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Abstract

In this paper, we use market segmentation approach in multi-
product inventory - production system with deteriorating items. The
objective is to make use of optimal control theory to solve the pro-
duction inventory problem and develop an optimal production policy
that maximize the total profit associated with inventory and produc-
tion rate in segmented market. First, we consider a single production
and inventory problem with multi-destination demand that vary from
segment to segment. Further, we described a single source production
multi destination inventory and demand problem under the assump-
tion that firm may choose independently the inventory directed to
each segment. This problem has been discussed using numerical ex-
ample.
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1 Introduction

Market segmentation is an essential element of marketing in industrialized
countries. Goods can no longer be produced and sold without considering
customer needs and recognizing the heterogeneity of these needs [1]. Earlier
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in this century, industrial development in various sectors of economy induced
strategies of mass production and marketing. Those strategies were manu-
facturing oriented, focusing on reduction of production costs rather than
satisfaction of customers. But as production processes become more flexible,
and customer’s affluence led to the diversification of demand, firms that iden-
tified the specific needs of groups of customers were able to develop the right
offer for one or more submarkets and thus obtained a competitive advantage.
Segmentation has emerged as a key planning tool and the foundation for
effective strategy formulation. Nevertheless, market segmentation is not well
known in mathematical inventory-production models. Only a few papers on
inventory-production models deal with market segmentation [2, 3]. Optimal
control theory, a modern extension of the calculus of variations, is a math-
ematical optimization tool for deriving control policies. It has been used
in inventory-production [4, 6] to derive the theoretical structure of optimal
policies. Apart from inventory-production, it has been successfully applied
to many areas of operational research such as Finance [7, 8], Economics
[9, 10, 11], Marketing [12, 13, 14, 15], Maintenance [16] and the Consump-
tion of Natural Resources [17, 18, 19] etc. The application of optimal control
theory in inventory-production control analysis is possible due to its dynamic
behaviour. Continuous optimal control models provide a powerful tool for
understanding the behaviour of production-inventory system where dynamic
aspect plays an important role. Several papers have been written on the
application of optimal control theory in Production-Inventory system with
deteriorating items [20, 21, 22, 23].

In this paper, we assume that firm has defined its target market in a
segmented consumer population and that it develop a production-inventory
plan to attack each segment with the objective of maximizing profit. In ad-
dition, we shed some light on the problem in the control of a single firm
with a finite production capacity (producing a multi-product at a time) that
serves as a supplier of a multi product to multiple market segments. Seg-
mented customers place demand continuously over time with rates that vary
from segment to segment. In response to segmented customer demand, the
firm must decide on how much inventory to stock and when to replenish
this stock by producing. We apply optimal control theory to solve the prob-
lem and find the optimal production and inventory policies. The rest of
the paper is organized as follows. Following this introduction, all the nota-
tions and assumptions needed in the sequel is stated in Section 2. In section
3, we described the single source production-inventory problem with multi-
destination demand that vary from segment to segment and developed the
optimal control theory problem and its solution. In section 4 of this paper
we introduce optimal control formulation of a single source production- multi
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destination demand and inventory problem and discussion of solution. Nu-
merical illustration is presented in the section 5 and finally conclusions are
drawn in section 6 with some future research directions.

2 Notations and Assumptions

Here we begin the analysis by stating the model with as few notations
as possible. Let us consider a manufacturing firm producing m product in
segmented market environment. We introduce the notation that is used in
the development of the model:

Notations:

T . Length of planning period,

P;(t) : Production rate for j™ product,

I;(t) . Inventory level for j% product,

I;(t) . Inventory level for j** product in i** segment,

D;;(t) . Demand rate for j"* product in i*" segment,

h;(1;(t)) : Holding cost rate for 5 product, (single source inventory)

hij(I;;(t)) : Holding cost rate for j™ product in i segment, (multi
destination)

C; : The unit production cost rate for j** product,

0;(t,1;(t)) : Deterioration rate for j product, (single source inventory)

0;;(t, I;;(t)) : The deterioration rate for ;" product in i segment, (multi
destination)

K;(P;(t)) : cost rate corresponding to the production rate for ;%
product,

Tij : The revenue rate per unit sale for j** product in i** segment,

p : Constant non-negative discount rate.

The model is based on the following assumptions: We assume that the
time horizon is finite. The model is developed for multi-product in segmented
market. The production, demand, and deterioration rates are function of
time. The holding cost rate is function of inventory level & production cost
rate depends on the production rate. The functions h;;(1;;(t)) (in case of
single source h;(/;(t)) and 6,;(t, 1;;(t)) (in case of single source 0;(t, I;(t)))
are convex. All functions are assumed to be non negative, continuous and
differentiable functions. This allows us to derive the most general and robust
conclusions. Further, we will consider more specific cases for which we obtain
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some important results.

3 Single Source Production and Inventory-
Multi-Destination Demand Problem

Many manufacturing enterprises use a production-inventory system to
manage fluctuations in consumers demand for the product. Such a system
consists of a manufacturing plant and a finished goods warehouse to store
those products which manufactured but not immediately sold. Here, we
assume that once a product is made and put inventory into single warehouse,
and demand for all products comes from each segment. Let there be m
products and n segments. (ie., j=1,...,mandi=1,...,n).

Therefore, the inventory evolution in segmented market is described by
the following differential equation:

SL) = P~ Y. Dylt) = 6 L), Y =1 om (1)

So far, firm want to maximize the total Profit during planning period in

segmented market. Therefore, the objective functional for all segments is
defined as

max J =
P;(t)>>"1" Dij(t)+0; (8,15 (1))

Subject to the equation (1).This is the optimal control problem with m-
control variable (rate of production) with m-state variable (inventory states).
Since total demand occurs at rate > . , D;;(t) and production occurs at
controllable rate P;(t) for j, it follows that I;(¢) evolves according to the
above state equation (1). The constraints P;(t) > > 1", D;;(t) — 0;(t, I;(1))
and 7;(0) = I;o > 0 ensure that shortage are not allowed.

Using the maximum principle [10], the necessary conditions for (P}, I5) to be
an optimal solution of above problem are that there should exist a piecewise
continuously differentiable function A and piecewise continuous function w ,
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called the adjoint and Lagrange multiplier function, respectively such that

H(t,I*,P*,\) > H(t,I*, P, \), for all P;(t) > > Di;(t) — 0;(t, I;(t) (3)
=1

d 0

E/\j(t) = —a—IjL(ta ]ja Pj> /\jaMJ) (4)

1;(0) = Lo, \j(T) =0 (5)
0

a—PJL(ta [j,Pj,)\j,,Uj) =0 (6)

Pi(t) — iDz‘j(t) —0;(t, 1;(t)) = 0, py(t) >0,
10| Pi6) = 32 D) = 0.1, | =

Where, H(t,I,P,\) and L(t,I, P,\ p) are Hamiltonian function and La-
grangian function respectively. In the present problem Hamiltonian function
and Lagrangian function are defined as

1 =33 rautt) + (3 Do) = B(O) =~ KB o (150)

A simple interpretation of the Hamiltonian is that it represents the overall
profit of the various policy decisions with both the immediate and the future
effects taken into account and the value of \;(¢) at time ¢ describes the future
effect on profits upon making a small change in 7;(¢) . Let the Hamiltonian H
for all segments is strictly concave in P;(t) and according to the Mangasarian
sufficiency theorem [4, 10]; there exists a unique Production rate.
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From equation (4) and (6), we have following equations respectively
d Oh;(1;(1)) 00;(t, 1;(t))
() = o)1) — 4 — — () . 1
v =0 = {2 = -+ o) 252 o
forallj=1,---,m

A1) + ps(t) = ¢ + I (P(1). (1)

aP;

Now, consider equation (7). Then for any ¢, we have either

o iDij(t) —0;(t,1;(t)) =0or
- iDzj(i) —0;(t, I;(t) >0V j=1,---,m

3.1 Case 1:

Let S is a subset of planning period [0,T], when P;(t) — > ", D;;(t) —
0;(t, 1;(t)) = 0. Then $1;(t) = 0 on S, in this case I*(t) is obviously constant
on S and the optimal production rate is given by the following equation

ZDU i(t,I7(t)), forallt € S (12)

By equation (10) and (11)7 we have

d Oh;(1;(t)) d 00;(t, 1;(t))
SN (0) = pi(t) - {‘T - ( +ap i ”)T}
(13)

After solving the above equation, we get a explicit from of the adjoint func-
tion A;(t). From the equation (10)), we can obtain the value Of Lagrange
multiplier f;(¢).

3.2 Case 2:

Pi(t) = >0 Dii(t) — 0;(t, I;(t)) > 0, for t € [0, T]\S. Then p;(t) =0 on
t € [0,T]\S. In this case the equation (10) and (11) becomes
(

g)\'(t) :p)\j(t) — {_M — )\j(t)M}, Vi=1,---,m

dt™’ o1, oI,
Aj(t) = ¢ + = K;(F5(1)) (15)
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Cobining these equation with the state equation, we have the following second
order differential equation:

d d? 20;(t, 1;(t))] d B 00;(t, 1;(t))
apj(t)—dpjgf(j(Pj) - [P+ oL ]deKj(Pj) =¢; (P+ T >
Oh;(t, I;(t))
T

(16)

and 1;(0) = Lo, cj—i—diP]_Kj(Pj(T)) = 0. For illustration purpose, let us assume
the following forms the exogenous functions K;(P;) = kiP?/2, hy(t, 1;(t)) =
h;1;(t) and 0;(t, 1;(t)) = 0;1;(t), where k; h; 6; are positive constants for all
j=1,--,m.

For these functions the necessary conditions for (P}, I7) to be optimal solu-
tion of problem (2) with equation (1) becomes

0O 0510~ (04 6)01,5(8) = (1) (17)
with 1;(0) = Ljo, ¢j + g5 K;(P(T)) = 0.

Where, n;(t) = =31, (%Di_j (t)) + (p+ 61)) (Z?:l Dy; (t)) + 7(Cj(p+z;j)+hj).

This problem is a two point boundary value problem.

Proposition 3.1. The optimal solution of (P, I7) to the problem is given
by

I () = aie™ " + age™ " + Q;(t), (18)

and the corresponding P; is given by

, _ d
P (t) =ayj(my; + 015)e™9" + ag;(ma; + 0;)e™" + EQJ' (t) +01;Q;(1)

J
+3 Dy (19)
=1

The values of the constant ai;, az;, my;, me; are given in the proof, and
Q;(t) is a particular solution of the equation (17).

Proof. The solution of the two point boundary value problem (17) is given
by standard method. Its characteristic equation m? —pm; — (p+6,)61; =0,
has two real roots of opposite sign, given by

1
mi =g (P - \/P2 +4(p+ 91]')911) <0,

1
Moy =35 (P + \/P2 +4(p+ 91]')911) >0,
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and therefore I7(t) is given by (18), where Q;(t) is the particular solution.
Then initial and terminal condition used to determineed the values of con-
stant a;; and ag; as follows

a1 + az; + Q;(0) = Lo,
alj (mlj + Hlj)em”T + agj(mlj + Qlj)emQ'jT

¢ d n
#(F+ 5om+om + 2 m) <o

By putting by; = Ijo — Q;(0) and by; = —(32 + £Q;(T) + 01,Q,(T) +
Yo Dii(T)), we obtain the following system of two linear equation with
two unknowns

ayj + az; = by
mi; T mao; T
arj(maj + 015)€™97 + ag;(may; + 01;)e™" = by;

(20)

The value of P} is deduced using the values of I and the state equation. [

4 Single Source Production- Multi Destina-
tion Demand and Inventory Problem

We assume the single source production and multi destination demand-
inventory system. Hence, the inventory evolution in each segmented is de-
scribed by the following differential equation:

d

—1
dt

ij(t) = 7i; P () — Dij(t) — 055(t, Ly(t), Vj=1,--- ,myi=1--- n.
(21)

Here, v;; > 0, >0 7; =1,V j = 1,---m with the conditions I;;(0) = Iioj
and ~;; P;(t) > D;;(t) — 0;;(t, L;;(t)). We called v;; > 0 the segment produc-
tion spectrum and ~;; P;(t) define the relative segment production rate of ;%
product towards i** segment. We develop a marketing-production model in
which firm seeks to maximize its all profit by properly choosing production
and market segmentation. Therefore, we defined the profit maximization
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objective function as follows:

max J =
¥i Pj (£)>Dij (t) =05 (¢, 135 (£))

— /OT e Zm: {i rij Dij(t) + ¢ (i(Dij(t) a %jpj(m)}dt

-] T o i [Z b (10) ~ KB (0) (22)

subject to the equation (21). This is the optimal control problem (production
rate) with m control variable with mn state variable (stock of inventory).
To solve the optimal control problem expressed in equation (21) and (22),
the following Hamiltonian and Lagrangian are defined as

n

H :Zm: {i rijDi (t) + ¢ (Z(D”’(t) - %J'Pj(t)))}

7j=1"i=1 =1

=3[ ) + K )]

j=1 Li=1

+ 3 NP (1) = Dig(t) = 055t 15(1))] (23)

j=1 i=1

- fj S hus0) + K540
©30 S0+ B - Dy Byt L)) @
Equation (4), (6;:;;1(21) yield
G0 = o) = { -0 Pl o)
foralli=1,---.n, j=1,---.m
f;uij (0)-+ 1507 = &5+ IS (B (0) (26)

In the next section of the paper, we consider only case when
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4.1 Case 2:

’}/Z]PJ(t>—DU(t)—0U(t, ]z](t>> >0V i, j, fort € [O, T]\S Then /sz(t) =0
on t € [0, T]\S. In this case, the equation (25) and (26) becomes

%)\ij (t)= PAij (t) — {_ah”a(ﬁj(t)) — Aij (t) Py (;}lej(t))} (27)
S uhalt) = ¢+ K (P(1) 29

Cobining these equation with the state equation, we have the following second
order differential equation:

d d? 1 <& 90;(t, I;(t))\ d
apj(f)d—P]ng(Pj)—EZ(PJr o7, )deKj(Pj)

=1

n

= Zzl Ci%i (p —+ a]z + izl% 8115 (29)

with I](O) = IZOJ, Z?:l ’}/Z]/\Z](T) =0 — /\z](T) =0V i and j, Cj +
dinK ;(P;(T)) = 0. For illustration, let us assume the following forms the ex-
ogenous functions K;(P;) = k; P? /2, hj(t, Iij(t)) = hi;Li;(t) and 0,5(t, Ij; (t)) =
0,;1;;(t), where k; h;; 0;; are positive constants.

For these functions the necessary conditions for (P}, ) to be optimal solu-

Jo i
tion of problem (19) with equation (18) becomes

: i;jz(t) + (0 — A) dlfit( J- A0il;(t) = mi; (1) (30)

150

Xij(T) =0V i, ¢j + g5 K;(Py(T)) = 0.

Where, n;;(t) = —Dij()A + 3| 32521 vilhi + ¢i(p + 053)) | + Lul A =

> W. This problem is a two point boundary value problem.
The above system of two point boundary value problem (29) is solved by
same method that we used in to solve (17).

5 Numerical Illustration

In order to demonstrate the numerical results of the above problem, the
discounted continuous optimal problem (2) is transferred into equivalent dis-
crete problem [24] that is solved to present numerical solution. The discrete
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optimal control can be written as follows:

+Z<i (gDM_ b =rk=0)) (5 )
_ i(i[fcj(zﬂj(k — 1)+ hy(L(k — 1)))]> ((1 +1p)kz>

such that

Li(k) = Li(k — 1) + pj(k = 1) = Y Dyj(k = 1) = 0;(k — 1, I;(k — 1))
=1
forallj=1,--- ,m.

Similar discrete optimal control problem can be written for single source
production multi destination and inventory control problem. These discrete
optimal control problems are solved by using Lingoll. We assume that the
duration of all the time periods are equal and demand are equal from segment
for each product. The number of market segmentsis 4 and the number of
products is 3. The value of parameters are r;; = 2.55, 2.53, 2.53, 2.54;

Table 1: The Optimal production and inventory rate in segment market
T T2 T3 T4 T5 Te6 Trv T8 T9 TI0

P, 100 8 80 73 64 53 39 21 > 0
P, 110 8 76 70 62 52 38 21 5 0
Py 140 79 75 69 61 51 38 21 5 0
I 20 98 154 199 232 254 262 255 231 193
I, 20 107 156 194 222 238 241 231 205 166
Is 20 137 179 211 233 244 244 231 203 161

rio = 2.52, 2.53, 2.54, 2.53; r;3 = 2.51, 2.54, 2.54, 2.52 for segments
i=1to4;¢;=1; kj =2; 0, =0.10, 0.12, 0.13; h; = 1; for all the three
products. The optimal production rate and inventory for every product for
each segment is shown in Table 1 and their corresponding total profit is

$177402.70.
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The optimal trajectories of production and inventory rate for every product
for each segment are shown in Figl, Fig2 and Fig3 respectively (Appendix).
In case of single source production-multi destination demand and inventory,
the number of market segments M is 4 and the number of products is 3. The
values of additional parameters are each segment is shown in Table 2.

Table 2: The values of parameter of deteriorating rate and holding cost rate
constant

Segment  60;; O Oz ha hip i

M1 0.10 0.11 0.11 1.0 1.1 1.0
M?2 0.11 0.12 0.12 1.1 12 1.1
M3 0.13 0.11 011 1.2 1.1 1.2
M4 0.11 0.13 0.11 1.1 1.0 1.3

Table 3: Values of the parameter for single source production-multi destina-
tion demand and inventory problem in each segment
T T2 T3 T4 T5 Te6 Trv T8 T9 TI10

P, 100 8 79 73 65 54 41 23 > 0

P, 110 82 7r 70 62 52 38 21 > 0

Py 140 83 T7r 71 63 52 38 21 > 0

I;p 20 98 153 197 231 254 263 258 236 197
Lo 20 97 152 195 227 247 255 248 225 185
Lis 20 97 150 192 223 242 247 239 214 173
iy 20 97 149 190 218 236 240 230 204 162
I, 20 108 158 198 227 245 250 242 217 178
I, 20 107 157 195 222 238 242 232 206 167
Ios 20 108 158 198 227 245 250 242 217 178
I, 20 107 156 192 218 232 235 223 196 156
I3 20 138 186 223 250 265 268 258 231 191
I, 20 138 184 220 244 258 260 248 219 178
Iss 20 138 185 223 250 265 268 258 231 191
Is, 20 138 186 223 250 265 268 258 231 191

The optimal production rate and inventory for every product for each
segment is shown in Table 3 with production spectrum ~v;; = 0.10, 72 =
0.10, v13 = 0.77, 14 = 0.03; vo1 = 0.12, 720 = 0.12, Y93 = 0.75, Yyou =
0.01; 731 = 0.14, 32 = 0.14, 33 = 0.72, 734 = 0.04. The optimal value of
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total profit for all products is $185876.90. In case of single source production-
multi destination demand and inventory, The optimal trajectories of produc-
tion and inventory rate for every product for each segment are shown in Fig4,
Figh, Fig6 and Fig7 respectively (Appendix).

6 Conclusion

In this paper, we have introduced market segmentation concept in the
production inventory system for multi product and its optimal control for-
mulation. We have used maximum principle to determine the optimal pro-
duction rate policy that maximizes the total profit associated with inventory
and production rate. The resulting analytical solution yield good insight
on how production planning task can be carried out in segmented market
environment. In order to show the numerical results of the above problem,
the discounted continuous optimal problem is transferred into equivalent dis-
crete problem [24] that is solved using Lingo 11 to present numerical solution.
In the present paper, we have assumption that the segmented demand for
each product is a function of time only. A natural extension to the analysis
developed here is the consideration of segmented demand that is a general
functional of time and amount of onhand stock (inventory).
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