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Abstract

In the set N of the Natural Numbers we define two hyperoperations
based on the divisors of the addition and multiplication of two num-
bers. Then, the properties of these two hyperoperations are studied
together with the resulting hyperstructures. Furthermore, from the
coexistence of these two hyperoperations in N*, an H,-ring is result-
ing which is dual.
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1 Introduction

In 1934, F. Marty introduced the definitions of the hyperoperation and of
the hypergroup as a generalization of the operation and the group respectively.
Let H be a set and o : H x H — P/(H) be a hyperoperation, [2], [3], [5],
(6], [8]:
The hyperoperation (o) in H is called associative, if

(xoy)oz==xo0(yoz),Vr,y,z € H.
The hyperoperation (o) in H is called commutative, if
xoy=youx,Vr,y € H.

An algebraic hyperstructure (H, o), i.e. a set H equipped with the hyper-
operation (o), is called hypergroupoid. If this hyperoperation is associative,
then the hyperstructure is called semihypergroup. The semihypergroup
(H, o), is called hypergroup if it satisfies the reproduction axiom:
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roH=HoxVxreH.

One of the topics of great interest, in the last years, is the Hy -structures,
which was introduced by T. Vougiouklis in 1990 [7]. The class of Hy-
structures is the largest class of algebraic hyperstructures. These structures
satisfy weak axioms, where the non-empty intersection replaces the equality,
as bellow [8]:

i) The (o) in H is called weak associative, we write WASS, if

(roy)ozNuzo(yoz)#0Vr,y 2 € H.
ii) The (o) is called weak commutative, we write COW | if
(xoy)N(yox)#0,Ve,y € H.

iii) If H is equipped with two hyperoperations (o) and (), then (x) is
called weak distributive with respect to (o), if

[z % (yo2)|N[(x*xy)o(xx2)]#0,Vr,y,2 € H.

The hyperstructure (H, o) is called H,-semigroup if it is WASS and it
is called H ,-group if it is a reproductive (i.e. zo H = Hox = H,Vz € H)
H,-semigroup. It is called commutative H ,-group if (o) is commutative
and it is called H,- commutative group if (o) is weak commutative. The
hyperstructure (H, o, ) is called H,-ring if both hyperstructures (o) and (*)
are WASS, the reproduction axiom is valid for (o), and (*) is weak distributive
with respect to (o).

It is denoted [4] by FE., the set of the unit elements with respect to (x)
and by I.(z, e) the set of the inverse elements of x associated with the unit e,
with respect to (x).

An H,ring (R,+,") is called Dual H ,-ring, if (R,-,+) is an H,-ring,
too [4].

Let (H,-) be a hypergroupoid. An element e € H is called right unit
element if a € a-e,Va € H and is called left unit element if a € e-a,Va € H.
The element e € H is called unit element if a €a-eNe-a,Va € H.

Let (H,-) be a hypergroupoid endowed with at least one unit element.
An element @’ € H is called an inverse element of the element a €H, if there
exists a unit element e € H such that e € @’ -aNa-d'.

Moreover, let us define here: If x € z - y(resp.x € y - x)Vy € H, then, z
is called left absorbing-like element (resp. right absorbing-like element). An
element a € H is called idempotent element if a®> = a. The n'* power of an
element h, denoted h*; is defined to be the union of all expressions of n times
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of h, in which the parentheses are put in all possible ways. An H,-group
(H,-) is called cyclic with finite period with respect to h € H, if there exists
a positive integer s, such that H = h* U A% ... U h®. The minimum such
s is called period of the generator h. If all generators have the same period,
then H is cyclic with period. If there exists h € H and s positive integer,
the minimum one, such that H = h®, then H is called single-power cyclic
and h is a generator with single-power period s. The cyclicity in the infinite
case is defined similarly. Thus, for example, the H,-group (H,-) is called
single-power cyclic with infinite period with generator h if every element of
H belongs to a power of h and there exists sqg > 1, such that Vs > sy we
have:

RUhU---Ubt ch

2 The divisors’ hyperoperation due to addi-
tion in N

Let N be the set of the Natural Numbers. Let us define the hyperoperation
(©) in N as follows:

Definition 2.1. For every z,y € N
©:NxN—P(N)—{0}: (z,y) mz0yCN

such that
roy={zeN:x+y=2-A\ €N}

where (+) and (-) are the usual operations of the addition and multiplication
in N respectively.
We call the above hyperoperation, divisors’ hyperoperation due to addition.

Some properties of the divisors’ hyperoperation due to addition
l.zoy=yoz,Vr,y € N
2.000=N
3.001l=100=1
4. {l,z+y} CroyVe,yeN

5. fe+y=r-v={l,kvk v} Cx0yzy kv N,
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Remark 2.2. If z + y = p, where p € N is a prime number, then z © y =
{Lphz,yeN

Proposition 2.3. The number 0 is a unit element of the divisors’ hyperop-
eration due to addition.

Proof. Indeed, for x € N
r00={zeN:24+0=2- A eNt={zeN:x=2- A e N} >z

Then,
re(z00)N(0@x),VreN. O

Remark 2.4. Since, there is no 2’ € N such that 0 € (z @ 2) N (' © x)
when z # 0, the number 0 is the only one in N having an inverse element
(and that is 0) associated with the unique unit element 0 of the divisors’
hyperoperation due to addition, i.e. 0 € 0 © 0.

Proposition 2.5. The number 1 is an absorbing-like element of the divisors’
hyperoperation due to addition.

Proof. Indeed,

lexzoyVe,yeN=1cloyVyeN=1c (loy)n(yol),vy e N. O
Proposition 2.6. If y =n-z, x,n € Nthen {1,z,1+n,2(14+n)} Cz0y.
Proof. Let y=n-x, z,n € N then

roy={zeNiz+y=2z- A eN}={zeN:z+nr=2-\XeN}
={zeN:z(1+n)=z-AAeN}D{l,z,1+n,z(1+n)}. O

Proposition 2.7. If z € N is a prime number then 2? = {1,2, x, 2x}.
Proof. Let x € N, be a prime number then

?=ror={2e€N:z+r=2-AA€EN}={2€N: 2z =2-\ €N}

2

According to property 5, {1,2,z,2x} C 2 but since z is prime, x
{1,2,z,2x}. O

Proposition 2.8. x o N* = N* @ r = N* Vo € N*.
Proof. Let x € N*, then
r@N* Dz (nxr)>n+ 1, n € N according to Proposition 2.6.
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So, we proved that n+1 € x @ N*, Vo, n € N* and since 1 € x © N*, Vo € N*,
we get
roN'=N"Qzr=N"VreN. [

Remark 2.9. Notice that, for xr € N*

roN= U(a:@n): U{zEN:x+n:z~/\,)\EN*}Q

nelN nelN

D) U{zGN:x+nx:z->\,)\€N*}: U (x @ nx).

n€lN nelIN
But from Proposition 2.6,
U (x @nz) D U {Lz,n+1,z(n+1)} D U {n+1} = N*.
nelN nelN nelN

So,
rOQN=N@x=N"Vre N

Proposition 2.10. The divisors’ hyperoperation due to addition is a weak
associative one in N*.

Proof. For x,y,z € N*

(zoy)oz={weN :z+y=w-AAeN}0z= U (woz)=
welN*

= U {w eN :w+z=w" XN XN eN}
weIlNx*
S{weN :z+y+z=w"-NNeN} (I
On the other hand

rQyoz)=co0{veN y+z=v-p,pe N} = U (xov) =

vEIN*
= U WeN :z+v=1"p peN}
vEINx*
S>{veN :z4+y+z=1-p p eN} (IT)
From (I) and (II) we get:
(z0y)0zNz@(y0z) = {n € N* : zt+y+z =np,pu € N'} #0,Vr,y,z e N*. O

Since the divisors’ hyperoperation due to addition is commutative, ac-
cording to Propositions 2.8 and 2.10, we get the following:
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Proposition 2.11. The hyperstructure (N*, ©) is a commutative H,-group.

Proposition 2.12. For (z,y,z) € N* x N* x N*  if = z, then the divisors’
hyperoperation due to addition is strong associative.

Proof. Let (x,y,z) € N* x N* x N* such that x = z, then due to commuta-
tivity we get:

(zoy)oz=(o0yor=r0(@x0y) =20 (yor)=r0(y0z). O

Proposition 2.13. The (N*, @), is a single-power cyclic H,-group with in-
finite period where every x € N* is a generator.

Proof. For x € N*, notice that
ot = {z}
P=ror={2eN":2x =2 -\ )N} D{1,2}
P =ror={zeN":2r=2- A\ eN}or= U (z0 )

z€IN*
= U {lweN":z4+zx=w-p,peN}D
z€INx*
D{w' eN*:2r+x=w"p,p e N}U
U{w" eN iz +x=uw"p" p" e N} D
S5 {1,3}U{1,2} = {1,2,3).

We shall prove that 2" D {1,2,3,...,n}, Vo € N*, n € N* ' n > 2 by
induction.
Suppose that forn =k, k€ N* k> 2 :

o8 5 {1,2,3,.. ., k}
We shall prove that the above is valid for n = k + 1, i.e.
e 5 {1,2,3,. .k k+ 1)
Indeed,
=GP or)u@Etor)u. . U (zoh).
Then

"o (@ oa?) 0 {1,2,3,.. . k—1} 2 {1,2} D
c{1,2,3,..  k}U{k+1}={1,2,3,... k k+1}.

Therefore every element of N* belongs to a special power of x, thus, is a
generator of the single-power cyclic H,-group. O]
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3 The divisors’ hyperoperation due to multi-
plication in N
Now, let us define the hyperoperation (®) in N as follows:
Definition 3.1. For every z,y € IN

® :NxN— PN —{0}:(z,y) m2x@yCN

such that
roy={zeN:z-y=2-A\XeN}

where (+) is the usual operation of the multiplication in N.
We call the above hyperoperation, divisors’ hyperoperation due to multi-
plication.

Some properties of the divisors’ hyperoperation due to multi-
plication

l.z@y=y®Ruz,Vr,y € N

2. 0xr=2®0=N,VreN

3. 1®1=1,1ielis an idempotent element

4. {l,z,y, 2y} Cr®y,Vr,y €N
Remark 3.2. If z is a prime number, then 1@ z =2 ® 1 = {1, z}.
Proposition 3.3. Ey = N.

Proof. Forx,e e NNz ®@e={2z€N:x-e=2-\ X &N} >z So, according
to property 1, we get

re(x®e)N(e®x),Vr,e € N

That means that the set of the unit elements with respect to (®) is the
set N, i.e. By = N. ]

Proposition 3.4. i) Iy(z,0) = {0},y € N i) Ig(z,1) =N.

Proof. 1) Straightforward from property 2.
ii) Take the unit element 1, then from property 4, we get

le(z@yN(y®z),Ve,y e N
which means that g (z,1) = N. O
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Proposition 3.5. If a unit element p is a prime number, then

I@(%,p) = {

N, x=npneN
pN, x #np,n€eN.

Proof. Let p € N be a unit element and p = prime number. Then p has no
other divisors than 1 and itself. So, let z = np, n € N, then for 2’ € N

rr ={zeN:zx-2/=2-\)eN} =
={z€N:(np)-2’=2-\AeN}>pVr eN.

That means that Ig(z,p) = N. Let © # np,n € N, then p € {z € N :
z-r'=z-MAEN} s ' =pn,neN& Iy(z,p) = pN. O

Seems to be particularly interesting, one to study cases where the unit
element is not a prime number. The following two examples study the cases
where the unit element is 6 and 9.

Example 3.6. Let 6 be the unit element. Assume that x = 6n, n € N, then
rr={2eN:(6n)-2'=2-A\1eN}>36,Vz’ € N.

Then, Ig(z,6) = N.
Assume that © = 3m # 6n, n,m € N, then

6erxr’'={zeN:(3m)-2'=z- A eN}s2'=2nneN
& Ig(x,6) = 2N.
Assume that x = 2m # 6n, n,m € N, then
6ers’' ={2zeN:2m)-2'=2- A \e N} ' =3nneN
& Ig(z,6) = 3N.
Assume that £ = 2m + 1 # 3n, n,m € N, then
6erx@r={zeN:2m+1)-2'=z2-\ €N}
& 2’ =6n,n € N& Ig(z,6) = 6N.
Example 3.7. Let 9 be the unit element. Assume that x = 9n, n € N, then
rr={2eN:(9n)-2'=2-A\1eN}>39 Vs eN.
Then, Ig(z,9) = N. Assume that x = 3m # 9n, n,m € N, then
9ez@r' ={2eN:(3Bm) -2’ =2-\\eN}
s 2’ =3n,neN& [g(z,9) = 3N.
Assume that x # 3m, m € N, then
9erer' ={zeN:z2'=2A eN} s ' =InneN& Iy(z,9) =9IN.
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Proposition 3.8. Every element z € N is an absorbing-like element of the
divisors’ hyperoperation due to multiplication.

Proof. According to property 4, x € x ® y, Vz,y € N, which means, that
for every x€ N, o € x ® y, Vy € N and due to property 1, Vx € N,z €
(r®y)N(y®z),Vy € N. Then, every natural number is an absorbing-like
element of the divisors’ hyperoperation due to multiplication. ]

Proposition 3.9. The divisors’ hyperoperation due to multiplication is a
strong associative one in N.

Proof. For x,y,z € N

(z@y)Rz={weN:z-y=w-\AAeN}®z= U (w®z) =

welN
= U{w/EN:w'z:w’-X,XEN}:
weIN
1
= U{w’EN: [X(xy)]z:w’~)\’,>\'€N}:
AEIN
1
= U{w'EN:x[X(yz)] =w - N, N eN} =
AeIN
= U{w’eN:x‘v:w")\',XEN}:
veEIN
= U(a:®v):m®{vGN:y-z:v-)\,)\GN}:x@)(y@z).
vEIN
So, (zRY)®z=2® (y® z),Vr,y,z € N. O

Proposition 3.10. The hyperstructure (N, ®) is a commutative hypergroup.

Proof. Indeed, for x € N,
roN=(@e0u| ] (zen)]=NuU [ U (x@n)] ~N.
nelNx* neINx*

So,t® N=N®zx =N, Vr € N.
Also, according to property 1 and Proposition 3.9 we get that (N, ®) is a
commutative hypergroup. O

Remark 3.11. For x € N*

r@N* = U (x®@n) = U {zeN:zn=2z-A\1eN}D U {n} =N~

nelNx* nelNx nelNx
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So, r @ N* = N*® x = N*, Vo € N*,
Proposition 3.12. For every x € N, 2" ! C 2", n € N,n > 2.
Proof. For x e Nand n € Nyn > 2
" ="' U@E" e U. . U@ P @)
where p = [%} the integer part of %, [1]. Then,

D" '@rDa" 1Dk O]

4 On a dual H,-ring in N*

Proposition 4.1. (z®y)0 (z®2) D2 ® (y @ 2),Vz,y,z € N*,
Proof. For x,y,z € N*, we get

r@yoz)=r{weN y+z=w-AAe N} = U (z®@w) =

welN*
= U {weN :z-w=uw- -NNeN}=
weIN*
= U {w’eN*:x-y;Z:w’-)\’,)\’eN*}.
AEIN*

On the other hand,

(z@y)o(r®2) =
={veN:z-y=v-ppeN}to{eN:z.-2=vp p €N}
= U (vov') = U {keN:v+v =k -ppeN}=

v,v'€INx* v,0' €I Nx*
T Tz
= U {r € N*: ?y—l—?—m,u,,ueN*}D
p,p' €IN*
+z
D U {k' € N*: x-yﬂl =r -7 eN}=2r®(y0:=2).
w €IN*

So, (2 ®y) 0 (r®2) Dr® (y@ z) and then,
rRYo2)NEey) o (@®z)#0,Vr,y,z € N*. O

Proposition 4.2. The divisors’ hyperoperation due to addition is weak dis-

tributive with respect to the divisors’ hyperoperation due to multiplication
in N*,
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Proof. For x,y,z € N* we get

rQyYRz)=r0{weN y-z=w-\Ae N} = U (xow) =
welNx*
= U {weN:z4+w=uw - N,NeN}D
welN*
D{w" eN:zx+y=uw"- N N eN}L

On the other hand,

(o ® o) =

={veN :zt+y=v-ppeN}@{VeN z+z2=0p,p)eN}=
= U (v@') = U {W"eN v =" p" pleN} D
v,v'€IN* v,v' €N *

D{keN":(z+y) (z+2)=rk-pu,pueN}D

OD{eN :z+y=r"p/,p e N}L

So, 20 (y®z)N(z0y)@(x0z) D{r e N*: 24y =71-0,0 € N*} and then
r0yR2)Nxy @ (r0z)#0,Ve,y, 2z € N O

Proposition 4.3. The hyperstructure (N*, ©, ®) is a commutative dual H,-
ring.

Proof. Indeed, according to Propositions 2.11 and 3.10 the hyperstructures
(N*, @) and (N*, ®) are commutative H,-group and commutative hypergroup
respectively. From Propositions 4.1 and 4.2 we get that (®) is weak distribu-
tive with respect to (@) and (@) is weak distributive with respect to (®),
respectively. ]
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