\{x \in U \mid[x]_{\Theta} \subseteq X\right\}, \\
& \overline{\overline{\operatorname{Apr}}}(X)=\left\{x \in U \mid[x]_{\Theta} \cap X \neq \phi\right\} .
\end{aligned}
$$

$\underline{\operatorname{Apr}}(X)$ is called a lower rough approximation of X in (U, Θ), whereas $\overline{\operatorname{Apr}}(X)$ is called an upper rough approximation of X in (U, Θ).

Definition 2.2. [7] Given an approximation space (U, Θ), a pair $(A, B) \in$ $P(U) \times P(U)$ is called a rough set in (U, Θ) if and only if $(A, B)=\operatorname{Apr}(X)$ for some $X \in P(U)$.

Definition 2.3. ([7]) Let (U, Θ) be an approximation space and X be a non-empty subset of U.
(i) If $\underline{\operatorname{Apr}}(X)=\overline{\operatorname{Apr}}(X)$, then X is called definable.
(ii) If $\underline{\operatorname{Apr}}(X)=\phi$, then X is called empty interior.
(iii) If $\overline{\operatorname{Apr}}(X)=U$, then X is called empty exterior.

Let H be a non-empty set endowed with a hyper operation "o", that is o is a function from $H \times H$ to $P^{*}(H)=P(H)-\{\phi\}$. For two subsets A and B of H, denote by $A \circ B$ the set $\bigcup_{a \in A, b \in B} a \circ b$. We shall use $x \circ y$ instead of $x \circ\{y\},\{x\} \circ y$, or $\{x\} \circ\{y\}$.

Definition 2.4. ([3]) By a hyper $B C K$-algebra we mean a non- empty set H endowed with a hyper operation "○" and a constant 0 satisfying the following axioms:
(HK1) $(x \circ z) \circ(y \circ z) \ll x \circ y$,
(HK2) $(x \circ y) \circ z=(x \circ z) \circ y$,
(HK3) $x \circ H \ll\{x\}$,
(HK4) $x \ll y$ and $y \ll x$ imply $x=y$,
for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, $A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such case, we call "<<"the hyper order in H.

Theorem 2.5. ([3]) In any hyper $B C K$-algebra H, the following hold:
(a1) $0 \circ 0=\{0\}$,
(a2) $0 \ll x$,
(a3) $x \ll x$,
(a4) $A \ll A$,
(a5) $A \ll 0$ implies $A=\{0\}$,
(a6) $A \subseteq B$ implies $A \ll B$,
(a7) $0 \circ x=\{0\}$,
(a8) $x \circ y \ll x$,
(a9) $x \circ 0=\{x\}$,
(a10) $y \ll z$ implies $x \circ z \ll x \circ y$,
(a11) $x \circ y=\{0\}$ implies $(x \circ z) \circ(y \circ z)=\{0\}$ and $x \circ z \ll y \circ z$,
(a12) $A \circ\{0\}=\{0\}$ implies $A=\{0\}$,
for all $x, y, z \in H$ and for all non-empty subsets A and B of H.

Ameri, Moradian, Borzooei

Definition 2.6. ([3]) Let H be a hyper $B C K$-algebra and let S be a subset of H containing 0 . If S be a hyper $B C K$-algebra with respect to the hyper operation "o" on H, we say that S is a hyper subalgebra of H.

Theorem 2.7. ([3]) Let S be a non-empty subset of hyper $B C K$-algebra H. Then S is a hyper subalgebra of H if and only if $x \circ y \subseteq S$, for all $x, y \in S$.

Definition 2.8. ([3]) Let I be a non-empty subset of hyper $B C K$-algebra H and $0 \in I$.
(i) I is said to be a hyper BCK-ideal of H if $x \circ y \ll I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.
(ii) I is said to be a weak hyper BCK-ideal of H if $x \circ y \subseteq I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.
(iii) I is called a strong hyper $B C K$-ideal of H if $(x \circ y) \cap I \neq \phi$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Theorem 2.9. ([3]) If H be a hyper $B C K$-algebra, then
(i) every hyper $B C K$-ideal of H is a weak hyper $B C K$-ideal of H.
(ii) every strong hyper $B C K$-ideal of H is a hyper $B C K$-ideal of H.

Definition 2.10. ([4]) Let H be a hyper $B C K$-algebra. A hyper $B C K$ ideal I of H is called reflexive if $x \circ x \subseteq I$ for all $x \in H$.

Definition 2.11. ([1]) Let Θ be an equivalence relation on hyper $B C K$ algebra H and $A, B \subseteq H$. Then,
(i) $A \Theta B$ means that, there exist $a \in A$ and $b \in B$ such that $a \Theta b$,
(ii) $A \bar{\Theta} B$ means that, for all $a \in A$ there exists $b \in B$ such that $a \Theta b$ and for all $b \in B$ there exists $a \in A$ such that $a \Theta b$,
(iii) Θ is called a congruence relation on H, if $x \Theta y$ and $x^{\prime} \Theta y^{\prime}$ imply $x \circ$ $x^{\prime} \bar{\Theta} y \circ y^{\prime}$ for all $x, y, x^{\prime}, y^{\prime} \in H$.
(iv) Θ is called a regular relation on H, if $x \circ y \Theta\{0\}$ and $y \circ x \Theta\{0\}$ imply $x \Theta y$ for all $x, y \in H$.

Example 2.12. Let $H_{1}=\{0,1,2\}, H_{2}=\{0, a, b\}$ and hyper operations " O_{1} " and " O_{2} " on H_{1} and H_{2} are defined respectively, as follow:

\circ_{1}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$

o_{2}	0	a	b
0	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0, a\}$	$\{0, a\}$
b	$\{b\}$	$\{a, b\}$	$\{0, b\}$

Then $\left(H_{1}, \mathrm{o}_{1}\right)$ and $\left(H_{2}, \mathrm{o}_{2}\right)$ are hyper $B C K$-algebras. Define the equivalence relation Θ_{1} and Θ_{2} on H_{1} and H_{2}, respectively, as

$$
\Theta_{1}=\{(0,0),(1,1),(2,2),(0,2),(2,0)\},
$$

and

$$
\Theta_{2}=\{(0,0),(a, a),(b, b),(0, a),(a, 0)\} .
$$

It is easily checked that Θ_{1} is a congruence relation on H_{1}. But Θ_{2} is not a congruence relation on H_{2}, since $b \Theta_{2} b$ and $0 \Theta_{2} a$ but $b \circ 0 \bar{\Theta}_{2} b \circ a$ is not true.

Example 2.13. Let $\left(H_{1}, \circ_{1}\right)$ be a hyper $B C K$-algebra as Example 2.12. Let $H_{2}=\{0, a, b, c\}$ and define the hyper operation " O_{2} " on H_{2} as follow:

o_{2}	0	a	b	c
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0, a\}$	$\{0\}$	$\{a\}$
b	$\{b\}$	$\{b\}$	$\{0, a\}$	$\{b\}$
c	$\{c\}$	$\{c\}$	$\{c\}$	$\{0, c\}$

Then $\left(H_{2}, \mathrm{o}_{2}\right)$ is a hyper $B C K$-algebra. Define the congruence relation Θ_{1} and Θ_{2} on H_{1} and H_{2}, respectively, by

$$
\Theta_{1}=\{(0,0),(1,1),(2,2),(0,1),(1,0)\},
$$

and

$$
\Theta_{2}=\{(0,0),(a, a),(b, b),(c, c),(0, b),(b, 0)\} .
$$

It is easily checked that Θ_{1} is a regular congruence relation on H_{1}, but Θ_{2} is not a regular relation on H_{2}, since $a \circ b \Theta_{2}\{0\}$ and $b \circ a \Theta_{2}\{0\}$ but $(a, b) \notin \Theta_{2}$.

Theorem 2.14. ([1]) Let Θ be a regular congruence relation on hyper $B C K$-algebra H. Then $[0]_{\Theta}$ is a hyper $B C K$-ideal of H.

Ameri, Moradian, Borzooei

Theorem 2.15. ([1]) Let Θ be a regular congruence relation on $H, I=[0]_{\Theta}$ and $\frac{H}{I}=\left\{I_{x}: x \in H\right\}$, where $I_{x}=[x]_{\Theta}$ for all $x \in H$. Then $\frac{H}{I}$ with hyper operation "o" and hyper order " $<$ " which is defined as follow, is a hyper $B C K$ algebra which is called quotient hyper BCK-algebra,

$$
I_{x} \circ I_{y}=\left\{I_{z}: z \in x \circ y\right\}
$$

and

$$
I_{x}<I_{y} \Longleftrightarrow I \in I_{x} \circ I_{y}
$$

Theorem 2.16. ([1]) Let I be a reflexive hyper $B C K$-ideal of H and relation Θ on H be defined as follow:

$$
x \Theta y \Longleftrightarrow x \circ y \subseteq I \text { and } y \circ x \subseteq I
$$

for all $x, y \in H$. Then Θ is a regular congruence relation on H and $I=[0]_{\Theta}$.

3 Rough hyper $B C K$-ideals

Throughout this section H is a hyper $B C K$-algebra. In this section first we define lower and upper approximation of the subset A of H with respect to hyper $B C K$-ideal of H and prove some properties. Then we give the definition of (weak, strong) rough hyper $B C K$-ideals and investigate the relation between them and (weak, strong) hyper $B C K$-ideals of H.

Definition 3.1. Let Θ be a regular congruence relation on hyper $B C K$ algebra $H, I=[0]_{\Theta}, I_{x}=[x]_{\Theta}$ and A be a non-empty subset of H. Then the sets

$$
\begin{aligned}
{\underset{\operatorname{Apr}}{I}}^{\overline{A p r}_{I}}(A) & =\left\{x \in H \mid I_{x} \subseteq A\right\}, \\
& =\left\{x \in H \mid I_{x} \cap A \neq \phi\right\} .
\end{aligned}
$$

are called lower and upper approximation of the set A with respect to the hyper $B C K$-ideal I, respectively.

Proposition 3.2. For every approximation space (H, Θ) and every subsets $A, B \subseteq H$, we have:
(1) $\underline{A p r}_{I}(A) \subseteq A \subseteq \overline{A p r}_{I}(A)$,
(2) $\underline{A p r}_{I}(\phi)=\phi=\overline{A p r}_{I}(\phi)$,
(3) $\underline{A p r}_{I}(H)=H=\overline{A p r}_{I}(H)$,
(4) if $A \subseteq B$, then $\underline{A p r}_{I}(A) \subseteq \underline{A p r}_{I}(B)$ and $\overline{A p r}_{I}(A) \subseteq \overline{A p r}_{I}(B)$,
(5) $\underline{A p r}_{I}\left(\underline{A p r}_{I}(A)\right)=\underline{A p r}_{I}(A)$,
(6) $\overline{A p r}_{I}\left(\overline{A p r}_{I}(A)\right)=\overline{A p r}_{I}(A)$,
(7) $\overline{\operatorname{Apr}}_{I}\left(\underline{A p r}_{I}(A)\right)=\underline{A p r}_{I}(A)$,
(8) $\underline{A p r}_{I}\left(\overline{A p r}_{I}(A)\right)=\overline{A p r}_{I}(A)$,
(9) $\underline{A p r}_{I}(A)=\left(\overline{A p r}_{I}\left(A^{c}\right)\right)^{c}$,
(10) $\overline{A p r}_{I}(A)=\left(\underline{A p r}_{I}\left(A^{c}\right)\right)^{c}$,
(11) $\overline{A p r}_{I}(A \cap B) \subseteq \overline{A p r}_{I}(A) \cap \overline{A p r}_{I}(B)$,
(12) $\underline{A p r}_{I}(A \cap B)=\underline{A p r}_{I}(A) \cap \underline{A p r}_{I}(B)$,
(13) $\overline{A p r}_{I}(A \cup B)=\overline{A p r}_{I}(A) \cup \overline{A p r}_{I}(B)$,
(14) $\underline{A p r}_{I}(A \cup B) \supseteq \underline{A p r}_{I}(A) \cup \underline{A p r}_{I}(B)$,
(15) $\underline{A p r}_{I}\left(I_{x}\right)=H=\overline{A p r}_{I}\left(I_{x}\right)$ for all $x \in H$.

Proof. (1), (2) and (3) are straightforward.
(4) For any $x \in \underline{A p r}_{I}(A)$ we have $I_{x} \subseteq A \subseteq B$ and so $x \in \underline{A p r}_{I}(B)$. Now, suppose that $x \in \overline{A p r}_{I}(A)$. Then $I_{x} \cap A \neq \phi$ and so $I_{x} \cap B \neq \phi$. Hence $x \in \overline{A p r}_{I}(B)$.
(5) Since $\underline{A p r}_{I}(A) \subseteq A$, by (4) we have $\underline{A p r}_{I}\left(\underline{A p r}_{I}(A)\right) \subseteq \underline{A p r}_{I}(A)$. Now, let $x \in \underline{A p r}_{I}(A)$. Then $I_{x} \subseteq A$. Since for any $y \in I_{x}$, we have $I_{x}=I_{y}$, then $I_{y} \subseteq A$ and so $y \in \underline{A p r}_{I}(A)$. Therefore, $I_{x} \subseteq \underline{A p r}_{I}(A)$ and then we obtain $x \in \underline{A p r}_{I}\left(\underline{A p r}_{I}(A)\right)$.
(6) By (1) and (4), $\overline{A p r}_{I}(A) \subseteq \overline{A p r}_{I}\left(\overline{A p r}_{I}(A)\right)$. On the other hand, we assume that $x \in \overline{A p r}_{I}\left(\overline{\operatorname{Apr}}_{I}(A)\right)$. Then we have $I_{x} \cap \overline{A p r}_{I}(A) \neq \phi$ and so there exist $a \in I_{x}$ and $a \in \overline{A p r}_{I}(A)$. Hence $I_{a}=I_{x}$ and $I_{a} \cap A \neq \phi$ which imply $I_{x} \cap A \neq \phi$. Therefore, $x \in \overline{A p r}_{I}(A)$.

Ameri, Moradian, Borzooei

(7) $\operatorname{By}(1)$, we have $\underline{A p r}_{I}(A) \subseteq \overline{\operatorname{Apr}}_{I}\left(\underline{A p r}_{I}(A)\right)$. Now, let $x \in \overline{\operatorname{Apr}}_{I}\left(\underline{A p r}_{I}(A)\right)$. Then $I_{x} \cap \underline{A p r}_{I}(A) \neq \phi$ and so there exist $a \in I_{x}$ and $a \in \underline{A p r}_{I}(A)$. Hence $I_{a}=I_{x}$ and $I_{a} \subseteq A$ which imply $I_{x} \subseteq A$. Therefore, $x \in$ $\underline{A p r}_{I}(A)$.
(8) By (1), we have $\underline{A p r}_{I}\left(\overline{A p r}_{I}(A)\right) \subseteq \overline{A p r}_{I}(A)$. Now, we assume that $x \in \overline{A p r}_{I}(A)$. Then $I_{x} \cap A \neq \phi$. For every $y \in I_{x}$, we have $I_{y}=I_{x}$ and so $I_{y} \cap A \neq \phi$. Hence $y \in \overline{A p r}_{I}(A)$ which implies $I_{x} \subseteq \overline{A p r}_{I}(A)$. Therefore, $x \in \underline{A p r}_{I}\left(\overline{A p r}_{I}(A)\right)$.
(9) For any subset A of H we have:

$$
\begin{aligned}
\left(\overline{\operatorname{Apr}}_{I}\left(A^{c}\right)\right)^{c} & =\left\{x \in H: x \notin \overline{\operatorname{Apr}}_{I}\left(A^{c}\right)\right\} \\
& =\left\{x \in H: I_{x} \cap A^{c}=\phi\right\} \\
& =\left\{x \in H: I_{x} \subseteq A\right\} \\
& =\left\{x \in H: x \in \underline{A p r}_{I}(A)\right\} \\
& =\underline{A p r}_{I}(A) .
\end{aligned}
$$

(10) For any subset A of H we have:

$$
\begin{aligned}
\left.\underline{A p r}_{I}\left(A^{c}\right)\right)^{c} & =\left\{x \in H: x \notin \underline{A p r}_{I}\left(A^{c}\right)\right\} \\
& =\left\{x \in H: I_{x} \not \subset A^{c}\right\} \\
& =\left\{x \in H: I_{x} \cap A \neq \phi\right\} \\
& =\left\{x \in H: x \in \overline{A p r}_{I}(A)\right\} \\
& =\overline{\operatorname{Apr}}_{I}(A) .
\end{aligned}
$$

(11) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, then by (4), $\overline{A p r}_{I}(A \cap B) \subseteq \overline{A p r}_{I}(A)$ and $\overline{A p r}_{I}(A \cap B) \subseteq \overline{A p r}_{I}(B)$. Hence $\overline{A p r}_{I}(A \cap B) \subseteq \overline{A p r}_{I}(A) \cap \overline{A p r}_{I}(B)$.
(12) For any subset A and B of H we have:

$$
\begin{aligned}
x \in \underline{A p r}_{I}(A \cap B) & \Longleftrightarrow I_{x} \subseteq A \cap B \\
& \Longleftrightarrow I_{x} \subseteq A \text { and } I_{x} \subseteq B \\
& \Longleftrightarrow x \in \underline{A p r}_{I}(A) \text { and } x \in \underline{A p r}_{I}(B) \\
& \Longleftrightarrow x \in \underline{A p r}_{I}(A) \cap \underline{A p r}_{I}(B) .
\end{aligned}
$$

(13) For any subset A and B of H we have

$$
\begin{aligned}
x \in \overline{A p r}_{I}(A \cup B) & \Longleftrightarrow I_{x} \cap(A \cup B) \neq \phi \\
& \Longleftrightarrow\left(I_{x} \cap A\right) \cup\left(I_{x} \cap B\right) \neq \phi \\
& \Longleftrightarrow I_{x} \cap A \neq \phi \text { or } I_{x} \cap B \neq \phi \\
& \Longleftrightarrow x \in \overline{A p r}_{I}(A) \text { or } x \in \overline{A p r}_{I}(B) \\
& \Longleftrightarrow x \in \overline{A p r}_{I}(A) \cup \overline{A p r}_{I}(B) .
\end{aligned}
$$

(14) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, then by (4), $\underline{A p r}_{I}(A) \subseteq \underline{A p r}_{I}(A \cup B)$ and $\underline{A p r}_{I}(B) \subseteq \underline{A p r}_{I}(A \cup B)$, which imply that $\underline{A p r}_{I}(A) \cup \underline{A p r}_{I}(B) \subseteq$ $\underline{A p r}_{I}(A \cup B)$.
(15) The proof is straightforward.

Corollary 3.3. Let (H, Θ) be an approximation space. Then
(i) for every $A \subseteq H, \underline{A p r}_{I}(A)$ and $\overline{A p r}_{I}(A)$ are definable sets,
(ii) for every $x \in H, I_{x}$ is definable set.

Proof. (i) By proposition 3.2 (5) and (7), we have $\underline{A p r}_{I}\left(\underline{A p r}_{I}(A)\right)=\underline{A p r}_{I}(A)=$ $\overline{A p r}_{I}\left(\underline{A p r}_{I}(A)\right)$. Hence $\underline{A p r}_{I}(A)$ is a definable set. On the other hand by proposition 3.2 (6) and (8), we have $\overline{A p r}_{I}\left(\overline{A p r}_{I}(A)\right)=\overline{A p r}_{I}(A)=$ $\underline{A p r}_{I}\left(\overline{A p r}_{I}(A)\right)$. Therefore $\overline{A p r}_{I}(A)$ is a definable set.
(ii) By proposition 3.2 (15) the proof is clear.

Ameri, Moradian, Borzooei

Theorem 3.4. Let Θ be a regular congruence relation on $H, I=[0]_{\Theta}$ be a hyper $B C K$-ideal of H and A, B are non-empty subsets of H. Then
(i) $\overline{A p r}_{I}(A) \circ \overline{A p r}_{I}(B)=\overline{A p r}_{I}(A \circ B)$,
(ii) $\underline{A p r}_{I}(A) \circ \underline{A p r}_{I}(B) \subseteq \underline{A p r}_{I}(A \circ B)$.

Proof. (i) Let $z \in \overline{A p r}_{I}(A) \circ \overline{A p r}_{I}(B)$. Then there exist $a \in \overline{A p r}_{I}(A)$ and $b \in \overline{\operatorname{Apr}}_{I}(B)$ such that $z \in a \circ b$. Hence $I_{a} \cap A \neq \phi$ and $I_{b} \cap B \neq \phi$ and so there exist $c \in I_{a} \cap A$ and $d \in I_{b} \cap B$ such that $a \Theta c$ and $b \Theta d$. Since Θ is a congruence relation on H, then we have $a \circ b \bar{\Theta} c \circ d$ and because $z \in a \circ b$, then there exist $y \in c \circ d$ such that $z \Theta y$. Hence $y \in I_{z}$. On the other hand, $y \in c \circ d \subseteq A \circ B$ which implies $I_{z} \cap(A \circ B) \neq \phi$ and so $z \in \overline{A p r}_{I}(A \circ B)$. Therefore $\overline{A p r}_{I}(A) \circ \overline{A p r}_{I}(B) \subseteq \overline{A p r}_{I}(A \circ B)$. Now, suppose that $x \in \overline{A p r}_{I}(A \circ B)$. Then $I_{x} \cap(A \circ B) \neq \phi$. Let $z \in I_{x} \cap(A \circ B)$, then there exist $a \in A$ and $b \in B$ such that $z \in a \circ b$ and $I_{x}=I_{z}$. Thus we have $I_{z} \in I_{a} \circ I_{b}$ and so $I_{x} \in I_{a} \circ I_{b}$. Hence $x \in a \circ b \subseteq A \circ B \subseteq \overline{A p r}_{I}(A) \circ \overline{A p r}_{I}(B)$. Therefore, $\overline{A p r}_{I}(A \circ B) \subseteq$ $\overline{A p r}_{I}(A) \circ \overline{A p r}_{I}(B)$.
(ii) Let $z \in \underline{A p r}_{I}(A) \circ{\underline{A p r}_{I}}_{I}(B)$. Then there exist $a \in \underline{A p r}_{I}(A)$ and $b \in$ $\operatorname{Apr}_{I}(B)$ such that $z \in a \circ b, I_{a} \subseteq A$ and $I_{b} \subseteq B$. For every $y \in I_{z}$, we have $I_{z}=I_{y} \in I_{a} \circ I_{b}$ and so $y \in a \circ b \subseteq A \circ B$. Then $y \in A \circ B$ and so $I_{z} \subseteq A \circ B$. Therefore $z \in \underline{A p r}_{I}(A \circ B)$.

Example 3.5. Let $H=\{0,1,2\}$ and define the hyper operation " \circ " on H as follow:

\circ	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$

Then (H, \circ) is a hyper $B C K$-algebra. Define the equivalence relation Θ by

$$
\Theta=\{(0,0),(1,1),(2,2),(0,1),(1,0)\}
$$

Then Θ is a regular congruence relation on H and so we have:

$$
I=[0]_{\Theta}=\{0,1\}, I_{1}=[1]_{\Theta}=\{0,1\}, I_{2}=[2]_{\Theta}=\{2\} .
$$

Now, if we let $A=\{1,2\}$ and $B=\{0,2\}$, then we have $A \circ B=\{0,1,2\}$ and so

$$
\begin{aligned}
& {\overline{A p r}_{I}}_{I}(A)=\left\{x \in H \mid I_{x} \subseteq A\right\}=\{2\}, \\
& \overline{A p r}_{I}(A)=\left\{x \in H \mid I_{x} \cap A \neq \phi\right\}=\{0,1,2\}, \\
& \overline{A p r}_{I}(B)=\left\{x \in H \mid I_{x} \subseteq B\right\}=\{2\}, \\
& \overline{A p r}_{I}(B)=\left\{x \in H \mid I_{x} \cap B \neq \phi\right\}=\{0,1,2\}, \\
& \underline{A p r}_{I}(A \circ B)=\left\{x \in H \mid I_{x} \subseteq A \circ B\right\}=\{0,1,2\}, \\
& \overline{A p r}_{I}(A \circ B)=\left\{x \in H \mid I_{x} \cap(A \circ B) \neq \phi\right\}=\{0,1,2\}, \\
& \overline{A p r}_{I}(A) \circ \overline{A p r}_{I}(B)=\{0,1,2\}, \\
& \underline{A p r}_{I}(A) \circ \underline{A p r}_{I}(B)=\{0,2\} .
\end{aligned}
$$

Therefore, we see that $\underline{A p r}_{I}(A) \circ \underline{A p r}_{I}(B) \neq \underline{A p r}_{I}(A \circ B)$ but $\overline{A p r}_{I}(A) \circ$ $\overline{A p r}_{I}(B)=\overline{A p r}_{I}(A \circ B)$.

Definition 3.6. Let Θ be a regular congruence relation on $H, I=[0]_{\Theta}$ be a hyper $B C K$-ideal of H and A be a non-empty subset of H. If $\underline{A p r}_{I}(A)$ and $\overline{A p r}_{I}(A)$ are hyper subalgebra of H, then A is called a rough hyper subalgebra of H.

Theorem 3.7. If I be a hyper $B C K$-ideal and J be a hyper subalgebra of H, then
(i) $\overline{A p r}_{I}(J)$ is a hyper subalgebra of H.
(ii) If $I \subseteq J$, then $\underline{A p r}_{I}(J)$ is a hyper subalgebra of H.

Proof. (i) Since $0 \in J \subseteq \overline{A p r}_{I}(J)$, then $\overline{A p r}_{I}(J) \neq \phi$. Now, we assume that $x, y \in \overline{A p r}_{I}(J)$. We must prove that $x \circ y \subseteq \overline{A p r}_{I}(J)$. Since $I_{x} \cap J \neq \phi$ and $I_{y} \cap J \neq \phi$, we can let $t \in I_{x} \cap J, s \in I_{y} \cap J$ and $z \in x \circ y$. Hence $I_{z} \in I_{x} \circ I_{y}=I_{t} \circ I_{s}$ and so $z \in t \circ s \subseteq J$. Thus we have $z \in J$ and $z \in I_{z}$ and so $I_{z} \cap J \neq \phi$. Therefore, $z \in \overline{\operatorname{Apr}}_{I}(J)$ and so $x \circ y \subseteq \overline{A p r}_{I}(J)$.
(ii) Since $I=I_{0} \subseteq J$, we have $0 \in \underline{A p r}_{I}(J) \neq \phi$. Now, suppose that $a, b \in \underline{A p r}_{I}(J)$. Then $I_{a} \subseteq J$ and $I_{b} \subseteq J$. For every $z \in a \circ b$ and every $y \in I_{z}$, we have $I_{z}=I_{y} \in I_{a} \circ I_{b}$ and so $y \in a \circ b \subseteq J$. Hence $I_{z} \subseteq J$, which implies that $z \in \underline{A p r}_{I}(J)$. Therefore, $a \circ b \subseteq \underline{\operatorname{Apr}}_{I}(J)$.

Ameri, Moradian, Borzooei

Theorem 3.8. Let Θ and Φ be two regular congruence relations on H and $I=[0]_{\Theta}, J=[0]_{\Phi}$ be two hyper $B C K$-ideals of H such that $I \subseteq J$. Then for any nonempty subset A of H, we have:
(i) $\underline{A p r}_{J}(A) \subseteq \underline{A p r}_{I}(A)$,
(ii) $\overline{A p r}_{I}(A) \subseteq \overline{A p r}_{J}(A)$.

Proof. (i) First we show that if $I \subseteq J$, then $I_{x} \subseteq J_{x}$. Let $y \in I_{x}$. Then $x \Theta y$. Since Θ is a congruence relation on H and $x \Theta x$, then $x \circ x \bar{\Theta} x \circ y$. Since $0 \in x \circ x$, then there exist $t \in x \circ y$ such that $0 \Theta t$ and so $t \in[0]_{\Theta}=I \subseteq J=[0]_{\Phi}$. Thus by hypothesis, $t \in[0]_{\Phi}$ and so $x \circ y \Phi\{0\}$. By the similar way, we can show that $y \circ x \Phi\{0\}$. Since Φ is a regular congruence relation, we get $x \Phi y$ and so $y \in[x]_{\Phi}=J_{x}$. Therefore, $I_{x} \subseteq J_{x}$. Now, let $x \in \underline{A p r}{ }_{J}(A)$. Then $J_{x} \subseteq A$ and so $I_{x} \subseteq A$ which implies $x \in \underline{A p r}_{I}(A)$.
(ii) Assume that $x \in \overline{\operatorname{Apr}}_{I}(A)$. Then $I_{x} \cap A \neq \phi$. Since $I_{x} \subseteq J_{x}$, we have $J_{x} \cap A \neq \phi$. Therefore, $x \in \overline{A p r}_{J}(A)$.

Corollary 3.9. Let Θ and Φ are two regular congruence relations on H, $I=[0]_{\Theta}, J=[0]_{\Phi}$ be two hyper $B C K$-ideals of hyper $B C K$-algebra H and A be a non-empty subset of H. Then
(i) $\underline{A p r}_{I}(A) \cap \underline{A p r}_{J}(A) \subseteq \underline{A p r}_{I \cap J}(A)$,
(ii) $\overline{A p r}_{I \cap J}(A) \subseteq \overline{A p r}_{I}(A) \cap \overline{A p r}_{J}(A)$.

Proof. By theorem 3.8, the proof is clear.

Definition 3.10. Let Θ be a regular congruence relation on $H, I=[0]_{\Theta}$ be a hyper $B C K$-ideal of H, A be a non-empty subset of H and $A p r_{I}(A)=$ $\left(\underline{A p r}_{I}(A), \overline{A p r}_{I}(A)\right)$ be a rough set in the approximation space (H, Θ). If $\underline{A p r}_{I}(A)$ and $\overline{A p r}_{I}(A)$ are hyper $B C K$-ideals (resp, weak, strong) of H, then \bar{A} is called a rough hyper BCK-ideal (resp, weak, strong) of H.

Example 3.11. Let $H=\{0,1,2,3\}$ and hyper operation "o" on H is defined as follow:

\circ	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{0\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,3\}$

Then $(H, \circ, 0)$ is a hyper $B C K$-algebra. We define the regular congruence relation on H as follow:

$$
\Theta=\{(0,0),(1,1),(2,2),(3,3),(0,1),(1,0)\} .
$$

So we have:

$$
I=I_{0}=I_{1}=\{0,1\}, I_{2}=\{2\}, I_{3}=\{3\} .
$$

Now, let $A=\{0,1,3\}$ be a subset of H, then

$$
\begin{aligned}
\overline{A p r}_{I}(A) & =\left\{x \in H \mid I_{x} \subseteq A\right\}=\{0,1,3\} \\
\overline{\operatorname{Apr}}_{I}(A) & =\left\{x \in H \mid I_{x} \cap A \neq \phi\right\}=\{0,1,3\}
\end{aligned}
$$

Easily we give that $\operatorname{Apr}_{I}(A)$ and $\overline{A p r}_{I}(A)$ are hyper $B C K$-ideals. Therefore, A is a rough hyper $\overline{B C} K$-ideal of H.

Example 3.12. Let $H=\{0, a, b, c\}$. By the following table (H, \circ) is a hyper $B C K$-algebra.

\circ	0	a	b	c
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0, a\}$	$\{0\}$	$\{a\}$
b	$\{b\}$	$\{b\}$	$\{0, a\}$	$\{b\}$
c	$\{c\}$	$\{c\}$	$\{c\}$	$\{0, c\}$

Now, let relation Θ on H is defined as follow:

$$
\Theta=\{(0,0),(a, a),(b, b),(c, c),(0, b),(b, 0),(0, a),(a, 0),(a, b),(b, a)\}
$$

Then,

$$
I_{0}=I_{a}=I_{b}=\{0, a, b\}, I_{c}=\{c\} .
$$

Let $J_{1}=\{0, c\}, J_{2}=\{0, b\}$ and $J_{3}=\{c\}$. Then,

$$
\begin{aligned}
& \frac{A p r}{I}_{I}\left(J_{1}\right)=\{c\}, \overline{A p r}_{I}\left(J_{1}\right)=\{0, a, b, c\}, \\
& \frac{A p r}{}_{I}\left(J_{2}\right)=\{ \}, \overline{A p r}_{I}\left(J_{2}\right)=\{0, a, b\}, \\
& \underline{A p r}_{I}\left(J_{3}\right)=\{c\}, \overline{A p r}_{I}\left(J_{3}\right)=\{c\} .
\end{aligned}
$$

Hence we can see that J_{1} is a hyper $B C K$-ideal of H but $\operatorname{Apr}_{I}\left(J_{1}\right)$ is not a hyper $B C K$-ideal. Moreover J_{2} is not a hyper $B C K$-ideal but $\overline{\operatorname{Apr}}_{I}\left(J_{2}\right)$ is a hyper $B C K$-ideal of H. In follows, J_{3} is not a hyper $B C K$-ideal and neither $\underline{A p r}_{I}\left(J_{3}\right)$ nor $\overline{A p r}_{I}\left(J_{3}\right)$ is a hyper $B C K$-ideal of H.

Theorem 3.13. Let Θ be a regular congruence relation on H and $I=[0]_{\Theta}$ be a hyper $B C K$-ideal of H. Then
(i) If J be a weak hyper $B C K$-ideal of H containing I, then $\underline{A p r}_{I}(J)$ is a weak hyper $B C K$-ideal of H,
(ii) If J be a hyper $B C K$-ideal of H containing I, then $\underline{A p r}_{I}(J)$ is a hyper $B C K$-ideal of H,
(iii) If J be a strong hyper $B C K$-ideal of H containing I, then $\underline{A p r}_{I}(J)$ is a strong hyper $B C K$-ideal of H.

Proof. (i) Since $I=I_{0} \subseteq J$, then $0 \in \underline{A p r}_{I}(J)$. Now, Let $x, y \in H$ be such that $x \circ y \subseteq \underline{A p r}_{I}(J)$ and $y \in \underline{A p r}_{I}(J)$. We must prove that $I_{x} \subseteq J$. Let $a \in I_{x}$ and $b \in I_{y}$. Then $a \Theta x$ and $b \Theta y$. Since Θ is a congruence relation on H, we have $a \circ b \bar{\Theta} x \circ y$ and so for every $z \in a \circ b$, there exist $t \in x \circ y$ such that $z \Theta t$. Since $x \circ y \subseteq \underline{A p r}_{I}(J)$, we have $t \in \underline{A p r}_{I}(J)$ and so $I_{t}=I_{z} \subseteq J$ which implies $z \in J$. Thus $a \circ b \subseteq J$. On the other hand, $b \in I_{y} \subseteq J$. Since J is a weak hyper $B C K$-ideal, we have $a \in J$ and so $I_{x} \subseteq J$. Hence $x \in \underline{A p r}_{I}(J)$. Therefore, $\underline{A p r}_{I}(J)$ is a weak hyper $B C K$-ideal of H.
(ii) Let $x, y \in H$ be such that $x \circ y \ll \underline{A p r}_{I}(J)$ and $y \in \underline{A p r}_{I}(J)$. We must prove that $I_{x} \subseteq J$. Let $a \in I_{x}$ and $b \in I_{y}$. Then $a \Theta x$ and $b \Theta y$. Since Θ is a congruence relation on H, we have $a \circ b \bar{\Theta} x \circ y$ and so for every $z \in a \circ b$, there exist $z^{\prime} \in x \circ y$ such that $z \Theta z^{\prime}$. Since $z^{\prime} \in x \circ y \ll \underline{A p r}_{I}(J)$, then there exists $t \in \underline{A p r}_{I}(J) \subseteq J$ such that $z^{\prime} \ll t$ and so from $z \Theta z^{\prime}$, we have $I_{0} \in I_{z^{\prime}} \circ I_{t}=I_{z} \circ I_{t}$. Hence $0 \in z \circ t$ and then $z \ll t$. Thus we have proved that for every $z \in a \circ b$, there exist $t \in J$ such that $z \ll t$ which means that $a \circ b \ll J$. On the other hand we have $b \in I_{y} \subseteq J$. Since J is a hyper $B C K$-ideal of H, we
have $a \in J$. Thus $I_{x} \subseteq J$ which implies that $x \in \underline{A p r}_{I}(J)$. Therefore, $\underline{A p r}_{I}(J)$ is a hyper $B C K$-ideal of H.
(iii) Suppose that $x, y \in H$ be such that $(x \circ y) \cap \underline{A p r}_{I}(J) \neq \phi$ and $y \in$ $\underline{A p r}_{I}(J)$. Let $a \in I_{x}$ and $b \in I_{y}$. Then $a \Theta x$ and $b \Theta y$. Since Θ is a congruence relation on H, we have $a \circ b \bar{\Theta} x \circ y$. Since $(x \circ y) \cap \underline{A p r}_{I}(J) \neq$ ϕ, then there exist $t \in H$ such that $t \in x \circ y$ and $t \in \underline{A p r}_{I}(J)$. Now, $t \in x \circ y \bar{\Theta} a \circ b$ implies that there exist $z \in a \circ b$ such that $z \Theta t$ and so $I_{t}=I_{z} \subseteq J$. Hence $z \in J$ and so $(a \circ b) \cap J \neq \phi$. On the other hand, we have $b \in I_{y} \subseteq J$. Since J is a strong hyper $B C K$-ideal of H, then we have $a \in J$ which implies $I_{x} \subseteq J$ that means $x \in \underline{A p r}_{I}(J)$. Therefore, $\underline{A p r}_{I}(J)$ is a strong hyper $B C K$-ideal of H.

Theorem 3.14. Suppose that I be a hyper $B C K$-ideal of H and Θ be a regular congruence relation on H which is defined as follow:

$$
x \Theta y \Leftrightarrow x \circ y \subseteq I \text { and } y \circ x \subseteq I .
$$

(i) If J be a weak hyper $B C K$-ideal of H containing I, then $\overline{A p r}_{I}(J)$ is a weak hyper $B C K$-ideal of H,
(ii) If J be a hyper $B C K$-ideal of H containing I, then $\overline{A p r}_{I}(J)$ is a hyper $B C K$-ideal of H,
(iii) If J be a strong hyper $B C K$-ideal of H containing I, then $\overline{A p r}_{I}(J)$ is a strong hyper $B C K$-ideal of H.

Proof. (i) Since $I \subseteq J \subseteq \overline{\operatorname{Apr}}_{I}(J)$, then we have $0 \in \overline{\operatorname{Apr}}_{I}(J)$. Let $x, y \in$ H be such that $x \circ y \subseteq \overline{\operatorname{Apr}}_{I}(J)$ and $y \in \overline{\operatorname{Apr}}_{I}(J)$. Then $I_{y} \cap J \neq \phi$ and for every $z \in x \circ y$, we have $z \in \overline{\operatorname{Apr}}_{I}(J)$ which means $I_{z} \cap J \neq \phi$. Thus there exist $a, b \in H$ such that $a \in I_{y} \cap J$ and $b \in I_{z} \cap J$ which imply that $a \Theta y, b \Theta z$ and $a, b \in J$. Thus $y \circ a \subseteq I \subseteq J$ and $z \circ b \subseteq I \subseteq J$ and so we get $y, z \in J$, since J is a weak hyper $B C K$-ideal. Thus we have proved that for any $z \in x \circ y$, we have $z \in J$ and so $x \circ y \subseteq J$. Since J is a weak hyper $B C K$-ideal and $y \in J$, obviously we have $x \in J$. Since $x \in I_{x}$, then $I_{x} \cap J \neq \phi$. Therefore $x \in \overline{A p r}_{I}(J)$ and so $\overline{A p r}_{I}(J)$ is a weak hyper $B C K$-ideal of H.
(ii) Let $x, y \in H$ be such that $x \circ y \ll \overline{\operatorname{Apr}}_{I}(J)$ and $y \in \overline{\operatorname{Apr}}_{I}(J)$. Then $I_{y} \cap J \neq \phi$ and for every $z \in x \circ y$, there exist $t \in \overline{A p r}_{I}(J)$ such that $z \ll t$ and $I_{t} \cap J \neq \phi$. Thus, there exist $c, d \in H$ such that $c \in I_{t} \cap J$ and $d \in I_{y} \cap J$ and so $c \Theta t, d \Theta y$ and $c, d \in J$. Hence $t \circ c \subseteq I \subseteq J$ and $y \circ d \subseteq I \subseteq J$. Since J is a hyper $B C K$-ideal and $c, d \in J$, we have $y, t \in J$. Thus, we have proved that for every $z \in x \circ y$, there exist $t \in J$ such that $z \ll t$ which means that $x \circ y \ll J$ and so from $y \in J$ we get $x \in J$. Consequently, $I_{x} \cap J \neq \phi$ and so $x \in \overline{\operatorname{Apr}}_{I}(J)$. Therefore, $\overline{A p r}_{I}(J)$ is a hyper $B C K$-ideal.
(iii) Let $x, y \in H$ be such that $(x \circ y) \cap \overline{\operatorname{Apr}}_{I}(J) \neq \phi$ and $y \in \overline{\operatorname{Apr}}_{I}(J)$. Then $I_{y} \cap J \neq \phi$ and so there exist $z \in H$ such that $z \in x \circ y$ and $z \in \overline{A p r}_{I}(J)$. Hence $I_{z} \cap J \neq \phi$ and so there exist $c, d \in H$ such that $c \in I_{z} \cap J$ and $d \in I_{y} \cap J$. Hence $c \Theta z$ and $d \Theta y$ where $c, d \in J$. Thus we have $z \circ c \subseteq I \subseteq J$ and $y \circ d \subseteq I \subseteq J$. Since J is a strong hyper $B C K$ ideal and $c, d \in J$, we have $z \in J$ and $y \in J$. Thus we have proved that $(x \circ y) \cap J \neq \phi$ and $y \in J$. Since J is a strong hyper $B C K$-ideal, we have $x \in J$ and so $I_{x} \cap J \neq \phi$ which means that $\overline{A p r}_{I}(J)$ is a strong hyper $B C K$-ideal of H.

4 Conclusion

This paper is intend to built up connection between rough sets and hyper $B C K$-algebras. We have presented a definition of the lower and upper approximation of a subset of a hyper $B C K$-algebra with respect to a hyper $B C K$-ideal. This definition and main results are easily extended to other algebraic structures such as hyper K-algebra, hyper I-algebra, etc.

Acknowledgements

This work was partially supported by "Center of Excellence of Algebraic Hyperstructures and its Applications of Tarbiat Modares University (CEAHA)" and "Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran".

References

[1] R. A. Borzooei and H. Harizavi, Regular congrucence relation on hyper BCK-algebra, Sci. Math. Jpn., 61(1)(2005), 83-98.
[2] Y. Imai, K. Iseki, On axiom system of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19-22.
[3] Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei, On hyper BCKalgebra, Italian Journal of pure and applied Mathematics, No. 10(2000), 127-136.
[4] Y. B. Jun, X. L. Xin, E. H. Roh and M. M. Zahedi, Strong hyper BCKideals of hyper $B C K$-algebra, Mathematicae Japonicae, Vol. 51, No. 3(2000), 493-498.
[5] Y. B. Jun, Roughness of ideals in $B C K$-algebras, Scientiae Mathematicae Japonicae, 57, No. 1(2003), 165-169.
[6] F. Marty, Surune generalization de La notion de groups, 8th Congress Math. Scandinaves, Stockhholm, (1934). 45-49.
[7] Z. Pawlak, Rough sets, Internet. J. Comput. Inform. Sci., 11(1982) 341356. Kluwer academic publishing, Dorderecht(1991).

