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Abstract

We introduce and study the direct product of a family of fuzzy
hyperalgebras of the same type and present some properties of it.
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1 Introduction

In this section we present some definitions and simple properties of hy-
peralgebras which will be used in the next section. In the sequel H is a
fixed nonvoid set, P ∗(H) is the family of all nonvoid subsets of H, and for a
positive integer n we denote for Hn the set of n-tuples over H (for more see
[1]).

Recall that for a positive integer n a n-ary hyperoperation β on H is a
function β : Hn → P ∗(H). We say that n is the arity of β. A subset S
of H is closed under the n-ary hyperoperation β if (x1, . . . , xn) ∈ Sn implies
that β(x1, . . . , xn) ⊆ S. A nullary hyperoperation on H is just an element of
P ∗(H); i.e. a nonvoid subset of H.
A hyperalgebra H = 〈H, (βi, | i ∈ I)〉 (which is called hyperalgebraic system
or a multialgebra ) is the set H with together a collection (βi, | i ∈ I) of
hyperoperations on H.
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A subset S of a hyperalgebra H=〈H, (βi, : i ∈ I)〉 is a subhyperalgebra of H if S
is closed under each hyperoperation βi, for all i ∈ I, that is βi(a1, ..., ani

) ⊆ S,
whenever (a1, ..., ani

) ∈ Sni . The type of H is the map from I into the set
N∗ of nonnegative integers assigning to each i ∈ I the arity of βi. Two
hyperalgebras of the same type are called similar hyperalgrbras.
For n > 0 we extend an n-ary hyperoperation β on H to an n-ary operation
β on P ∗(H) by setting for all A1, ..., An ∈ P ∗(H)

β(A1, ..., An) =
⋃
{β(a1, ..., an)|ai ∈ Ai(i = 1, ..., n)}

It is easy to see that 〈P ∗(H), (βi : i ∈ I)〉 is an algebra of the same type of
H.

Definition 1.1 Let H=〈H, (βi : i ∈ I)〉 and H=〈H, (βi : i ∈ I)〉 be two
similar hyperalgebras. A map h from H into H is called a
(i) A homomorphism if for every i ∈ I and all (a1, ..., ani

) ∈ Hni we have
that

h(βi((a1, ..., ani
)) ⊆ βi(h(a1), ..., h(ani

));
(ii) a good homomorphism if for every i ∈ I and all (a1, ..., ani

) ∈ Hni we
have that

h(βi((a1, ..., ani
)) = βi(h(a1), ..., h(ani

)).

Definition 1.2 Let H be a nonempty set. A fuzzy subset µ of H is a function

µ : H → [0, 1].

Definition 1.3 A fuzzy n-ary hyperoperation fn on S is a map fn : S ×
· · · × S −→ F ∗(S), which associated a nonzero fuzzy subset fn(a1, . . . , an)
with any n-tuple (a1, . . . , an) of elements of S. The couple (S, fn) is called
a fuzzy n-ary hypergroupoid. A fuzzy nullary hyperoperation on S is just an
element of F ∗(S); i.e. a nonzero fuzzy subset of S.

Definition 1.4 Let H be a nonempty set and for every i ∈ I, βi be a fuzzy
ni-ary hyperoperation on H, Then H=〈H, (βi : i ∈ I)〉 is called fuzzy hyper-
algebra, where (ni : i ∈ I) is type of this fuzzy hyperalgebra.

Definition 1.5 If µ1, . . . , µni
be ni nonzero fuzzy subsets of a fuzzy huperal-

gebra H=〈H, (βi : i ∈ I)〉, we define for all t ∈ H

βi(µ1, . . . , µni
)(t) =

∨
(x1,...,xni )∈Hni

(µ1(x1)
∧

. . .
∧

µni
(xni

)
∧

βi(x1, . . . , xni
)(t))

Finally, for nonempty subsets A1, . . . , Ank
of H, set A = A1 × . . . × Ani

.
Then for all t ∈ H

βk(A1, . . . , Ank
)(t) = ∨(a1,...,ank

)∈A(βk(a1, . . . , ank
)(t)).
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Fuzzy hyperalgebras and direct product

For nonempty subset A of H, χA denote the characteristic function of A .
Note that, if f : H1 −→ H2 is a map and a ∈ H1, then f(χa) = χf(a).

Definition 1.6 Let H = 〈H, (βi : i ∈ I)〉 and H′ = 〈H ′, (β′i : i ∈ I)〉 be two
fuzzy hyperalgebras with the same type, and f : H −→ H ′ be a map. We say
that f is a homomorphism of fuzzy hyperalgebras if for every i ∈ I and every
a1, . . . , ani

∈ H we have
f(βi(a1, . . . , ani

)) ≤ β′i(f(a1), . . . , f(ani
)).

Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra then, the set of the
nonzero fuzzy subsets of H denoted by F ∗(H), can be organized as a universal
algebra with the operations;

βi(µ1, . . . , µni
)(t) =

∨
(x1,...,xni )∈Hni

(µ1(x1)
∧

. . .
∧

µni
(xni

)
∧

βi(x1, . . . , xni
)(t))

for every i ∈ I, µ1, . . . , µni
∈ F ∗(H) and t ∈ H. We denote this algebra by

F∗(H).
In [3] Gratzer presents the algebra of the term functions of a universal

algebra. If we consider an algebra B=〈B, (βi : i ∈ I)〉 we call n−ary term
functions on B (n ∈ N) those and only those functions from Bn into B, which
can be obtained by applying (i) and (ii) from bellow for finitely many times:
(i) the functions eni : Bn → B, eni (x1, . . . , xn) = xi, i = 1, . . . , n are n−ary
term functions on B;
(ii) if p1, . . . , pni

are n−ary term functions on B, then βi(p1, . . . , pni
) : Bn →

B,
βi(p1, . . . , pni

)(x1, . . . , xn) = βi(p1(x1, . . . , xn), . . . , pni
(x1, . . . , xn)) is also a

n−ary term function on B.
We can observe that (ii) organize the set of n−ary term functions over B
(P (n)(B)) as a universal algebra, denoted by B(n)(B).
If H is a fuzzy hyperalgebra then for any n ∈ N, we can construct the algebra
of n−ary term functions on F∗(H), denoted by B(n)(F∗(H)) = 〈P (n)(F ∗(H)), (βi :
i ∈ I)〉.

2 On the Direct Product of Fuzzy Hyperal-

gebras

Proposition 2.1 Let H=〈H, (βi : i ∈ I)〉 and B=〈B, (βi : i ∈ I)〉 are fuzzy
hyperalgebras of the same type, h : H → B a fuzzy homomorphism and
p ∈ P (n)(F∗(H)). Then for all a1, . . . , an ∈ H we have h(p(χa1 , . . . , χan)) ⊆
p(h(χa1), . . . , h(χan)).

5
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Proof. The prove is by induction over the steps of construction of a
term.2

Remark 2.1 If h : H → B be fuzzy good homomorphism then
h(p(χa1 , . . . , χan)) = p(h(χa1), . . . , h(χan)).

Remark 2.2 We can easily construct the category of the fuzzy hyperalgebras
of the same type, where the morphisms are considered to be the fuzzy ho-
momorphisms and the composition of two morphisms is the usual mapping
composition and we will denote it by FHA

Definition 2.1 Let q, p ∈ P (n)(F∗(H)). The n−ary (strong) identity p = q
is said to be satisfied on a fuzzy hyperalgebra H if

p(χa1 , . . . , χan) = q(χa1 , . . . , χan)
for all a1, . . . , an ∈ H. We can also consider that a weak identity p ∩ q 6= ∅
is said to be satisfied on a fuzzy hyperalgebra H if

p(χa1 , . . . , χan) ∧ q(χa1 , . . . , χan) > 0
for all a1, . . . , an ∈ H.

Definition 2.2 Let ((Hk, (β
k
i : i ∈ I)), k ∈ K) be an indexed family of fuzzy

hyperalgebras with the same type. The direct product
∏

k∈K Hk is a fuzzy hy-
peralgebra with univers Πk∈KHk and for every i ∈ I and (a1

k)k∈K , . . . , (a
ni
k )k∈K ∈

Πk∈KHk :

β
Q
i ((a1

k)k∈K , . . . , (a
ni
k )k∈K)(tk)k∈K =

∧
k∈K

βki (a1
k, . . . , a

ni
k )(tk)

Theorem 2.1 The fuzzy hyperalgebra
∏

k∈K Hk constructed this way, to-
gether with the canonical projections, is the product of the fuzzy hyperalgebras
(Hk, k ∈ K) in the category FHA.

Proof. For any fuzzy hyperalgebra (B, (βBi : i ∈ I)) and for any family
of fuzzy hyperalgebra homomorphisms (αk : B → Hk|k ∈ K) there is only
one homomorphism α : B → Πk∈KHk such that αk = πKk ◦ α for any k ∈ K.
Indeed, there exists only one mapping α such that the diagram is commuta-
tive.

-

6

B

Hk

�

αk

Πk∈KHk

πK
k

α

6
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This mapping is defined by α(b) = (αk(b))k∈K . Now we have to do is to
verify that α is fuzzy hyperalgebra homomorphism. If we consider i ∈ I
and b1, . . . , bni

∈ B, (tk)k∈K ∈ Πk∈KHk then if r ∈ α−1((tk)k∈K) we have
α(r) = (tk)k∈K and α(r) = (αk(r))k∈K , hence ∀k ∈ K; tk = αk(r), it means
that ∀k ∈ K; r ∈ α−1

k (tk), therefore ∀k ∈ K;α−1((tk)k∈K) ⊆ α−1
k (tk). We

have

α(βBi (b1, . . . , bni
))(tk)k∈K =

∨
r∈α−1((tk)k∈K)

(βBi (b1, . . . , bni
))(r)

≤
∨

s∈α−1
k (tk))

βBi (b1, . . . , bni
))(s) = αk(β

B
i (b1, . . . , bni

))(tk)

then

α(βBi (b1, . . . , bni
))(tk)k∈K ≤

∧
k∈K

αk(β
B
i (b1, . . . , bni

))(tk)

≤
∧
k∈K

βki (αk(b1), . . . , αk(bni
))(tk) = β

Q
i (α(b1), . . . , α(bni

))(tk)k∈K .

Which finishes the proof.2

Proposition 2.2 For every n ∈ N, p ∈ P (n)(F∗(H)) and (a1
k)k∈K , . . . , (a

n
k)k∈K,

we have

p(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)(tk)k∈K =

∧
k∈K

p(χa1
k
, . . . , χan

k
)(tk)

Proof. We will use the steps of construction of a term.

i. If p = ejn(j = 1, 2, . . . , n) then

p(χ(a1
k)

k∈K
, . . . , χ(an

k )
k∈K

)(tk)k∈K = ejn(χ(a1
k)

k∈K
, . . . , χ(an

k )
k∈K

)(tk)k∈K

= χ(aj
k)

k∈K
(tk)k∈K

=
∧
k∈K

ejn(χa1
k
, . . . , χan

k
)(tk)

=
∧
k∈K

p(χa1
k
, . . . , χan

k
)(tk)

ii. Suppose that the statement has been proved for p1, . . . , pni
and that

p = βi(p1, . . . , pni
). Then we have

p(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)(tk)k∈K = βi(p1, . . . , pni

)(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)(tk)k∈K

= βi(p1(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K), . . . , pni

(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K))(tk)k∈K

=
∨

(s1k)k∈K ,...,(s
ni
k )k∈K

[p1(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)(s1

k)k∈K∧. . .∧pni
(χ(a1

k)k∈K
, . . . , χ(an

k )k∈K)

(sni
k )k∈K ∧ βi((s1

k)k∈K , . . . , (s
ni
k )k∈K)(tk)k∈K ]

7
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=
∨

(s1k)k∈K ,...,(s
ni
k )k∈K

[
∧
k∈K

p1(χa1
k
, . . . , χan

k
)(s1

k)∧ . . .∧
∧
k∈K

pni
(χa1

k
, . . . , χan

k
)(sni

k )∧∧
k∈K

βi(s
1
k, . . . , s

ni
k )(tk)]

=
∧
k∈K

[
∨

(s1k)k∈K ,...,(s
ni
k )k∈K

p1(χa1
k
, . . . , χan

k
)(s1

k)∧. . .∧pni
(χa1

k
, . . . , χan

k
)(sni

k )∧βi(s1
k, . . . , s

ni
k )(tk)]

=
∧
k∈K

βi(p1(χa1
k
, . . . , χan

k
), . . . , pni

(χa1
k
, . . . , χan

k
))(tk)

=
∧
k∈K

βi(p1, . . . , pni
)(χa1

k
, . . . , χan

k
)(tk)

=
∧
k∈K

p(χa1
k
, . . . , χan

k
)(tk).

which finishes the proof of the proposition.2

Theorem 2.2 If ((Hk, (β
k
i : i ∈ I)), k ∈ K) be an indexed family of fuzzy hy-

peralgebras with the same type I such that p∩q 6= ∅ is satisfied on each fuzzy
hyperalgebra Hk, then is also satisfied on the fuzzy hyperalgebra

∏
k∈K Hk.

Proof. Let p, q ∈ P (n)(F∗(H)) and suppose that p ∩ q 6= ∅ is satisfied
on each fuzzy hyperalgebra Hk. This means that for all k ∈ K and for any
a1
k, . . . , a

n
k ∈ Hk we have p(χa1

k
, . . . , χan

k
)∧q(χa1

k
, . . . , χan

k
) > 0. By proposition

3.7 , we conclude that
p(χ(a1

k)k∈K
, . . . , χ(an

k )k∈K) ∧ r(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K) =

=
∧
k∈K

p(χa1
k
, . . . , χan

k
) ∧

∧
k∈K

q(χa1
k
, . . . , χan

k
)

=
∧
k∈K

(p(χa1
k
, . . . , χan

k
) ∧ q(χa1

k
, . . . , χan

k
)) > 0

and the proof is finished.2

Theorem 2.3 If ((Hk, (β
k
i : i ∈ I)), k ∈ K) be an indexed family of fuzzy hy-

peralgebras with the same type I such that p = q is satisfied on each fuzzy hy-
peralgebra Hk, then p = q is also satisfied on the fuzzy hyperalgebra

∏
k∈K Hk.

Proof. Let p, q ∈ P (n)(F∗(H)) and suppose that p = q is satisfied on
each fuzzy hyperalgebra Hk. This means that for all k ∈ K and for any
a1
k, . . . , a

n
k ∈ Hk we have p(χa1

k
, . . . , χan

k
) = q(χa1

k
, . . . , χan

k
). By proposition

3.7 , we conclude that

p(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K) =

∧
k∈K

p(χa1
k
, . . . , χan

k
)

=
∧
k∈K

q(χa1
k
, . . . , χan

k
)

8
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= r(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)

and the proof is finished.2
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Abstract

Let R be a Γ-hyperring and M be an Γ-hypermodule over R. We
introduce and study fuzzy RΓ-hypermodules. Also, we associate a Γ-
hypermodule to every fuzzy Γ-hypermodule and investigate its basic
properties.

Key words: Γ-hyperring, Γ-hypermodule, fundamental relation,
fuzzy Γ-hypermodule.

MSC2010: 20N20.

1 Introduction

Hyperstructure theory was born in 1934 when Marty [13] defined hy-
pergroups, began to analysis their properties and applied them to groups.
Algebraic hyperstructures are a suitable generalization of classical algebraic
structures. Zadeh [18] introduced the notion of a fuzzy subset of a non-empty
set X, as a function from X to [0, 1]. Rosenfeld [15] defined the concept of
fuzzy group. Since then many papers have been published in the field of
fuzzy algebra. In [16], Sen, Ameri and Chowdhury introduced the notions of
fuzzy hypersemigroups and obtained a characterization of them. Then in [10],
Leoreanu-Fotea and Davvaz introduced and analyzed the fuzzy hyperring no-
tion and in [11], Leoreanu-Fotea introduced the fuzzy hypermodule notion
and obtained a connection between hypermodules and fuzzy hypermodules
(for more information about fuzzy hypersrtuctures see [1]-[6]). The notion
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of a Γ-ring was introduced by N. Nobusawa in [14]. Recently, W.E. Barnes
[7], J. Luh [12], W.E. Coppage studied the structure of Γ-rings and obtained
various generalization analogous of corresponding parts in ring theory. In [3]
Ameri, Sadeghi introduced the notion of Γ-module over a Γ-ring.

Now in this paper we introduced and study fuzzy Γ-hypermodules as
generalization of Γ-hypermodule as well as fuzzy modules. The paper has
been prepared in 5 sections. In section 2, we introduce some definitions and
results of Γ-hypermodules and fuzzy sets which we need to developing our
paper. In section 3, we introduced and study fuzzy Γ-hypermodules and
obtain its basic results. In section 4, we study fundamental relation of fuzzy
Γ-hypermodules.

2 Preliminaries

In this section, we present some definitions which need to developing our
paper. As it is well known a hypergroupoid is a set together with a function
◦ : H × H −→ P ?(H), which is called a hyperoperation, where P ?(H)
denotes the set of all nonempty subsets of H. A hypergroupoid (H, ◦), which
is associative, that is x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H is called a
semihypergroup. A hypergroup is a semihypergroup such that for all x ∈ H
we have x ◦ H = H = H ◦ x (called the reproduction axiom). We say that
a hypergroup H is canonical hypergroup if it is commutative, it has a scalar
identity, every element has a unique inverse and it is reversible (for more
details of hypergroups see [9]).

Definition 2.1. The triple (R,+, .) is a hyperring (in the sense of Krasner)
if the following hold: (i) (R,+) is a commutative hypergroup;
(ii) (R, .) is a semihypergroup;
(iii) the hyperoperation ”.” is distributive over the hyperoperation ”+”, which
means that for all r, s, t of R we have: r.(s + t) = r.s + r.t and (r + s).t =
r.t+ s.t ( for more about hyperrings see [9] and [11]).

Definition 2.2. Let (R,], ◦) be a hyperring. A nonempty set M , endowed
with two hyperoperations ⊕,� is called a left hypermodule over (R,], ◦) if
the following conditions hold:
(1) (M,⊕) is a commutative hypergroup;
(2) � : R×M −→ P ∗(M) is such that for all a, b ∈M and r, s ∈ R we have
(i) r � (a⊕ b) = (r � a)⊕ (r � b);
(ii) (r ] s)� a = (r � a)⊕ (s� a);
(iii) (r ◦ s)� a = r � (s� a).

For more details about hypermodules see [8], [9], [?] and [18]).

12
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Definition 2.3. ([7]) Let R and Γ be additive abelian groups. We say that
R is a Γ − ring if there exists a mapping

· : R× Γ×R −→ R
(r, γ, r′) 7−→ r.γ.r′ (= rγr′)

such that for every a, b, c ∈ R and α, β ∈ Γ, the following conditions hold:
(i) (a+ b)αc = aαc+ bαc;

a(α + β)c = aαc+ aβc;
aα(b+ c) = aαb+ aαc;

(ii) (aαb)βc = aα(bβc).

Definition 2.4. Let R be a Γ-ring. A (left)gamma module over R is an
additive abelian group M together with a mapping . : R× Γ×M −→M
( the image of (r, γ,m) being denoted by rγm), such that for all m,m1,m2 ∈
M and γ, γ1, γ2 ∈ Γ and r, r1, r2 ∈ R the following conditions are satisfied:
(GM1) r.γ.(m1 +m2) = r.γ.m1 + r.γ.m2;
(GM2) (r1 + r2).γ.m = r1.γ.m+ r2.γ.m;
(GM3) r.(γ1 + γ2).m = r.γ1.m+ r.γ2.m;
(GM4) r1.γ1.(r2.γ2.m) = (r1.γ1.r2).γ2.m.
A right gamma module over R is defined in analogous manner. In this case
we say that M is a left(or right) RΓ-module (for more details about gamma
modules see [2]).
Let (H, ◦) be a hypergroupoid. If {A,B} ⊆ P ∗(H) and ρ is an equivalence
relation on H, then we denote Aρ̄B if

∀a ∈ A, ∃b ∈ B : aρb, and, ∀b ∈ B, ∃a ∈ A : aρb.

We denote A ¯̄ρ B if ∀a ∈ A, ∀b ∈ B we have aρb.
An equivalence relation ρ on H is called regular (strongly regular) if for

all a, a′, b, b′ of H. The following implication holds:

aρb, a′ρb′ =⇒ (a ◦ a′)ρ̄(b ◦ b′)

(aρb, a′ρb′ =⇒ (a ◦ a′)¯̄ρ(b ◦ b′)).

Theorem 2.1. ([17]) Let (M,+, .) be a hypermodule over a hyperring R, let
δ be an equivalence relation on M and let ρ be an strongly regular relation
on R. The following statements hold:
(1) if δ is strongly regular on M and ∀x, y ∈M and ∀r ∈ R the hyperopera-
tions:
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δ(x)⊕ δ(y) = {δ(z) | z ∈ x+ y} and ρ(r)� δ(x) = {δ(z) | z ∈ r.x},

is define a module structure on M/δ over R/ρ;
(2) if (M/δ,⊕,�) is a module over R/ρ, then δ is strongly regular on M .
The relation δ∗ is the smallest strongly regular relation on the hypermod-
ule (M,+, .) such that (M/δ,⊕,�) the quotient structure (M/δ,⊕,�) is a
module over the ring R/ρ, and it is called the fundamental relation over
hypermodule M .

Hence, δ∗ is the smallest equivalence relation on M , such that M/δ∗ is
a module over the ring R/ρ∗, where ρ∗ is fundamental relation on R. If we
denote by U the set of all expressions consisting of finite hyperoperations
either on R and M or the external hyperoperation applied on finite sets of
elements of R and M , then we have

xδy ⇐⇒ ∃u ∈ U , such that {x, y} ⊂ u.

δ∗ is the transitive closure of δ. In the fundamental module (M/δ∗,⊕,�)
over R/ρ∗, the hyperoperations ⊕ and � are defined as follows:
∀x, y ∈ M and ∀z ∈ δ∗(x) ⊕ δ∗(y), we have δ∗(x) � δ∗(y) = δ∗(z); ∀r ∈
R, ∀x ∈ M and ∀z ∈ δ∗(r).δ∗(x), we have ρ∗(r) � δ∗(x) = δ∗(z), (for more
details about the fundamental relation on hyperstructures see [8] and [9]).

Definition 2.5. A multivalued system (R,+, .) is a Γ-hyperring if the fol-
lowing hold:
(i) (R,+) and Γ are canonical hypergroups;
(ii) (R, .) is semihypergroup.
(iii) (.) is distributive with respect to (+), i.e., for all x, y, z in R we have
x.(y + z) = (x.y) + (x.z) and (x+ y).z = (x.z) + (y + z).

Definition 2.6. Let (R,], ◦) be a Γ-hyperring and (Γ, ∗) be a canonical hy-
pergroup. We say that (M,+, .) is a left Γ − hypermodule over R, if (M,+)
be a canonical hypergroup and there exists a mapping

· : R× Γ×M −→ P ?(M)
(r, γ,m) 7−→ r · γ ·m

such that for every r, s ∈ R and α, β ∈ Γ and a, b ∈ M , the following
conditions are satisfied:
(GHM1) (i) (r ] s).α.a = r.α.a+ s.α.a;

(ii) r.(α ∗ β).a = r.α.a+ r.β.a;
(iii) r.α.(a+ b) = r.α.a+ r.α.b;

(GHM2) (r ◦ α ◦ s).β.a = r.α.(s.β.a).
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A right Γ-hypermodule of R is defined in a similar way. In this case we say
that M is a RΓ-hypermodule.

3 Fuzzy Gamma Subhypermodules

In the sequel R is a Γ-hyperring and all gamma hypermodules are con-
sidered over R. In [16] M.K. Sen, R. Ameri, G. Chowdhury introduced the
notion of fuzzy semihypergroups, in [10] V. Leoreanu-Fotea, B. Davvaz study
fuzzy hyperrings and V. Leoreanu-Fotea in [11] studied fuzzy hypermodules.
Now in this section we follows these and introduce and studied fuzzy gamma
hypermodules.

Let S and Γ be two nonempty sets. F ∗(S) denotes the set H of all
nonzero fuzzy subset of S. A Fuzzy Γ − hyperoperation on S is a map ◦ :
S × Γ × S −→ F ∗(S), which associates a nonzero subset a ◦ γ ◦ b for all
a, b ∈ S and γ ∈ Γ. (S, ◦) is called a Fuzzy Γ − hypergroupoid .

A fuzzy Γ-hypergroupoid (S, ◦) is called a fuzzy Γ-hypersemigroup if for
all a, b, c ∈ S and α, β ∈ Γ, we have a ◦ α ◦ (b ◦ β ◦ c) = (a ◦ α ◦ b) ◦ β ◦ c,
where for any µ ∈ F ∗(S), we have (a ◦ γ ◦ µ)(r) =

∨
t∈S((a ◦ γ ◦ t)(r) ∧ µ(t))

and (µ ◦ γ ◦ a)(r) =
∨
t∈S(µ(t) ∧ (t ◦ γ ◦ a)(r)) for all r ∈ S, γ ∈ Γ.

If A is a nonempty subset of S and x ∈ S, then for all r ∈ S, γ ∈ Γ we
have:

(x ◦ γ ◦ A)(r) =
∨
a∈A

(x ◦ γ ◦ a)(r),

and

(A ◦ γ ◦ x)(r) =
∨
a∈A

(a ◦ γ ◦ x)(r).

A fuzzy Γ-hypersemigroup (S, ◦) is called a fuzzy Γ-hypergroup if for all
a ∈ S and γ ∈ Γ, we have a ◦ γ ◦S = S ◦ γ ◦ a = χS. We say that an element
e of (S, ◦) is identity (resp. scalar identity) if for all s, r ∈ S, γ ∈ Γ, we have

(e ◦ γ ◦ r)(r) > 0, and (r ◦ γ ◦ e)(r) > 0,

((e ◦ γ ◦ r)(s) > 0, and (r ◦ γ ◦ e)(s) > 0 itfollowsr = s).

Let (S, ◦) be a fuzzy hypergroup, endowed with at least an identity. An
element a′ ∈ S is called an inverse of a ∈ S if there is an identity e ∈ S, such
that
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(a ◦ a′)(e) > 0, and (a′ ◦ a)(e) > 0.

Definition 3.1. A fuzzy hypergroup S is regular if it has at least one identity
and each element has at least one inverse.
A regular fuzzy hypergroup (S, ◦) is called reversible if for any x, y, a ∈ S, it
satisfies the following conditions:
(1) if (a◦x)(y) > 0, then there exists an inverse a1 of a, such that (a1◦y)(x) >
0;
(2) if (x◦a)(y) > 0, then there exists an inverse a2 of a, such that (y◦a2)(x) >
0.

Definition 3.2. We say that a fuzzy hypergroup S is a fuzzy canonical if
(1) it is commutative;
(2) it has an scalar identity;
(3) every element has a unique inverse;
(4) it is reversible.

Let µ and ν be two nonzero fuzzy subsets of a fuzzy Γ-hypergroupoid (S, ◦).
We define

(µ ◦ γ ◦ ν)(t) =
∨
p,q∈S

(µ(p) ∧ (p ◦ γ ◦ q)(t) ∧ ν(q), ∀t ∈ S, γ ∈ Γ.

In the following we introduce and study fuzzy gamma hyperrings .

Definition 3.3. Let R,Γ be two nonempty sets and �,� be two fuzzy hy-
peroperations on R and ⊗ be a fuzzy hyperoperation on Γ. Let (R,�) and
(Γ,⊗) be two canonical fuzzy hypergroups. R is called a fuzzy Γ-hyperring if
there exists the mapping:

� : R× Γ×R −→ F ∗(R)
(r, γ, s) 7−→ r � γ � s,

such that for all r, s, t ∈ R,α, β ∈ Γ, the following conditions are satisfied:
(i) r � α� (s� t) = (r � α� s)� (r � α� t);
(ii) r � (α⊗ β)� s = (r � α� s)� (r � β � s);
(iii) (r � s)� α� t = (r � α� t)� (s� α� t);
(iv) r � α� (s� β � t) = (r � α� s)� β � t.

Definition 3.4. Let (Γ,⊗) be a fuzzy canonical hypergroups. Let (R,�,�)
be a fuzzy Γ-hyperring. A nonempty set M , endowed with two fuzzy Γ-
hyperoperation ⊕,� is called a left fuzzy Γ-hypermodule over (R,�.�) if
the following conditions hold:
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(1) (M,⊕) is a canonical fuzzy Γ-hypergroup;
(2) � : R × Γ ×M −→ F ∗(M) is such that for all a, b ∈ M, r, s ∈ R and
α, β ∈ Γ we have

(i) r � α� (a⊕ b) = (r � α� a)⊕ (r � α� b);
(ii) (r � s)� α� a = (r � α� a)⊕ (s� α� a);
(iii) r � (α⊗ β)� a = (r � α� a)⊕ (r � β � a);
(iv) r � α� (s� β � a) = (r · α · s)� β � a.

If both (R,�), (Γ,⊗) and (M,⊕) have scaler identities, denoted by 0R, 0Γ and
0M , then the fuzzy Γ-hypermodule (M,⊕,�) also satisfies the condition:

0R � γ � a = χ0M
,

r � 0Γ � a = χ0Γ
,

r � γ � 0M = χ0M
,

for all r ∈ R, γ ∈ Γ, a ∈ A. Moreover, if (R,�) has an identity, say
1, then the fuzzy Γ-hypermodule (M,⊕,�) is called unitary if it satisfies the
condition:
for all a of M , we have 1� γ � a = χa.

Clearly, any fuzzy Γ-hyperring is a fuzzy Γ-hypermodule over itself.
Proposition 3.5. Let (M,+, .) be a module over a ring (R,], ◦) and Γ = R.
We define the following fuzzy Γ-hyperoperations:
for a, b of M , a⊕ b = χ{a,b},
for all a of M and r ∈ R, γ ∈ Γ, r � γ � a = χ{r.γ.a},
for all r, s of R, r � s = χ{r,s} and r � γ � s = χ{r◦γ◦s}.
Then (M,⊕,�) is a fuzzy Γ-hypermodule over the fuzzy Γ-hyperring (R,�,�).
Note that the last theorem is satisfied, when M is a Γ-module over a Γ-ring
R, such that Γ 6= R.
Proposition 3.6. Let (R, ◦) and (S, •) be two fuzzy Γ-hyperrings. Let
(M,⊕,�) be a left fuzzy Γ-hypermodule overR and a right fuzzy Γ-hypermodule
over S. Then

A = {
(
r m
0 s

)
| r ∈ R, s ∈ S,m ∈M} is a fuzzy Γ-hyperring and fuzzy

Γ-hypermodule over A, under the mappings

? : A× Γ× A −→ F ∗(A)

(

(
r m
0 s

)
, γ,

(
r1 m1

0 s1

)
) 7−→(

r ◦ γ ◦ r1 r � γ �m1 ⊕m� γ � s1

0 s • γ • s1

)
.
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such that(
r ◦ γ ◦ r1 r � γ �m1 ⊕m� γ � s1

0 s • γ • s1

)(
r2 m2

0 s2

)
=(

(r ◦ γ ◦ r1)(r2) (r � γ �m1 ⊕m� γ � s1)(m2)
0 (s • γ • s1)(s2)

)
={

1, r2,m2, s2 6= 0
0, otherwise.

.
Proof. Straightforward.2
Example 3.7. Let R be a Γ-ring and (M,+, .) a Γ-module. Consider the
mapping α : M −→ R. Then M is an fuzzy Γ-hypermodule over M ,
under the following operations:

m⊕n = m+n. and ◦ : M×Γ×M −→ F ∗(M)(m, γ, n) 7−→ m◦γ◦n = χα(m).γ.n,

for all m,n ∈M,γ ∈ Γ.
Proposition 3.8. Let (M,+, .) be a Γ-module over Γ-ring R and ν be
a nonzero fuzzy Γ-semigroup on M . Let µ and ρ be two nonzero fuzzy
Γ-semigroups on R. For r ∈ R, a, b ∈ M and γ ∈ Γ, define a fuzzy Γ-
hyperoperation � on M by

(r � γ � a)(t) =

{
µ(r) ∧ ρ(γ) ∧ ν(a), if t = r.γ.a

0 , otherwise.

Also, a ⊕ b = χ{a+b}. It is easy to verify that (M,⊕,�) is a fuzzy Γ-
hypermodule.
Let S,Γ be nonempty sets, and S endowed with a fuzzy Γ-hyperoperation ◦.
For all a, b ∈ S, γ ∈ Γ and p ∈ [0, 1] consider the p-cuts:

(a ◦ γ ◦ b)p = {t ∈ S : (a ◦ γ ◦ b)(t) ≥ p}

of a ◦ γ ◦ b, where p ∈ [0, 1].
For all p ∈ [0, 1], we define the following crisp Γ-hyperoperation on S:

a ◦p γ ◦p b = (a ◦ γ ◦ b)p.

Example 3.9. Let R = Γ = Z and M = Zn for n ∈ N. Define following
fuzzy Γ-hyperoperations for all a, b ∈M,γ ∈ Γ:

a⊕ b = χ{a,b},∀a ∈M,∀r ∈ R, γ ∈ Γ,
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r � γ � a = χ{rγa}, ∀r, s ∈ R, ∀γ ∈ Γ,

r.γ.s = χ{rγs} and r + s = χ{r,s}, for all α, β ∈ Γ,

and

α� β = χ{α,β},

such that x is denote a typical element in Zn. Then it is easy to verify that
(M,⊕,�) is a fuzzy Γ-hypermodule over fuzzy Γ-hyperring R and canonical
fuzzy hypergroup (Γ,�).
Proposition 3.10. Let (M, ◦) be a fuzzy Γ-hyperoperation. For all a, b, c, u ∈
M and α, β ∈ Γ and for all p ∈ [0, 1] the following equivalence holds:

(a ◦ α ◦ (b ◦ β ◦ c)) ≥ p⇐⇒ u ∈ a ◦p α ◦p (b ◦p β ◦p c).
((a ◦ α ◦ b) ◦ β ◦ c) ≥ p⇐⇒ u ∈ (a ◦p α ◦p b) ◦p β ◦p c.)

Proof. Clearly,

(a ◦ α ◦ (b ◦ β ◦ c))(u) =
∨
t∈M

(a ◦ α ◦ t)(u) ∧ (b ◦ β ◦ c)(t) ≥ p,

if and only if there exists t0 ∈ M , such that (a ◦ α ◦ t0)(u) ≥ p and
(b◦β ◦c)(t0) ≥ p, which means that u ∈ a◦pα◦p t0, t0 ∈ b◦pβ ◦p c. Therefore,
u ∈ a ◦p α ◦p (b ◦p β ◦p c).2
Proposition 3.11. Let (M,⊕,�) be a fuzzy Γ-hypermodule over a fuzzy
Γ-hyperring (R,�,�). Then for all a ∈ M, r ∈ R, γ ∈ Γ, conditions are
equivalence:
(1) a⊕M = χM ⇐⇒ ∀p ∈ [0, 1], a⊕P M = M ;
(2) r � γ �M = χM ⇐⇒ ∀p ∈ [0, 1], r �p γ �pM = M.
Proof. We only proof (2). Let r � γ �M = χM . Then for all t ∈ M and
p ∈ [0, 1], we have

∨
u∈M(r� γ � u)(t) = 1 ≥ p, whence there exists m ∈M ,

such that (r � γ � m)(t) ≥ p, which means that t ∈ r �p γ �p m. Hence,
∀p ∈ [0, 1], r�pγ�pM = M . Conversely, for p = 1 we have r�1γ�1M = M ,
whence for all t ∈ M , there exists u ∈ M , such that t ∈ r �1 γ �1 u, which
means that (r � γ � u)(t) = 1. In other words, r � γ �M = χM .2
Proposition 3.12. The structure (M,⊕,�) is a fuzzy Γ-hypermodule over
a fuzzy Γ-hyperring (R,�,�) if and only if ∀p ∈ [0, 1], (M,⊕p,�p) is a
Γ-hypermodule over the hyperring (R,�p,�p).
Proof. It is straightforward.2
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Consider (M,⊕,�) as a fuzzy Γ-hypermodule over a fuzzy Γ-hyperring (R,�,�)
and canonical fuzzy hypergroup (Γ,⊗). Now we follow [8], and define a new
types of Γ-hyperoperations on M,R,Γ, as follows:

∀a, b ∈M, a+ b = {x ∈M |(a⊕ b)(x) > 0}, ∀r, s ∈ R,

r ] s = {t ∈ R | (r � s)(t) > 0}, forallα, β ∈ Γ,

α ∗ β = {γ ∈ Γ | (α ∗ β)(γ) > 0}, ∀a ∈M, ∀r ∈ R, ∀γ ∈ Γ,

r.γ.a = {b ∈M | (r � γ � a)(b) > 0}, ∀r, s ∈ R, ∀γ ∈ Γ,

r ◦ γ ◦ s = {t ∈ R | (r � γ � s)(t) > 0}.

Proposition 3.13. If (M,⊕,�) is a fuzzy Γ-hypermodule over a fuzzy Γ-
hyperring (R,�,�) and canonical fuzzy hypergroup (Γ,⊗), then (M,+, .)
is a Γ-hypermodule over the Γ-hyperring (R,], ◦) and canonical hypergroup
(Γ, ?).

Proof. By [10], it is obtained that (R,]), (Γ, ∗) and (M,+) are canonical
hypergroups. It is sufficient to verify (M, .) is a Γ-hypermodule. We consider
the following cases:

Case: (i)

(r ] s).γ.a = (r.γ.a) + (s.γ.a), for all r, s ∈ R, γ ∈ Γ, a ∈M.

Suppose that x ∈ (r ] s).γ.a =
⋃
y∈r]s y � γ � a. Then (y � γ � a)(x) > 0

and (r � s)(y) > 0, for some y ∈ r ] s, and hence ∨p∈M ((r � s)(p) ∧
(p � γ � a)(x) > 0. Thus ((r � s) � γ � a)(x) > 0, which implies that
((r � γ � a) ⊕ (s � γ � a))(x) > 0. Thus there exist z, t ∈ M , such that
(z⊕t)(x) > 0, (r�γ�a)(z) > 0 and (s�γ�a)(t) > 0 i.e., x ∈ z+t, z ∈ r.γ.a
and t ∈ s.γ.a and hence x ∈ (r.γ.a) + (s.γ.a). Therefore, (r ] s).γ.a ⊆
(r.γ.a) + (s.γ.a). Similarly, we can show that (r.γ.a) + (s.γ.a)t ⊆ (r ] s).γ.a.
Therefore, (r ] s).γ.a = (r.γ.a) + (s.γ.a). The other conditions are verified
similarly and omitted. 2
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On the other hands, if (M,+, .) is a Γ-hypermodule over a Γ-hyperring
(R,], ◦), then we define the following fuzzy Γ-hyperoperations:

a⊕ b = χ{a+b},∀a, b ∈M, r � s

= χ{r]s},∀r, s ∈ R, γ ∈ Γ, r � γ � a
= χ{r.γ.a},∀a ∈M, r ∈ R, r � γ � s
= χ{r◦γ◦s},∀r, s ∈ R, ∀γ ∈ Γ, β

= χ{α∗β}∀α, β ∈ Γ, α⊗ β.

The next result is immediately follows from above discussion and [14].
Proposition 3.14. For every hypergroup (M,+), there is an associated
fuzzy hypergroup.
Proposition 3.15. Let (M,+, .) be a Γ-hypermodule over a Γ-hyperring.
Let (R,], ◦) be a canonical hypergroup (Γ, ?). Then (M,⊕,�) is a fuzzy Γ-
hypermodule over a fuzzy Γ-hyperring (R,�,�) and canonical fuzzy hyper-
group (Γ,⊗), where the fuzzy hyperoperations ⊕,�,�,� and ⊗ are defined
above.
Proof. By Proposition 3.14, (M,⊕) is a commutative fuzzy Γ-hypergroup.
We show that (M,⊕) is canonical. Since (M,+) is canonical Γ-hypergroup,
then there exists e ∈ M, ∀a ∈ M, a = e + a = a + e =⇒ (e ⊕ a)(a) =
χ{e+a}(a) > 0, (a ⊕ e)(a) = χ{e+a}(a) > 0 and because for all a ∈ M there
exists b ∈M , such that e ∈ a+ b ∩ b+ a, b) is the inverse of a with respect
to +). Then

(a⊕ b)(e) = χ{a+b}(e) = χ{b+a}(e) = (b⊕ a)(e) > 0.

Let (a⊕ x)(y) = χ{a+x}(y) > 0 =⇒ y ∈ a+ x =⇒ ∃ b ( the inverse of
a such that x ∈ b+ y =⇒ (b⊕ y)(x) = χ{b+y}(x) > 0. The other cases is can
be proved in a similar way and omitted. Then (M,⊕) is a canonical fuzzy
Γ-hypergroup. Now, we show that (M,⊕,�) is a fuzzy Γ-hypermodule. We
investigate only the condition (iv) of Definition 3.4.
First , we show that that for all r, s ∈ R,α, β ∈ Γ, a ∈M , we have

(r � α� (s� β � a)) = (r � α� s)� β � a, ∀t ∈M.

Then

(r � α� (s� β � a))(t) =
∨
p∈M

,

[(r � α� p)(t) ∧ (s� β � a)(p)] =
∨
p∈M

[χr.α.p(t) ∧ χs.βa(p)] =
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{
1, t ∈ r.α.(s.β.a)
0, otherwise

=

{
1, t ∈ (r.α.s).β.a
0, otherwise

= ((r � α� s)� β � a)(t), for all t ∈M .
It is easy to verify that the other conditions of Definition 3.4 can be

obtained in a similar way.2
Proposition 3.16. Let M an RΓ-module and µ be a fuzzy Γ-module of M .
Then the set M will be a fuzzy Γ-hypermodule.
Proof. Let (Γ, ∗) be an abelian group and (M,+, .) be a Γ-module over
Γ-ring (R,], ◦). We define fuzzy Γ-hyperoperations on M as follows:

(a⊕ b)(t) = χ{a+b}, (r � γ � a)(t) = µ(r.γ.a− t),

(α⊗ β)(γ) = χ{α∗β}(γ) = χ{r]s}r � s)(z)(r � α� s)(z) = χ{r◦α◦s}(z),

∀a, b, t ∈M, r, s, z ∈ R,α, β, γ ∈ Γ.
It is easy to verify that (M,⊕) is a canonical fuzzy hypergroup. Now, we

show (M,⊕,�) is a fuzzy Γ-hypermodule with µ(0) = 1.
(i)

((r � s)� γ � a)(t) = ∨p∈R(r � s)(p) ∧ (p� γ � a)(t)

= ∨p∈Rχr]s(p) ∧ µ(p.γ.a− t)
= µ((r ] s).γ.a− t) if p = r ] s.

Also, ((r � γ � a)⊕ (s� γ � a))(t) =

= ∨p,q∈M(r � γ � a)(p) ∧ (p⊕ q)(t) ∧ (s� γ � a)(q)

= ∨p,q∈Mµ(r.γ.a− p) ∧ χ{p+q}(t) ∧ µ(s.γ.a− q)
= ∨p,q∈M,t=p+qµ(r.γ.a− p) ∧ µ(s.γ.a− q)
≤ µ(r.γ.a− p+ s.γ.a− q)
= µ((r ] s).γ.a− (p+ q)),

On the other hands, if q = s.γ.a, p = t− s.γ.a., then

∨p,q∈M,t=p+qµ(r.γ.a− p) ∧ µ(r.γ.a− q) ≥ ∨p∈Mµ(r.γ.a− p)
≥ µ(r.γ.a− t+ s.γ.a)

= µ((r ] s).γ.q − t).

(ii)

(r � (α⊗ β)� a)(t) = ∨γ∈Γ[(r � γ � a)(t) ∧ (α⊗ β)(γ)]

= ∨µ(r.γ.a− t) ∧ χ{α∗β}(γ)

= µ(r.(α ∗ β).a− t).
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Also, ((r � α� a)⊕ (r � β � a))(t) =

= ∨p,q∈M [(r � α� a)(p) ∧ (p⊕ q)(t) ∧ (r � β � a)(q)

= ∨p,q∈M [µ(r.α.a− p) ∧ χ{p+q}(t) ∧ µ(r.β.a− q)]
= ∨t=p+q µ(r.α.a− p) ∧ µ(r.βa− q)
≤ µ(r.αa− p+ r.βa− q)
= µ(r.(α ∗ β).a− (p+ q)).

On the other hands, suppose that q = r.β.a, then for p = t − r.β.a we
have

∨t=p+qµ(r.α.a− p) ∧ µ(r.βa− q) = ∨p∈Mµ(r.αa− p)
≥ µ(r.αa− (t− rβa))

= µ(r.(α ∗ β).a− (p+ q)),

(iii)

r � γ � (a⊕ b) = ∨p∈M(r � γ � p)(t) ∧ (a⊕ b)(p)
= ∨p∈Mµ(r.γ.p− t) ∧ χ{a+b}(p)

= µ(r.γ.(a+ b)− t) and ((r � γ � a)⊕ (r � γ � b))(t)
= ∨p,q∈M(r � γ � a)(p) ∧ (p⊕ q)(t) ∧ (r � γ � b)(q)
= ∨p,q∈Mµ(r.γ.a− p) ∧ χ{p+q}(t) ∧ µ(r.γ.b− q)
= ∨p,q∈M,t=p+qµ(r.γ.a− p) ∧ µ(r.γ.b− q)
≤ µ(r.γ.a− p+ r.γ.b− q) = µ(r.γ.(a+ b)− t).

On the other hands, for q = r.γ.b, p = t− r.γ.b. we have

∨p,q∈M,t=p+qµ(r.γ.a− p) ∧ µ(r.γ.b− q)
≥ ∨p∈Mµ(r.γ.a− p)
≥ µ(r.γ(a+ b)− t).

(iv)

(r � α� (s� β � a))(t) = ∨p∈M(r � α� p)(t) ∧ (s� β � a)(p)

= ∨p∈Mµ((r.α.p)− t) ∧ µ((s.β.a)− p)
= µ(r.α.(s.β.a)− t), and ((r � α� s)� β � a)(t)

= ∨p∈R(r � α� s)(p) ∧ (p� β � a)(t)

= ∨p∈Rχ{r◦α◦s}(p) ∧ µ(p.β.a− t)
= µ(r ◦ α ◦ s · (β · a)− t) if p = r ◦ α ◦ s.
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2

Remark. Let H = 〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra. Denote by
F ∗(H) the set of the nonzero fuzzy subsets of H. Then H can be organized
as a universal algebra under the following operations:

βi(µ1, ..., µni
)(t) =

∨
(x1,...,xni )∈Hni

[(µ1(x1)
∧

...µni
(xni

)
∧

βi(x1, ..., xni
)(t))],

for every i ∈ I, µ1, ..., µni
∈ F ∗ (H) and t ∈ H. We denote this algebra

by F ∗(H).
Proposition 3.17. If (M,⊕,♦) is a fuzzy Γ-hypermodule, then (F ∗(M), ∗,©)
is a Γ-module.
Proof. We define operations ∗,♦ on F ∗(M) by µ∗ν = µ⊕ν, and r♦γ♦µ =
r�γ�µ for all µ, ν ∈ F ∗(M), r ∈ R, γ ∈ Γ. It is easy to see that (F ∗(M), ∗)
is a group. Clearly, (F ∗(M),⊕) is a semigroup.

(i) Identity: we must prove that there exists a ν ∈ F ∗(M) such that
,µ ∗ ν = µ. We have

(µ ∗ ν)(t) = (µ⊕ ν)(t)

= ∨p,q∈Mµ(p) ∧ (p⊕ q)(t) ∧ ν(q)

= ∨p∈Mµ(p) ∧ (p⊕ e)(t)
= µ(t)⊕ if

q = e; ν(q) = 1, p = t.

Thus it is enough we choose ν = χe.
(ii) Inverse: it must prove that for µ ∈ F ∗(M), there exists a ν ∈ F ∗(M),
such that µ ∗ ν = χe. It is sufficient to consider ν = −µ, then we have

(µ ∗ ν)(t) = (µ⊕ ν)(t)

= ∨p,q∈Mµ(p) ∧ (p⊕ q)(t) ∧ (−µ)(q)

= ∨p,q∈Mµ(p) ∧ (p⊕ q)(t) ∧ µ(−q)
≤ µ(p− (−q)) ∧ (p⊕ q)(t) ≤ (p⊕ q)(t)
= χe(t) where, p is inverse of q.

On the other hands, we have

∨p,q∈Mµ(p) ∧ (p⊕ q)(t) ∧ µ(−q) ≥ ∨p∈Mµ(p) ∧ (p⊕−p)(t)
≥ (p⊕−p)(t)
= χe(t).
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Other cases are easy and omitted. 2

Definition 3.18. Let (M,⊕,�) be a fuzzy Γ-hypermodule over a fuzzy
Γ-hyperring (R,�,�). A nonempty subset N of M is called a subfuzzy Γ-
hypermodule if for all x, y ∈ N, r ∈ R and γ ∈ Γ, the following conditions
hold:
(1) (x⊕ y)(t) > 0 ⇒ t ∈ N ;
(2) x⊕N = χN ;
(3) (r � γ � x)(t) > 0 ⇒ t ∈ N .
Proposition 3.19. (i) If (N,⊕,�) is a subfuzzy Γ-hypermodule of (M,⊕,�)
over a fuzzy Γ-hyperring (R,�,�), then the associated Γ-hypermodule (N,+, .)
is a Γ-hypersubmodule of (M,+, .) over (R,], ◦);
(ii) (N,+, .) is a Γ-hypersubmodule of (M,+, .) over (R,], ◦) if and only if
(N,⊕,�) is a subfuzzy Γ-hypermodule of (M,⊕,�) over (R,�,�).

4 Fundamental Relation of Fuzzy

Γ-hypermodule

In [14], fuzzy regular relations are introduced in the context of fuzzy hyper-
semigroups. In this section we extend this notion to fuzzy Γ-hypermodules.
Let ρ be an equivalence relation on a fuzzy Γ-hypersemigroup (M, ◦) and
µ, ν be two fuzzy subsets on M . We say that µρν if the following conditions
hold:
(1) if µ(a) > 0, then there exists b ∈M , such that ν(b) > 0 and aρb and;
(2) if ν(x) > 0, then there exists y ∈M , such that µ(y) > 0 and xρy.
An equivalence relation ρ on a fuzzy Γ-hypersemigroup (M, ◦) is called a
fuzzy regular relation (or fuzzy hypercongruence) on (M, ◦) if, for all a, b, c ∈
M,γ ∈ Γ, the following implication holds:

aρb =⇒ (a ◦ γ ◦ c) ρ (b ◦ γ ◦ c) and (c ◦ γ ◦ a) ρ (c ◦ γ ◦ b).

This condition is equivalent to

aρa′, bρb′ ⇒ (a ◦ γ ◦ b)ρ(a′ ◦ γ ◦ b′),∀a, b, a′, b′ ∈M,γ ∈ Γ.

Definition 4.1. An equivalence relation ρ on a fuzzy Γ-hypermodule (M,⊕,�)
over a fuzzy Γ-hyperring (R,�,�) and a canonical fuzzy hypergroup (Γ,⊗)
is called a fuzzy regular relation on (M,⊕,�) if it is a fuzzy regular relation
on (M,⊕) and for all x, y ∈M, r ∈ R, γ ∈ Γ, the following implication holds:

xρy =⇒ (r � γ � x)ρ(r � γ � y).
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Let (M,⊕,�) be a fuzzy Γ-hypermodule over a fuzzy Γ-hyperring (R,�,�)
and a canonical fuzzy hypergroup (Γ,⊗). Suppose (M,+, .) is the associated
Γ-hypermodule over the Γ-hyperring (R,], ◦) and the canonical hypergroup
(Γ, ∗). Then we have the next result.
Theorem 4.2. An equivalence relation ρ is a fuzzy regular relation on
(M,⊕,�) over a fuzzy Γ-hyperring (R,�,�) and canonical fuzzy hypergroup
(Γ,⊗) if and only if ρ is a regular relation on (M,+, .) over the Γ-hyperring
(R,], ◦) and canonical hypergroup (Γ, ∗).
Proof. Letting xρy and x′ρy′, where x, x′, y, y′ ∈M . We have (x⊕x′)ρ(y+y′)
if and only if the following conditions hold:

(x⊕ x′)(u) > 0,⇒ ∃v ∈M : (y ⊕ y′)(v) > 0 and uρv,

and

(y ⊕ y′)(t) > 0 ⇒ ∃w ∈M : (x⊕ x′)(w) > 0 and atρw.

These are equivalent to:
if u ∈ x+ x′, then there exists v ∈ y + y′, such that uρv;
if t ∈ y + y′, then there exists w ∈ x+ x′, such that tρw;
which mean that (x+ x′)ρ̄(y+ y′). Hence ρ is fuzzy regular on (M,⊕) if and
only if ρ is regular on (M,+).
On the other hands, if xρy and r ∈ R, γ ∈ Γ. We have (r�γ�x)ρ(r�γ�y)
if and only if the next conditions hold:
if (r � γ � x)(u) > 0, then there exists v ∈ M , such that (r � γ � y)(v) > 0
and uρv;
if (r � γ � y)(t) > 0, then there exists w ∈M , such that (r � γ � x)(w) > 0
and tρw.
These are equivalent to:
if u ∈ r.γ.x, then there exists v ∈ r.γ.y, such that uρv;
if t ∈ r.γ.y, then there exists w ∈ r.γ.x, such that tρw;
which means that (r.γ.x)ρ(r.γ.y).2
Definition 4.3. An equivalence relation ρ on a fuzzy Γ-hypersemigroup
(M, ◦) is called a fuzzy strongly regular relation on (M, ◦) if, for all a, a′, b, b′

of M and for all γ ∈ Γ, such that aρb and a′ρb′, the following condition holds:

(a ◦ γ ◦ c)(x) > 0, (b ◦ γ ◦ d)(y) > 0 ⇒ xρy,

for all x, y ∈M . Note that if ρ is a fuzzy strongly relation on a fuzzy Γ-
hypersemigroup (M, ◦), then it is a fuzzy regular on (M, ◦). An equivalence
relation ρ on a fuzzy Γ-hyperring (R,�,�) is called a fuzzy strongly regular
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relation on (R,�,�) if it is a fuzzy strongly regular relation both on (R,�)
and on (R,�).

Definition 4.4. Let ρ be a fuzzy strongly regular relation on a fuzzy Γ-
hyperring (R,�,�) and θ be a fuzzy strongly regular relation on a canon-
ical fuzzy Γ-hypergroup (Γ, ∗). An equivalence relation δ on a fuzzy Γ-
hypermodule (M,⊕,�) over a fuzzy Γ-hyperring (R,�,�) and canonical
fuzzy Γ-hypergroup (Γ,⊗) is called a fuzzy strongly regular relation on (M,⊕,�)
if it is a fuzzy strongly regular relation on (M,⊕) and if xδy, rρs and αθβ,
then the next condition holds:

for all u ∈ M , such that (r � α � x)(u) > 0 and for all v ∈ M , such that
(s� β � y)(v) > 0, we have uδv.

Theorem 4.5. An equivalence relation δ is a fuzzy strongly regular relation
on (M,⊕,�) if and only if δ is a strongly regular relation on (M,+, .).

Proof. Set xδy and x′δy′, where x, x′, y, y′ ∈M and set rρs, where r, s ∈ R
and αθβ, where α, β ∈ Γ. The relation δ is strongly regular on (M,⊕,�) if
and only if the following conditions are satisfied:

∀u ∈ M , such that (x ⊕ x′)(u) > 0 and ∀v ∈ M , such that (y ⊕ y′)(v) > 0,
we have uδv;

∀t ∈M , such that (r�α�x)(t) > 0 and ∀w ∈M , such that (s�β�y)(w) > 0,
we have tδw.

These conditions are equivalent to the following ones:

∀u ∈ M , such that u ∈ x + x′ and ∀v ∈ M , such that v ∈ y + y′, we have
uδv;

∀t ∈M , such that t ∈ r.α.x and ∀w ∈M , such that w ∈ s.β.y, we have tδw,

which mean that (x + x′)¯̄δ(y + y′) and (r.α.x)¯̄δ(s.β.y). Hence δ is strongly
regular on (M,⊕,�) if and only if δ is strongly regular on (M,+, .).

Now, Let δ be a fuzzy regular relation on a fuzzy Γ-hypermodule (M,⊕,�)
over a fuzzy Γ-hyperring (R,�,�) and canonical fuzzy Γ-hypergroup (Γ,⊗)
and ρ, θ be fuzzy strongly regular relations on the Γ-hyperring (R,�,�) and
canonical fuzzy Γ-hypergroup. (Γ,⊗).

We consider the following Γ-hyperoperations on the quotient set M/δ:

x̄ ? ȳ = {z̄ | z ∈ x+ y} = {z̄ | (x⊕ y)(z) > 0},

r̄ } ᾱ} x̄ = {z̄ | z ∈ r.α.x} = {z̄ | (r � α� x)(z) > 0}.

Theorem 4.6. Let (M,⊕,�) be a fuzzy Γ-hypermodule over a fuzzy Γ-
hyperring (R,�,�) and canonical fuzzy hypergroup (Γ, ∗). Let (M,+, .) be
the associated Γ-hypermodule over the corresponding Γ-hypergroup (R,], ◦)
and canonical hypergroup (Γ, ∗). Then we have:
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(i) The relation δ is a fuzzy regular relation on (M,⊕,�) if and only if
(M/δ, ?,}) is a Γ-hypermodule over (R,], ◦) and (Γ, ∗).
(ii) The relation δ is a fuzzy strongly regular relation on (M,⊕,�) over
(R,�,�) and (Γ,⊗) if and only if (M/δ, ?,}) is a Γ-module over R/ρ and
Γ/θ.
If we denote by U the set of all expressions consisting of finite fuzzy Γ-
hyperoperations either onR,Γ andM or the external fuzzy Γ-hyperoperations
applied on finite sets of elements of R,Γ and M , then we have
xεy ⇐⇒ ∃u ∈ U : {x, y} ⊂ u.
Now, we introduced fundamental relation on fuzzy Γ-hypemodules.
Definition 4.7. An equivalence relation ε∗ is called fundamental relation
on a fuzzy Γ-hypermodule (M,⊕,�) if ε∗ is fundamental relation on the
associated Γ-hypermodule (M,+, .).
Hence, ε∗ is fundamental relation on a fuzzy Γ-hypermodule (M,⊕,�) if and
only if ε∗ is the smallest fuzzy strongly equivalence relation on (M,⊕,�).
Denote by UF the set of all expressions consisting of finite fuzzy Γ-hyperoperations
either on R,Γ and M or the external fuzzy Γ-hyperoperation applied on finite
sets of elements of R,Γ and M . We obtain

xεy ⇐⇒ ∃ µf ∈ UF : {x, y} ⊆ µfγ ⇐⇒ µfγ(x) > 0 and µfγ(y) > 0.

The relation ε∗ is the transitive closure of ε.
Denote by

∑∗
⊕ any finite fuzzy hypersum and by

∏∗
� any finite fuzzy Γ-

hyperproduct of the fuzzy Γ-hypemodule (M,⊕,�). As above, we obtain
that

(
∑∗

i⊕
∏∗

j � aji)(p) > 0 if and only if p ∈
∑∗

i⊕
∏∗

j� aji.

Hence, {x, y} ⊂
∑∗

i⊕
∏∗

j � aji if and only if (
∑∗

i⊕
∏∗

j � aji)(x) > 0 and

(
∑∗

i⊕
∏∗

j � aji)(y) > 0. Therefore, we obtain xεy ⇐⇒ ∃µfγ ∈ UF such that
µfγ(x) > 0 and µfγ(y) > 0.
So, in order to obtain a fuzzy Γ-module starting from a fuzzy Γ-hypermodule,
we consider first the relation ε, then the transitive closure ε∗ of ε and finally
the quotient structure (M/ε∗, ?,}) of the fuzzy Γ-hypermodule (M,⊕,�).
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Abstract

In this paper, those polygroups which are partially ordered are in-
troduced and some properties and related results are given.
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1 Introduction and Preliminaries

The notion of a hyperstructure and hypergroup, as a generalization of
group, was introduced by F. Marty [5] in 1934 at the 8th congress of Scan-
dinavian Mathematicians. In this definition for nonempty set H, a function
· : H×H −→ P ∗(H), where P ∗(H) is the set of all nonempty subsets of H, is
called a hyperoperation on H, and the system (H, ·) is called a hypergroupoid.
If the hypergroupoid H satisfies a ·H = H · a = H, for all a ∈ H, it is called
a hypergroup. In a hypergroupoid H, for A,B ⊆ H and x ∈ H, A · B and
A · x are defined as

A ·B =
⋃

a∈A,b∈B

a · b, A · x = A · {x}.

An element e of hypergorupoid H is called an identity if for all a ∈ H,
a ∈ a ◦ e ∩ e ◦ a. An element a′ ∈ H is called an inverse for a ∈ H if there is
an identity e ∈ H such that e ∈ a ◦ a′ ∩ a′ ◦ a.

By a subhypergroupoid of hypergroupoid H we mean a subset K of H that
is closed with respect to the hyperoperation on H, and contains the unique
identity of H and the inverses of its elements, provided there exist.
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Hyperstructures have many applications to several sectors of both pure
and applied sciences. A short review of the theory of hyperstructures appear
in [2]. In [3] a wealth of applications can be found, too. There are appli-
cations to the following subjects: geometry, hypergraphs, binary relations,
lattices, fuzzy set and rough sets, automata, cryptography, combinatorics,
codes, artificial intelligence and probabilities. Polygroups are certain sub-
classes of hypergroups which studied in 1981 by Ioulidis in [4] and are used
to study colour algebra.

A polygroup is a system < G, ·,−1 , e > where e ∈ G, ‘−1’ is a unary oper-
ation on G and ‘·’ is a binary hyperoperation on H satisfying the following:

(1) (x · y) · z = x · (y · z),

(2) e · x = x · e = {x},

(3) x ∈ y · z ⇔ y ∈ x · z−1 ⇔ z ∈ y−1 · x.

In any polygroup the following hold:

e ∈ x · x−1 ∩ x−1 · x, e−1 = e, (x−1)−1 = x, (x · y)−1 = y−1 · x−1

where A−1 = {x−1 : x ∈ A}.
Some other concepts in polygroups is as follows.
A nonempty subset K of polygroup G is said to be a subpolygroup if and

only if e ∈ K and < K, ·,−1 , e > is itself a polygroup. Subpolygroup K of
polygroup G is said to be normal if and only if a−1Ka ⊆ K, for all a ∈ G.

From now on, in this paper, G =< G, ·,−1 , e > will denote a polygroup.

2 Ordered hyperstructures: Definition and

properties

This section is devoted to introduce the concept of a compatible order on a
polygroup. It is first introduced the concept of an ordered hypergroupoid and
some basic notions. Then, the concept of ordered polygroups is introduced
and some related results are given. For more details on compatible orders,
specially ordered algebraic structures we refer to [1].

Definition 2.1. Let (H, ·) be a hypergroupoid. By a compatible order on H
we mean an order “≤” with respect to which all translations x 7→ x · y and
x 7→ y · x are isotone, that is

x ≤ y implies b · x · a ≤ b · y · a, for all a, b ∈ H (2.1)
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where for A,B ⊆ H, A ≤ B means that for all a ∈ A there exists b ∈ B and
for all b ∈ B there exists a ∈ A such that a ≤ b.

Definition 2.2. By an ordered hypergroupoid we mean a hypergroupoid on
which is defined a compatible order.

When “·” is commutative or associative, H is said to be an ordered com-
mutative hypergroupoid or an ordered semihypergroup, respectively.

Example 2.3. (1) Consider R1 = [1,∞), the set of all real numbers greater
than 1, as a poset with the natural ordering, and define x · y to be the
set of all upper bounds of {x, y}. Thus (R1, ·,≤) is an ordered commu-
tative semihypergroup with 1 as the unique identity.

(2) Consider Z, the additive group of all integers which is a chain with the
natural ordering. For m,n ∈ Z, let m·n be the subgroup of Z generated
by {m,n}. Then (Z, ·,≤) is an ordered commutative semihypergroup
in which 0 is an identity.

(3) Let (G, ·, e,≤) be an ordered group, and let x ◦ y = 〈{x, y}〉, the sub-
group of G generated by {x, y}. Then, (G, ◦,≤) is an ordered commu-
tative hypergroup with an identity e.

(4) Let (L;∨,∧, 0) be a lattice with the least element 0. For a, b ∈ L, let
a ◦ b = F (a ∧ b), where F (x) is the principal filter generated by x ∈ L.
Then, (L; ◦) is an ordered hypergroup. Also, 0 is an identity, and if
x ∈ L be such that x∧ y = 0, for some y ∈ L, then y is an inverse of x.

Definition 2.4. Let H be an ordered hypergroupoid.

(1) For every x, y ∈ H with x ≤ y, the set [x, y] = {z ∈ H : x ≤ z ≤ y} is
said to be an interval in H.

(2) A subset A of H is said to be convex if for all a, b ∈ A, where a ≤ b,
we have [a, b] ⊆ A.

Definition 2.5. Let (E;≤) be an ordered set. A subset D of E is said to
be a down-set if y ≤ x and x ∈ D imply y ∈ D. Down-set D is said to be
principal if there exists x ∈ D such that D = {y ∈ E : y ≤ x} denoted by
x↓.

Definition 2.6. Let (G; ◦G,≤G) and (H; ◦H ,≤H) be ordered hypergroupoids
and f : G −→ H be an isotone map, that is f(x) ≤H f(y) whenever x ≤G y.
Then,
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(1) f is said to be an order homomorphism if f is a homomorphism of
hypergroupoids (G; , ◦G) and (H; ◦H),

(2) f is an order isomorphism if f is an isomorphism of hypergroupiods,
and f−1 is isotone,

(3) the kernel of f is defined by kerf = {(x, y) ∈ G×G : f(x) = f(y)}.

3 Ordered polygroups

In this section, we assume that G =< G, ·,−1 , e > is a polygroup unless
otherwise mentioned. Hereafter, in this paper, we use xy for x · y, and a for
{a}.

Definition 3.1. By an ordered polygroup we mean a polygroup which is also
a poset under the binary relation ≤ and in which (2.1) holds.

Definition 3.2. Let H be an ordered hypergroupoid with a unique identity
e. An element x ∈ H is called positive if e ≤ x. The set of all positive
elements of H is called the positive cone of H and is denoted by H+. x ∈ H
is called negative if x ≤ e. The set of all negative elements of H is called the
negative cone of H and is denoted by H−.

By an elementary consequence of translations we have

Proposition 3.3. In any ordered polygroup G, for each x, y ∈ G, we have

x ≤ y ⇔ x−1y ∩G+ 6= ∅ ⇔ yx−1 ∩G+ 6= ∅ ⇔ xy−1 ∩G− 6= ∅
⇔ y−1x ∩G− 6= ∅ ⇔ y− ≤ x−.

Theorem 3.4. A subset P of a polygroup G is the positive cone with respect
to some compatible order if and only if

(1) P ∩ P−1 = {e},

(2) P 2 = P ,

(3) for all x ∈ G, xPx−1 = P .

Moreover, if this order is total, P ∪ P−1 = G.

Proof. (⇒) Let ≤ be a compatible order on G and P = G+, the associ-
ated positive cone.

(1) If x ∈ P ∩P−1, on the one hand e ≤ x, and on the other hand x = y−1,
for some y ∈ P . Since, e ≤ y, then x = y−1 ≤ e proves that x = e.
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(2) Since e ∈ P , P = Pe ⊆ PP = P 2. Now, let x, y ∈ P . Then e ≤ x
and e ≤ y and so e ≤ xy which implies that xy ⊆ P . Hence, P 2 ⊆ P .

(3) Let y ∈ P , and x ∈ G. Then, e ≤ y implies that e ∈ xex−1 ≤ xyx−1

proves that xyx−1 ⊆ P . Since, this follows for all x ∈ G, replacing x by x−1,
we have x−1Px ⊆ P and so P ⊆ xPx−1, complete the proof.

(⇐) Let P be a subset of G that satisfies properties (1)-(3), and define
the relation ≤ on G by

x ≤ y ⇔ yx−1 ∩ P 6= ∅.

Since, e ∈ P , by (3), xx−1 = xex−1 ⊆ xPx−1 = P implies that x ≤ x and so
≤ is reflexive. Suppose that x ≤ y and y ≤ x, for x, y ∈ G. Then yx−1∩P 6= ∅
and xy−1 ∩ P 6= ∅ whence xy−1 ∩ P−1 ∩ P 6= ∅, implies that e ∈ xy−1, i.e.,
x = y proving ≤ is antisymmetric. Now, assume that x ≤ y and y ≤ z, for
x, y, z ∈ G. Then yx−1 ∩ P 6= ∅ and zy−1 ∩ P 6= ∅. Let u ∈ yx−1 ∩ P and
v ∈ zy−1 ∩ P . Then uv ⊆ P 2 = P . On the other hand, ∈ zy−1 and v ∈ yx−1

imply y−1 ∈ z−1u and y ∈ vx whence e ∈ y−1y ⊆ z−1(uv)x. Then, there is
t ∈ uv and s ∈ tx such that e ∈ z−1s. This implies that z = s ∈ tx. Hence,
t ∈ zx−1, i.e., uv ∩ zx−1 6= ∅ whence zx−1 ∩ P 6= ∅ proving ≤ is transitive.
Thus, ≤ is an order. For compatibility, we first prove that Px = xP , for all
x ∈ G. Let z ∈ G. Then

z ∈ Px ⇒ z ∈ yx for some y ∈ P ⇒ x−1z ⊆ x−1yx = x−1y(x−1)−1 ⊆ P

⇒ z ∈ xP,

i.e., Px ⊆ xP . By a similar way, we can prove that xP ⊆ Px. Hence,
xP = Px, for all x ∈ G. Now, assume that x ≤ y and a, b ∈ G. Since, ≤ is
reflexive, by (3)

ayb(axb)−1 = aybb−1x−1a−1 ⊆ ayPx−1a−1 ⊆ aPyx−1a−1 ⊆ aP 2a−1

= aPa−1 = P

which shows that axb ≤ ayb. By the definition of ≤ we get x ∈ P if and only
if e ≤ x and so P = G+.

If G is totally ordered, then x ≤ e or e ≤ x, for all x ∈ G. So, e ∈ xx−1 ≤
ex−1 = x−1 and so x ∈ P or x ∈ P−1, observe that x = (x−1)−1. Thus,
G = P ∪ P−1. 2

Proposition 3.5. If G is an ordered polygroup with |G| > 1, then G can not
have a top element or a bottom element.

Proof. Let G = {e, a}. If e < a or a < e, then a = a−1 < e
or e < a−1 = a, respectively, which is a contradiction. Now, assume that
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|G| > 2, t be the top element of G and e 6= a ∈ G. Then a ≤ t and so ta ≤ t
whence t ∈ te ⊆ taa−1 ≤ ta−1. Hence, t ∈ ta−1. Likewise, we conclude that
t ∈ a−1t. By the uniqueness, we get a = e which is a contradiction.

The proof of the other case is concluded as well. 2

Definition 3.6. An element x of G is said to be of order n, n ∈ N, if e ∈ xn

where xn = (· · · ((
n times︷ ︸︸ ︷

x ◦ x) ◦ x) ◦ · · · ) ◦ x). If such a natural number does not
exist, we say that x is of infinite order.

Theorem 3.7. Suppose that G is an ordered polygroup in which G+ 6= {e}.
Then every element of G+ \ {e} is of infinite order.

Proof. Suppose that x ∈ G+ \ {e}. We first observe that if x = x−1, x
can not belong to G+. Then, e < x implies that e < x = ex < x2. Moreover,
this implies that e 6∈ x2. Similarly, we conclude that e < x3 and e 6∈ x3.
Continuing this process we get e < xn and e 6∈ xn, for all n ∈ N, proving x
is not of finite order. 2

Corollary 3.8. Any ordered polygroup in which every nontrivial element is
of finite order is an antichain.

Proof. Let G be an ordered polygroup satisfying the hypothesis. By
Theorem 3.7, we know that G+ = {e}. Now, if a, b ∈ G be such that a ≤ b,
then e ∈ a−1a ≤ a−1b and so e ≤ u, for some u ∈ a−1b. This implies that
u ∈ G+ and so u = e. Thus, e ∈ a−1b whence a = b. This means that G is
an antichain. 2

Corollary 3.9. Every finite ordered polygroup is an antichain.

Example 3.10. Let G = {e, a}. Then G is a polygroup where the hyperop-
eration is given by the following table:

◦ e a
e e a
a a {e, a}

in which a−1 = a i.e., a is an idempotent. Now, if a is a positive element,
so G+ = {e, a} and hence (G+)−1 ∩ G+ 6= {e}. This contradicts Theorem
3.4. This example shows that the converse of Theorem 3.7 does not hold in
general.

Definition 3.11. If G is an ordered polygroup, by a convex subgroup of G
we shall mean a subgroup which is also a convex subset, under the order of
G.
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Definition 3.12. A nonempty subset H of G is said to be S-reflexive if
xy ∩H 6= ∅ implies that xy ⊆ H, for all x, y ∈ G.

Theorem 3.13. If H is a subpolygroup of an ordered polygroup G then
H+ = H ∩ G+. Moreover, if H+ is S-reflexive, the following statements
are equivalent:

(1) H is convex;

(2) H+ is a down-set of G+.

Proof. Since, eH = eG, it is clear that H+ = H ∩G+.
(1) ⇒ (2) Suppose that eH ≤ y ≤ x where eH , x ∈ H+ ⊆ H. Then (1)

gives y ∈ H ∩G+ = H+ and so H+ is a down-set of G+.
(2) ⇒ (1) Suppose now that x ≤ y ≤ z where x, z ∈ H. Then x−1x ≤

x−1y ≤ x−1z. Thus, x−1z ⊆ H+ and so there is a ∈ H+ such that a ∈ x−1z.
Hence, there is b ∈ x−1y such that b ≤ a ∈ H+, and since H+ is a down-set of
G+, b ∈ H+, i.e., x−1y∩H+ 6= ∅. Since, H+ is S-reflexive, so x−1y ⊆ H+ ⊆ H
whence y ∈ xH = H, proving H is convex. 2

If G is an ordered polygroup and H is a normal subpolygroup of G, then
a natural candidate for a positive cone of G/H is \H(G+), where \H : G −→
G/H is the canonical projection. Precisely when this occurs is the substance
of the following result.

Theorem 3.14. Let G be an ordered polygroup and let H be a normal sub-
polygroup of G. Then \H(G+) = {pH : p ∈ G+} is the positive cone of a
compatible order on the quotient polygroup G/H if and only if H is convex.

Proof. Suppose that Q = {pH : p ∈ G+} is the positive cone of a
compatible order on G/H. To show that H is convex, suppose that c ≤ b ≤ a
with c, a ∈ H. Then (bH)−1 = (bH)−1 · aH = b−1aH. On the other hand,
b ≤ a implies that b−1a∩G+ 6= ∅. Hence (bH)−1∩Q 6= ∅ and so bH∩Q−1 6= ∅.
Similarly, we have bH = bH · c−1H = bc−1H and since bc−1 ∩ G+ 6= ∅,
bH ∩Q 6= ∅. Thus, bH ∩ (Q ∩Q−1) 6= ∅ whence bH = H, i.e., b ∈ H.

Conversely, suppose that H is convex and let Q = {pH : p ∈ G+}. It is
clear that Q2 = Q. Suppose now that xH ∈ Q ∩ Q−1. Then xH = pH =
q−1H where p, q ∈ G+. These equalities also give pq ∩ H 6= ∅. Now, since
p ≤ pq, then eH ≤ p ≤ u, where u ∈ pq ∩H whence the convexity of H gives
p ∈ H. It follows that xH = pH = H and hence Q ∩ Q−1 = {H}. Finally,
since G+ is a normal subsemihypergroup of G it is clear that Q = \H(G+) is
a normal subsemihypergroup of G/H. It now follows by Theorem 3.4 that
Q is the positive cone of a compatible order on G/H. 2
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If H is a convex normal subpolygroup of an ordered polygroup G then
the order ≤H on G/H that corresponds to the positive cone {pH : p ∈ G+}
can be described as in the proof of Theorem 3.4. We have

xH ≤H yH ⇒ yx−1H ⊆ Q

⇒ (∀a ∈ yx−1)(∃p ∈ G+)aH = pH

⇒ (∀a ∈ yx−1)(∃p ∈ G+)(∃h ∈ H)a ∈ ph ≥ h

⇒ (∀a ∈ yx−1)(∃h ∈ H) a ≥ h

⇒ yx−1 ≥ h.

From the last inequality and that y ∈ ye ⊆ yx−1x it follows that y ≥ u, for
some u ∈ hx. Conversely, assume that there exists h ∈ H and u ∈ hx such
that y ≥ u, and let a ∈ yx−1. From yx−1 ≥ yx−1 it follows that a ≥ t, for
some t ∈ ux−1 and hence at−1 ≥ tt−1. This implies that v ≥ e, for some
v ∈ at−1 and so

vH ∈ at−1H ∩Q. (3.1)

Now, t ∈ ux−1 implies that t−1 ∈ xu−1 ⊆ xx−1h−1 ⊆ xx−1H and so at−1 ⊆
axx−1H = axHx−1 = aH. Thus, at−1H ⊆ aH. Combining (3.1), we get
{aH}∩Q 6= ∅, i.e., aH ∈ Q and so aH = pH, for some p ∈ G+. This implies
yx−1H ⊆ Q and hence xH ≤H yH, completes the proof.

Thus we see that ≤H can be described by

xH ≤H yH ⇔ (∃h ∈ H)(∃u ∈ hx) y ≥ u.

In referring to the ordered quotient polygroup G/H we shall implicitly infer
that the order is ≤H as described above.

Here we give a characterization of polygroup homomorphisms that are
isotone.

Theorem 3.15. Let G and H be ordered polygroups. If f : G −→ H is a
polygroup homomorphism, f is isotone if and only if f(G+) ⊆ H+.

Proof. Assume that f is isotone. If x ∈ G+, i.e., x ≥ e then f(x) ≥
f(eG) = eH means that f(x) ∈ H+.

Conversely, assume that x ≤ y inG. Then yx−1 ⊆ G+ and so f(y)f(x)−1 =
f(yx−1) ⊆ f(G+) ⊆ H+. This implies that f(y) ≥ f(x) proving f is isotone.
2

Corollary 3.16. If G is an ordered polygroup and H is a convex normal
subpolygroup of G, then the natural homomorphism \H : G −→ G/H is
isotone.
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Proof. By Theorem 3.15, it is enough to prove that \(G+) ⊆ (G/H)+.
For this, let yH ∈ \(G+). Then yH = gH, for some g ∈ G+ whence y ∈
gh ≥ h for some h ∈ H. This implies that eH ≤H yH and so yH ∈ (G/H)+.
2

Definition 3.17. Let G and H are ordered polygroups. A mapping f :
G −→ H is said to be exact if f(G+) = H+.

Definition 3.18. Two ordered polygroupsG andH are said to be isomorphic
if there is a polygroup isomorphism f : G −→ H that is also an order
isomorphism.

If two ordered polygroups G and H are isomorphic we write G '̇ H.

Theorem 3.19. For ordered polygroups G and H, the following are equiva-
lent:

(1) G'̇H,

(2) there is an exact polygroup isomorphism f : G −→ H.

Proof. (1) ⇒ (2) If G and H are isomorphic, there is a polygroup
isomorphism f : G −→ H which is also an order isomorphism. By Theorem
3.15, f(G+) ⊆ H+. Let g = f−1. Obviously, g satisfies the conditions of
Theorem 3.15. Hence, g(H+) ⊆ G+ whence H+ = f(g(H+)) ⊆ f(G+).
Thus H+ = f(G+) and so (2) holds.

(2) ⇒ (1) It is obvious. 2

Theorem 3.20. Let G and H be ordered polygroups and f : G −→ H be an
exact polygroup homomorphism. Then Imf '̇ G/kerf .

Proof. We first observe that kerf is a convex normal subpolygroup of
G and so G/kerf is an ordered polygroup. By first isomorphism theorem of
polygroups there is an isomorphism φ : G/kerf ' Imf which φ(xK) = f(x)
where K = kerf . It remains that we prove φ is exact. Let xK ∈ (G/K)+.
Then eGK ≤K xK whence k ≤ x, for some k ∈ K, and so eH = f(k) ≤ f(x)
whence φ(xK) = f(x) ∈ (Imf)+. Conversely, if f(x) ∈ (Imf)+ ⊆ H+,
since f is exact, there exists g ∈ G+ such that f(x) = f(g). Consequently,
xK = gK and so x ∈ gk ≥ k, for some k ∈ K. Thus,

xK ∈ (G/K)+ ⇔ φ(xK) = f(x) ∈ (Imf)+

proving φ is exact. It now follows by Theorem 3.19 that G/kerf '̇ Imf . 2
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1 Introduction

In most branches of mathematical research, visualization has been an area
of interest for mathematicians [1], [6], [9], specifying that visual thinking can
be an alternative and powerful resource, as well as a serious tool, not only
for specialists but also, for students doing mathematics. Mathematicians
have always used their ”mind’s eye” to visualize the abstract objects and
processes that arise in mathematical research. But it is only in recent years
that remarkable improvements in computer technology have made it easy
to externalize these vague and subjective pictures that we see in our heads,
replacing them with precise and objective visualizations that can be shared
with others [7]. The subject is of such recent research that searching the
literature, in preparation for this paper, it was surprising to discover that no
papers were specifically focused on visualization in hyperstructures.
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According to [10], the term visualization has been used in various ways
in the research literature, so it is necessary to clarify how it is used in this
paper. Thus visualization is taken to include processes of constructing and
transforming both mental imagery and abstract algebraic concepts.

This paper, looks at visualization as it relates to special HV -structures,
focusing upon how it can be used to improve the perception and understand-
ing of abstract algebraic concepts, since, being able to ”see” something in a
geometrical shape, is a common metaphor for understanding it. According
to Bruner [2], to understand a specific concept (algebraic), the first approach
has to be intuitive. So, geometry or linear algebra into a two-dimensional
real vector space, with constant references to the fundamental intuitively
understood principles, are teaching and educative tools.

Using position vectors into the plane IR2, abstract algebraic properties
of HV -structures are gradually transformed into geometrical shapes, which
operate, not only as a translation of the algebraic concept but also, as a
teaching process.

2 Basic definitions on hyperstructures

In 1934, F. Marty introduced the definitions of the hyperoperation and
of the hypergroup as a generalization of the operation and the group respec-
tively.

Definition 2.1 In a set H 6= ∅, a hyperoperation is a map, such that:

◦ : H × H → P(H) − {∅} : (x, y) 7→ x ◦ y ⊂ H

Also, if A, B ⊂ H,then

A ◦ B = ∪a∈A,b∈B(a ◦ b).

Properties of hyperoperations [3], [4], [12]:

i) A hyperoperation (◦) in a set H is called associative, if

(x ◦ y) ◦ z = x ◦ (y ◦ z), ∀x, y, z ∈ H

ii) A hyperoperation (◦) in a set H is called commutative, if

x ◦ y = y ◦ x, ∀x, y ∈ H
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iii) A hyperoperation (◦), in a set H, is having an identity or unit element
if there exists e ∈ H , such that

x ∈ x ◦ e and x ∈ e ◦ x, ∀x ∈ H

iv) A hyperoperation (◦), in a set H, with a unit element e, is having an
inverse element, if for every x ∈ H , there exists an element x′ ∈ H ,
such that

e ∈ x ◦ x′ande ∈ x′ ◦ x, ∀x ∈ H

v) In a set H, equipped with two hyperoperations (◦) and (∗), the (∗) is
called distributive with respect to (◦), if

x ∗ (y ◦ z) = (x ∗ y) ◦ (x ∗ z), ∀x, y, z ∈ H

An algebraic hyperstructure (H, ◦), i.e. a set H equipped with a hy-
peroperation (◦), is called hypergroupoid. If this hyperoperation is associa-
tive, then the hyperstructure is called semihypergroup. The semihypergroup
(H, ◦), is called hypergroup if it satisfies the reproduction axiom:

x ◦ H = H ◦ x, ∀x ∈ H.

One more complicated hyperstructure, is that (H, ◦, ∗), which is called hy-
perring, where (H, ◦) is a commutative hypergroup, the (∗) is associative and
distributive with respect to (◦).

One of the topics of great interest, in the last years, is the Hv-stuctures,
which was introduced by T. Vougiouklis in 1990 [11]. The class of Hv-
stuctures is the largest class of algebraic hyperstructures. These structures
satisfy weak axioms, where the non-empty intersection replaces the equality,
as bellow [12]:
Let H be a set and ◦ : H × H → P(H) − {∅} be a hyperoperation.

i) The (◦)in H is called weak associative, we write WASS, if

(x ◦ y) ◦ z ∩ x ◦ (y ◦ z) 6= ∅, ∀x, y, z ∈ H

ii) The (◦) is called weak commutative, we write COW, if

(x ◦ y) ∩ (y ◦ x) 6= ∅, ∀x, y ∈ H

iii) If H is equipped with two hyperoperations (◦) and (∗), then (∗)is called
weak distributive with respect to (◦), if

[x ∗ (y ◦ z)] ∩ [(x ∗ y) ◦ (x ∗ z)] 6= ∅, ∀x, y, z ∈ H
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The hyperstructure (H, ◦) is called Hv-semigroup if it is WASS and it is
called Hv-group if it is reproductive Hv-semigroup. It is called commutative
Hv-group if (◦) is commutative and it is called Hv-commutative group if(◦)
is weak commutative. The hyperstructure (H, ◦, ∗) is called Hv-ring if both
hyperstructures (◦) and (∗) are WASS, the reproduction axiom is valid for
(◦) and (∗) is weak distributive with respect to (◦).
What it follows to the end of the paragraph comes from [5]:

Definition 2.2 An Hv-ring (R, +, •) is called dual Hv-ring, if (R, •, +) is
an Hv-ring, too.

Definition 2.3 Let V be a vector space over a field K. Then, define two
hyperoperations in V as follows: For all x, y ∈ V and r ∈ K,

x ◦ y = {z/z = x + r(y − x), r ∈ [0, 1]}

x • y = {z/z = x + ry, r ∈ [0, 1]}

Remark 2.1 Into the plane IR2 : x◦y = [x, y], it is known as join operation
[8] and x•y = [x, x+y]. The [α, β] denotes the line segment which is bounded
by the two end points α and β.

Then, for the four hyperstructures occur, we get the following:

Proposition 2.1 The hyperstructure (V, ∗, �), where ∗, � ∈ {◦, •}, is a
weak commutative dual Hv-ring.

Let:
E∗ be the set of the unit elements with respect to (∗).
Er

∗
be the set of the right unit elements with respect to (∗).

El
∗

be the set of the left unit elements with respect to (∗).
I∗(x, e) be the set of the inverse elements of x associated

with the unit e (left or right), with respect to (∗).
Ir
∗
(x, e) be the set of the right inverse elements of x associated

with the right unit e, with respect to (∗).
I l
∗
(x, e) be the set of the left inverse elements of x associated with

the left unit e, with respect to (∗).

Proposition 2.2 i) E◦ = V , ii)I◦(x, e) = {z/z = (1 − r)x + re, r ≥ 1}

Proposition 2.3 i)Er
•

= V , ii)Ir
•
(x, e) = {z/z = r(e − x), r ≥ 1, e ∈ Er

•
},

iii)El
•

= {O} ⊂ E•, iv)I l
•
(x, e) = [e, e − x], e ∈ Er

•
.
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3 Visualization in Hv-groups

Now, let us introduce a coordinate system into the IR2. We place a
given vector p so that its initial point P determines an ordered pair (a1, a2).
Conversely, a point P with coordinates (a1, a2) determines the vector p =
OP , where O the origin of the coordinate system. We shall refer to the
elements x, y, z,... of the set IR2 , as vectors whose initial point is the origin.
These vectors are very well known as position vectors.

i) The hyperoperation: x • y = {z/z = x + ry, r ∈ [0, 1]} = [x, x + y]

In Figure 3.1, to every point x and y of the plane, i.e. to every ordered
pair (x, y) we map an infinite number of points (hyperstructure) instead
of one point (operation). The infinite number of points is the line
segment [x, x+ y] which is bounded by the two end points x and x+ y.
Graphically, having the points O, x, y, draw the parallelogram with
vertices O, x, y, x + y. Then, the side [x, x + y] is the hyperoperation
x • y.

O

X

Y

X+Y

Fig.3.1

ii) Reproduction : x • IR2 = ∪r∈IR2(x • r) = IR2

O
r1

r2rn

X+r1 

X+r2 X+rn 

X

Fig.3.2

In Figure 3.2, take any point x of the plane. For any of the infinite
points ri of the plane, draw the parallelogram with vertices O, x, ri, x+
ri. Unite all these infinite line segments [x, x + ri], then all these seg-
ments cover the plane.
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iii) Weak Associativity: x • (y • z) ∩ (x • y) • z 6= ∅

In Figure 3.3a, take three points x, y, z of the plane, then the side [y, y+
z] of the parallelogram with vertices O, y, z, y+z is the hyperoperation
y•z. With the points O, x and every point ri of the line segment [y, y+z]
draw, each time, the parallelogram with vertices O, x, ri, x + ri. All
these infinite line segments [x, x + ri], create the triangle with vertices
x, x + y, x + y + z. Then the area of this triangle is the first part of
the above intercection, i.e. x • (y • z). Similarly, in Figure 3.3b, the
side [x, x + y] of the parallelogram with vertices O, x, y, x + y is the
hyperoperation x • y. With the points O, z and every point ri of the
line segment [x, x+ y] draw, each time, the parallelogram with vertices
O, z, ri, ri + z. All these infinite line segments [ri, ri + z] create the
parallelogram with vertices x, x + y, x + y + z, x + z. Then the area
of this parallelogram is the second part of the above intercection, i.e.
(x • y) • z. Notice that the triangle with vertices x, x + y, x + y + z is
part of the parallelogram with vertices x, x+ y, x+ y + z, x+ z, i.e. the
intersection of these two figures is not equal to the empty set.

O

X

Y

X+Y

X+Y+Z

Z
Y+Z

O

X

Y

X+Y

X+Y+Z

Z

X+Z

Fig.3.3a Fig.3.3b

iv) Weak Commutativity: (x • y)∩ (y • x) 6= ∅ In Figure 3.4, take two

O

X

Y

X+Y

Fig.3.4

points x and y of the plane. Then draw the parallelogram with vertices
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O, x, x + y, y. The side [x, x + y] is the hyperoperation x • y and the
side [y, x+y] is the hyperoperation y •x. Notice that the only common
point of these two sides is the point x + y, i.e. the intersection of x • y
and y • x is not equal to the empty set.

v) The set of the right unit elements: (x ∈ x • e, ∀x ∈ IR2)
Er

•
= IR2

O
e1

e2en

X+e1 

X+e2 X+en 

X

Fig.3.5

In Figure 3.5, take any point x of the plane. Then draw the parallel-
ograms with vertices O, x, x + ei, ei, where ei any point of the plane.
The side [x, x + ei] is the hyperoperation x • ei. Notice that x belongs
to every line segment [x, x + ei], i.e. x belongs to every x • ei. Since all
these ei’s, having the above property, are infinite, we get that the set
Er

•
of the right unit elements with respect to (•) is equal to IR2.

vi) The set of the right inverse elements:

Ir
•
(x, e) = {z/z = r(e − x), r ≥ 1}, e ∈ Er

•

Having any point x of the plane, we want to find at least one point x′

of the plane, such that, for a right unit point e of the plane (i.e. any
point of the plane) the following to be valid: e ∈ x • x′, i.e. we want e
to be point of the line segment [x, x + x′]. In Figure 3.6a, notice that
all the infinite points x′ of the half-line [e − x, +∞) have the above
property.

Indeed, in Figure 3.6b, for a given x and e, take any x′ belonging
to the half-line [e − x, +∞). Draw the parallelogram with vertices
O, x, x + x′, x′. Then e belongs to the line segment [x, x + x′], i.e., e
belongs to the hyperoperation x • x′.
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O O

X X

-X

e

e-X

e

e-X

X+X'

X'

Fig.3.6

O

X

-X

e

e-X
O

X e

e-X

X'

X'+X

Fig.3.7a Fig.3.7b

vii) The set of the left inverse elements: I l
•
(x, e) = [e, e − x], e ∈ Er

•

Take any point x of the plane, we want to find at least one point x′ of
the plane, such that, for a right unit point e of the plane (i.e. any point
of the plane) the following to be valid: e ∈ x′ • x, i.e. we want e to be
point of the line segment [x′, x′ + x]. In Figure 3.7b, notice that the
points x′ of the line segment [e, e−x] have the above property. Indeed,
in Figure 3.7b, for a given x and e, take any x′ belonging to the line
segment [e, e−x]. Draw the parallelogram with vertices O, x, x′ +x, x′.
Then e belongs to the line segment [x′, x′ + x], i.e., e belongs to the
hyperoperation x′ • x. Since, El

•
= {O} ⊂ E• (that means that the

origin O of the coordinate system is simultaneously left and right unit
element), set O ≡ e, then Ie

•
(x, O) = [O, O − x].

Remark 3.1 Into the plane IR2, the hyperoperation (i), together with the
axioms (ii) and (iii) are giving the concept of Hv-group. Furthermore, by
putting together the axiom (iv) we get the concept of Hv-commutative group.
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4 Visualization in Hv-rings

i) Distributivity of (◦) with respect to (◦):

x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z)

O

X

Z

Y O

Z

X

Y

Fig.4.1a Fig.4.1b

In Figure 4.1a, take three points x, y, z of the plane, then the line
segment [y, z] is the hyperoperation y ◦ z. Join the point x to each
point of the segment [y, z]. Then the area of the triangle with vertices
x, y, z is the first part of the above equality, i.e. x◦ (y ◦z). Similarly, in
Figure 4.1b, the line segment [x, y] is the hyperoperation x ◦ y and the
line segment [x, z] is the hyperoperation x ◦ z. Join every point of the
segment [x, y] to every point of the segment [x, z]. Then the area of the
triangle with vertices x, y, z is the second part of the above equality,
i.e. (x ◦ y) ◦ (x ◦ z).

ii) Weak Distributivity of (•) with respect to (•):

x • (y • z) ∩ (x • y) • (x • z) 6= ∅

In Figure 4.2a, take three points x, y, z of the plane, then the side [y, y+
z] of the parallelogram with vertices O, y, z, y+z is the hyperoperation
y•z. With the points O, x and every point ri of the line segment [y, y+z]
draw, each time, the parallelogram with vertices O, x, ri, x + ri. All
these infinite line segments [x, x + ri] create the triangle with vertices
x, x + y, x + y + z. Then the area of this triangle is the first part of the
above inersection, i.e. x • (y • z).
In Figure 4.2b, the side [x, x + y] of the parallelogram with vertices
O, x, y, x + y is the hyperoperation x • y and the side [x, x + z] of the
parallelogram with vertices O, x, z, x + z is the hyperoperation x • z.
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With the points: O, every point ri of the side [x, x + y] and every
point ti of the side [x, x + z] draw, each time, the parallelogram with
vertices O, ri, ti, ri + ti. All these infinite line segments [ri, ri + ti] create
the pentagon with vertices x, 2x, 2x + y, 2x + y + z, x + y. Then the
area of this pentagon is the second part of the above intersection, i.e.
(x • y) • (x • z). Notice that the line segment [x, x + y] is the common
part of the triangle area with vertices x, x+y, x+y+z and the pentagon
area with vertices x, 2x, 2x + y, 2x + y + z, x + y, i.e. the intersection
of these two figures is not equal to the empty set.

O

X

Y

X+Y

X+Y+Z

Z

O

X

Y

X+Y

X+Y+Z

Z

X+Z

Y+Z

2X 2X+Y

2X+Y+Z

Fig.4.2a Fig.4.2b

iii) Weak Distributivity of (◦) with respect to (•):

x ◦ (y • z) ∩ (x ◦ y) • (x ◦ z) 6= ∅

O

Z

X Y

Y+Z

O

Z

X
Y

Y+Z

2X X+Y

X+Z

Fig.4.3a Fig.4.3b

In Figure 4.3a, take three points x, y, z of the plane, then the side [y, y+
z] of the parallelogram with vertices O, y, z, y+z is the hyperoperation
y • z. Join the point x to each point of the segment [y, y + z]. Then
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the area of the triangle with vertices x, y, y + z is the first part of the
above inersection, i.e. x ◦ (y • z). In Figure 4.3b, take three points
x, y, z of the plane, then the line segment [x, y] is the hyperoperation
x ◦ y and the line segment [x, z] is the hyperoperation x ◦ z. With the
points: O, every point ri of the line segment [x, y] and every point ti of
the line segment [x, z] draw, each time, the parallelogram with vertices
O, ri, ti, ri + ti. All these infinite line segments [ri, ri + ti] create the
pentagon with vertices x, 2x, x + y, y + z, x + z. Then the area of this
pentagon is the second part of the above intersection, i.e. (x◦y)•(x◦z).
Notice that the triangle with vertices x, y, y + z is part of the pentagon
with vertices x, 2x, x + y, y + z, x + z, i.e. the intersection of these two
figures is not equal to the empty set.

iv) Distributivity of (•) with respect to (◦):

x • (y ◦ z) = (x • y) ◦ (x • z)

O

X

X+Y

Y

X+Z

Z

X

X+Y

Y

X+Z

Z

O

Fig.4.4a Fig.4.4b

In Figure 4.4a, take three points x, y, z of the plane, then the line seg-
ment [y, z] is the hyperoperation y ◦ z. With the points O, x and every
point ri of the line segment [y, z] draw, each time, the parallelogram
with vertices O, x, ri, x + ri. All these infinite line segments [x, x + ri]
create the triangle with vertices x, x + y, x + z. Then the area of this
triangle is the first part of the above equality, i.e. x • (y ◦ z).
In Figure 4.4b, the side [x, x + y] of the parallelogram with vertices
O, x, y, x + y is the hyperoperation x • y and the side [x, x + z] of the
parallelogram with vertices O, x, z, x + z is the hyperoperation x • z.
Join every point of the side [x, x+y] to every point of the side [x, x+z].
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Then the area of the triangle with vertices x, x + y, x + z is the second
part of the above equality, i.e. (x • y) ◦ (x • z).

Remark 4.1 It is known that (IR2, ◦) is a commutative hypergroup.
Into the plane IR2, the hyperoperations (◦) and (•) together with the
axioms 3ii), 3iii), 4i), 4ii), 4iii) and 4iv) are giving the concepts of
hyperring, Hv-ring and dual Hv-ring.
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Abstract

S-acts, a useful and important algebraic tool, have always been
interest to mathematicians, specially to computer scientists. When
A. Zadeh introduced the notion of the fuzzy subset in 1965, his idea
opened a new direction to reserchers to provide tools in the various
fields of mathematics. Here we are going to investigate some algebraic
properties of fuzzy S-acts. We first make an S-act from the fuzzy sub-
sets of an S-act A. Then we use this tool to give a characterization for
fuzzy S-acts. We then introduce the notion of generated fuzzy S-act
by a fuzzy subset of an S-act and give a characterization for the fuzzy
actions. And then we define the notion of indecomposable fuzzy S-act
and find some indecomposable fuzzy actions.

Key words: Fuzzy set, Fuzzy acts over fuzzy semigroups.
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1 Introduction and Preliminaries

No need to mention the importance of the prominent and well established
Fuzzy Set Theory, introduced by Zadeh in 1965 [7], which offered tools and
a new approach to model imprecision and uncertainty. Since then, very
many researchers have worked on this concept and its applications to logic,
set theory, algebra, analysis, topology, computer science, control engineering,
information science, etc [1, 2, 3]. Actions of a semigroup (monoid or group) S
on a set A have always been interest to mathematicians, specially to computer
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scientists and logicians. The algebraic structures so obtained are called S-
sets, S-acts, and by some other terminologies [4, 6].

In [5] we have used the fuzzy concept and introduced the notion of the
actions of a (fuzzy) semigroup on a fuzzy set (fuzzy S-act) and studied the
relation between this structure and sheaves. Here we are going to study some
of algebraic details of this structure. But first we recall that:

A set X together with a function µ : X → [0, 1] is called a fuzzy set (over
X) and is denoted by (X,µ) or X(µ). We call X the underlying set and µ
the membership function of the fuzzy set X(µ), and µ(x) ∈ [0, 1] is the grade
of membership of x in X(µ).

If µ is a constant function with value a ∈ [0, 1], X(µ) is denoted by X(a).
The fuzzy set X(1) is called a crisp set and may sometimes simply be denoted
by X.

For a fuzzy set X(µ) and α ∈ [0, 1], X
(µ)
α := {x ∈ X | µ(x) ≥ α} is called

the α-cut or the α-level set of the fuzzy set X(µ).
A fuzzy function from X(µ) to Y (η), written as f : X(µ) → Y (η), is an

ordinary function f : X → Y such that the following is a fuzzy triangle:

X
µ //

f

��

[0, 1]

Y

η

==zzzzzzzz

meaning that µ ≤ ηf (that is, µ(x) ≤ ηf(x) for all x ∈ X). The set of all
fuzzy sets with a fixed underlying set X is called the fuzzy power or the set
of fuzzy subsets of X and is denoted by FSubX. Clearly fuzzy sets together
with fuzzy functions between them form a category denoted by FSet.

To define the actions of a (fuzzy) semigroup on a fuzzy set first we note
that:

Definition 1.1 A semigroup S together with a function ν : S → [0, 1] is
called a fuzzy semigroup if its multiplication is a fuzzy function: for every
s, r ∈ S, ν(s) ∧ ν(r) ≤ ν(sr); that is, the following is a fuzzy triangle:

S × S ν∧ν //

λS

��

[0, 1]

S

ν

::vvvvvvvvvv

If S has an identity 1, one usually add the condition ν(1) = 1.

Now, recall from [5] that, for a (crisp) semigroup S, a (crisp) set A can
be made into an (ordinary) S-act in the following two equivalent ways:
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Universal algebraic way: The set A together with a family (λs : A →
A)s∈S of unary operations satisfying (st)a = s(ta) (and 1a = a, if S has an
identity) where sa = λs(a).

Common way: The set A together with a function λ : S × A → A
satisfying (st)a = s(ta) (and 1a = a, if S has an identity) where sa = λ(s, a).

Now, having these two, so called, universal algebraic and common actions
of S on A, we get the following two, not necessarily equivalent, definitions
for a fuzzy act over a fuzzy monoid.

Definition 1.2 Let S(ν) be a fuzzy semigroup and A(µ) be a fuzzy set such
that A is an S-act, as defined above. Then, A(µ) is called:

(Universal algebraic) A fuzzy S-act (or fuzzy S(1)-act, to emphasize fuzzi-
ness) if each λs is a fuzzy function; that is µ(a) ≤ µ(sa), for every s ∈ S
and a ∈ A (with no mention of ν). That is, for every s ∈ S, the following
triangle is fuzzy:

A
µ //

λs

��

[0, 1]

A

µ

=={{{{{{{{

(Common) A fuzzy S(ν)-act if λ : S × A → A is a fuzzy function; that
is, ν(s) ∧ µ(a) ≤ µ(sa), for every s ∈ S and a ∈ A. That is, the following
triangle is fuzzy:

S × A ν∧µ //

λ
��

[0, 1]

S

µ

::uuuuuuuuuu

Corolary 1.1 (1) Note that universal algebraic definition implies common
definition, and if S(1) = S is a (crisp) semigroup, then ν(s) ∧ µ(a) = 1 ∧
µ(a) = µ(a), and so the above two definitions are equivalent.

(2) Every fuzzy semigroup S(ν) is naturally a fuzzy S(ν)-act and S(1) = S
is a fuzzy S(1) = S-act (universal algebraicly, and hence commonly). Also, if
S(ν) is a fuzzy left ideal, then it is a fuzzy S-act (universal algebraicly, and
hence commonly).

A morphism between fuzzy S(ν)-acts (with both definitions), also called an
S(ν)-map is simply an S-map as well as a fuzzy function. The set of all
(fuzzy) S(ν)-acts with a fixed A is denoted by S(ν)-FSubA, and the category
of all fuzzy S(ν)-acts is denoted by S(ν)-FAct.

Since an S-act A is naturally a (unary) universal algebra, the universal
algebraic definition of fuzzy acts, being compatible with the definition of
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other fuzzy algebraic structures, may be considered to be more natural than
the second one. Thus, from now on we consider the universal algebraic
definition of fuzzy acts and we recall that:

Theorem 1.1 [5] An S-act A with µ : A → [0, 1] is a fuzzy S = S(1)-act if

and only if for every α ∈ [0, 1], A
(µ)
α is an ordinary S-subact of A.

2 Fuzzy subsets of an S-act as a fuzzy S-act

In this short section we make an S-action from the fuzzy subsets of an
S-act A which is used thorough the paper and give a characterization of fuzzy
S-acts defined in preliminary.

Lemma 2.1 Let S be an commutative monoid and A be an S-act. Then
fuzzy subsets of A form an S-act.

Proof. To prove, for each fuzzy subset A(µ) and each m ∈ S we define:

mµ : A → [0, 1]
a  

∨
{µ(x) | mx = a}

First we note that mµ is a fuzzy S-act, because mµ(na) =∨
{µ(x) | mx = na}, for every n ∈ S, and mµ(a) =

∨
{µ(x) | mx = a}. But

if mx = a, then nmx = na, and since S is commutative, mnx = nmx = na.
Also µ(x) ≤ µ(nx). So

∨
{µ(x) | mx = a} ≤

∨
{µ(x) | mx = na}.

Now we check the S-act properties.

(m1m2)µ(a) =
∨
x∈A

{µ(x) | (m1m2)x = a}

=
∨
x∈A

{µ(x) | m2x = y, m1y = a}

=
∨
x∈A

{
∨
y∈A

µ(y) | m2x = y, m1y = a}

=
∨
y∈A

{m2µ(y) | m1y = a}

= m1(m2µ(x))(a)

and 1Sµ(a) =
∨
{µ(x) | 1Sx = a} = µ(a). Also if ν ≤ µ, then (mν)(a) =∨

{ν(x) | mx = a} ≤
∨
{µ(x) | mx = a} = (mµ)(a).2

Theorem 2.1 Let µ : A → [0, 1] be a fuzzy subset. Then A(µ) is an fuzzy
S-act if and only if mµ ≤ µ for every m ∈ S.
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Proof. (⇒) Let A(µ) be a fuzzy S-act and Xa = {x ∈ A | mx = a}.
Then µ(x) ≤ µ(mx) = µ(a), for every x ∈ Xa implies that

∨
{µ(x) | mx =

a} ≤ µ(a). That is mµ ≤ µ.

(⇐) Let A(µ) be a fuzzy subset. To prove we show that µ(a) ≤ µ(ma),
for every m ∈ S and a ∈ A. But we know that mµ ≤ µ and hence we have
mµ(ma) ≤ µ(ma). Now since mµ(ma) =

∨
x∈Xma

µ(x) and a ∈ Xna, we have
µ(a) ≤ mµ(ma) ≤ µ(ma). 2

3 Cyclic fuzzy S-acts

In this section we define a generated fuzzy S-act by a fuzzy subset of an
action and then we characterize the generated fuzzy S-actions by the action
introduced in Lemma 2.1. We then define the cyclic fuzzy S-acts which are
a useful class of fuzzy S-acts and infact every fuzzy S-act is made of a class
of cyclic ones.

Lemma 3.1 Intersection and union of fuzzy S-acts of an S-set A is an fuzzy
S-act.

Proof. Let {A(µi)}i∈I be a family of fuzzy S-act. Then (
⋃
i∈I µi)(ma) =∨

i∈I µi(ma) ≥
∨
i∈I µi(a) = (

⋃
i∈I µi)(a) and (

⋂
i∈I µi)(ma) =

∧
µi(ma) ≥∧

µi(a) = (
⋂
i∈I µi)(a). 2

Theorem 3.1 Let µ : A→ [0, 1] be a fuzzy S-act and {µi}i∈I⊆[0,1] be family
of i-cuts of µ. Then

⋃
i∈I µi and

⋂
i∈I µi are fuzzy S-acts of the form α-cut.

Proof. By Lemma 3.1, it is enough to show that
⋃
i∈I µi = µW

i∈I i
and⋂

i∈I µi = µV
i∈I

. But since (
⋃
i∈I µi)(a) =

∨
µi(a) ≥ i, for every i ∈ I and

a ∈ A, hence
∨
µi(a) ≥

∨
i. Also (

⋂
i∈I µi)(a) =

∧
µi(a) ≥

∧
i. So

⋃
i∈I µi

and
⋂
i∈I µi are fuzzy S-acts of the form α-cut. 2

Now by the above Lemma having the following definition is natural.

Definition 3.1 Let µ : A→ [0, 1] be a fuzzy S-act. Then we take < µ > to
be
⋂
{ν : A→ [0, 1] | µ ≤ ν and ν is a fuzzy S-act}. The fuzzy S-act < µ >

is called the generated fuzzy S-act by µ.

Theorem 3.2 Let S be an commutative semigroup and A(µ) be a fuzzy S-set
of A. Then < µ >=

⋃
m∈Smµ.
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Proof. First we prove that
⋃
m∈Smµ is an fuzzy S-act. To do we show

that
⋃
m∈Smµ(a) ≤

⋃
m∈Smµ(na), for each n ∈ S. But

⋃
m∈Smµ(a) =∨

m∈S(
∨
mx=a µ(x)) and

⋃
m∈Smµ(na) =

∨
m∈S(

∨
mx=na µ(x)). But if mx =

a, then mnx = nmx = na. Since µ(x) ≤ µ(nx), for every x ∈ A,⋃
m∈Smµ(a) ≤

⋃
m∈Smµ(na).

Now let A(ν) be a fuzzy S-act such that µ ≤ ν. Then for every m ∈ S
we have mµ ≤ µ ≤ ν, see Theorem 2.1 for the first inequality, and hence⋃
m∈Smµ(a) ≤ ν(a), for every a ∈ A. 2

In the following we have some morte propeties about generated fuzzy S
acts.

Theorem 3.3 (1) << µ >>=< µ >.
(2)<

⋃
i∈I µi >=

⋃
i∈I < µi > .

Proof. (1) It is trivial by definition of generated fuzzy S-act.
(2) By Theorem 3.2 we have

<
⋃
i∈I

µi > (a) =
∨
{
⋃

µi(x) | mx = a for some m ∈M}

=
∨
i∈I

∨
mx=a

µi(x)

=
⋃
i∈I

< µi > (a)

(1)

for every a ∈ A. 2

Definition 3.2 Let A be an S-act and α ∈ [0, 1] and x ∈ A. Then by cyclic

fuzzy S-act < xα > we mean: < xα > (a) =

{
α if a ∈ Sx
0 othrewise

for every

a ∈ A.

Corolary 3.1 Let µ be a fuzzy S-act of an S-act A and x ∈ A. Then
< xµ(x) > ≤ µ.

Theorem 3.4 Let S be a monoid and µ be a fuzzy S-act of an S-act A.
Then µ =

⋃
x∈A < xµ(x) >.

Proof.
⋃
x∈A < xµ(x) > (a) =

∨
x∈A < xµ(x) > (a) =

∨
{µ(x) | a =

mx for some m ∈ S}. But since 1Sa = a, µ(a) ≤
∨
{µ(x) | a =

mx for some m ∈M}. Also since µ is a fuzzy S-act, µ(x) ≤ µ(mx).
Hence we have µ(a) ≤

∨
mx=a µ(x) ≤ µ(a), for every a ∈ A. that is⋃

x∈A < xµ(x) >= µ 2
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Theorem 3.5 For every m ∈ S and every cyclic fuzzy S-act < xα > of A,
m < xα >=< xα >.

Proof.

m < xα > (a) =
∨
{< xα > (y) | my = a}

=

{
α if a ∈ Sx
0 otherwise

=< xα > (a). 2

4 Decomposable and Indecomposable Fuzzy

S-act

Here we give a definition of indecomposable Fuzzy S-act and show that
the cyclic fuzzy S-acts are indecomposable. We also see some properties of
indecomposable fuzzy S-acts in this section.

Definition 4.1 An fuzzy S-act µ 6= 0 of A is called decomposable whenever
there exist two fuzzy S-acts ν, η 6= 0 of A such that ν, η ≤ µ and η ∨ ν = µ,
and η ∧ ν = 0. Otherwise µ is called indecomposable.

Theorem 4.1 Let S be a commutative monoid. Then every cyclic fuzzy
S-act < xi > of A is indecomposable.

Proof. Let < xi > be decomposable. Then there are fuzzy S-acts ν and
η of A such that ν, η ≤< xi > and η ∨ ν =< xi >, and η ∧ ν = 0. So for

every a ∈ A, η(a) ∧ ν(a) = 0 and η(a) ∨ ν(a) =

{
i ifa = mx
0 otherwise

. Now let

ν(m0x) = i. Then we claim that for every m ∈ S, ν(mx) = i and η(mx) = 0.
Because if there exists m1 ∈ S such that η(m1x) = i, then η(m1m0x) = i
and ν(m1m0x) = i, so η(m1m0x) ∧ ν(m1m0x) = i 6= 0. 2

Definition 4.2 A fuzzy S-act A(µ) is called finitely generated whenever
µ =<

⋃n
i=1(xi)αi

>, where αi ∈ [0, 1].

Theorem 4.2 Let f : A → B be an S-act homomorphism and A(µ) be an
fuzzy S-act. Then Bf(µ) is finitely generated, if so is µ.
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Proof. To proof, we show that f(µ) =<
⋃n
i=1 f((xi)αi

) >, where µ =<⋃n
i=1(xi)αi

>. For

f(µ)(b) =
∨
{µ(a) | f(a) = b}

=

{ ∨
j∈J⊆{1,...,n} αj f(xj) = b

0 otherwise

=
⋃
i∈I

f(< (xi)αi
>)(b). 2

Lemma 4.1 Let G be a group. Then for every finitely generated fuzzy G-act
A(µ), there exists a finite subsets {a1, . . . , an} ⊆ [0, 1] and {x1, . . . , xn} ⊆ A
such that µ(O(xi)) = ai and O(xi) ∩ O(xj) = Ø, if i 6= j, where O(xi) is a
notation for orbit of xi that is the set {gxi | g ∈ G.

Proof. Since µ is finitely generated, µ =<
⋃n
i=1(xi)ai

) > and since G is
a group, O(xi) ∩O(xj) = Ø, if i 6= j. So

µ(x) =

{
ai if x ∈ O(xi)
0 otherwise. 2

Theorem 4.3 Let f : A→ B be an S-act homomorphism with commutative
S, and A(µ) be an fuzzy S-act. Then f(µ) =< f(ν) >, if µ =< ν >.

Proof.

f(µ)(b) =
∨
{µ(a) | f(a) = b}

=
∨
{(mν)(a) | m ∈ S, f(a) = b} by Theorem 3.2

=
∨
{ν(x) | m ∈M,mx = a, f(a) = b}

=
∨
{f(ν)(y) | m ∈M, my = b}

=
∨
m∈M

mf(ν)(b)

=< f(ν) > (b). 2

Theorem 4.4 Let {A(νi)}i∈I be a family of fuzzy S-act in which there is
i0 ∈ I such that µi0 is indecomposable. Then

∨
µi is indecomposable.

Proof. Let
∨
i∈I µi be decomposable. So there are ν1, ν2 ≤

∨
i∈I µi such

that
∨
i∈I µi = ν1 ∨ ν2 and ν1 ∧ ν2 = 0. Then µi0 = µi0 ∧ (

∨
i∈I µi) =

(µi0 ∧ ν1) ∨ (µi0 ∧ ν2) Also (µi0 ∧ ν1) ∧ (µi0 ∧ ν2) = µi0 ∧ (ν1 ∧ ν2) = 0. 2

Corolary 4.1 The union of indecomposable fuzzy S-acts is indecomposable.
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1 Classical case

In the set theory the following operations are used:
- the intersection (A ∩B);
- the union (A ∪B);
- the complement (A);
- the difference (A\B = A ∩B);
- the implication (A→ B = A\B = A ∪B);
- the symmetric difference (A4B = (A\B)∪(B\A) = (A∩B)∪(A∩B));
- the equivalence (A ↔ B = (A → B) ∩ (B → A) = A4B), where A,B

are sets.
The empty set is denoted by ∅, and the set of subsets of a set S will be

denoted by P(S).
Let A,B,C ∈ P(S).

Remark 1. We have:
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i) ∩,∪ are commutative and associative;

ii) A ∩ A = A, A ∪ A = A;

iii) A ∩ (A ∪B) = A, A ∪ (A ∩B) = A;

iv) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C); A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C);

v) A ∩ A = ∅, A ∪ A = S;

vi) A ∩B = A ∪B; A ∪B = A ∩B;

vii) A = A.

Let Ω 6= ∅.

Definition 2. By field of events (in relation with the space Ω) one intend
K ⊆ P(Ω) such that

i) Ω ∈ K;

ii) A,B ∈ K ⇒ A ∪B ∈ K;

iii) A ∈ K ⇒ A ∈ K.

Remark 3. Let K be a field of events. We have

i) A,B ∈ K ⇒ A ∩B ∈ K;

ii) A,B ∈ K ⇒ A\B ∈ K;

iii) A,B ∈ K ⇒ A→ B ∈ K;

iv) A,B ∈ K ⇒ A4B ∈ K;

v) A,B ∈ K ⇒ A↔ B ∈ K;

vi) ∅ ∈ K.

Let K be a field of events.

Definition 4. By probability on K one intend
P : K → [0, 1] such that:

i) P (Ω) = 1;

ii) A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B).
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Remark 5. We have

i) P (∅) = 0;

ii) P (A) = 1− P (A);

iii) P (A\B) = P (A)− P (A ∩B);

iv) P (A ∩B) + P (A ∪B) = P (A) + P (B);

v) P (A→ B) = 1− P (A) + P (A ∩B);

v) P (A) + P (A→ B) = P (B) + P (B → A).

Remark 6. If P : K → [0, 1] is an application satisfying P (∅) = 0, P (Ω) = 1,
then the condition ii), from the definition and the condition vi) from the
remark are equivalent.

2 Fuzzy case

For the construction which will be given in this case we need the concepts of
t-norms and t-conorms.

Definition 7. A function t : [0, 1]× [0, 1]→ [0, 1] will be called t-norm if the
following conditions are satisfied:

i) t(x, 1) = x, ∀x ∈ [0, 1];

ii) t(x, y) = t(y, x), for any x, y ∈ [0, 1];

iii) t(x, t(y, z)) = t(t(x, y), z), for any x, y, z ∈ [0, 1];

iv) x ≤ z ⇒ t(x, y) ≤ t(z, y), ∀y ∈ [0, 1].

Remark 8. We have also:

v) t(x, 0) = t(1, 0) = t(0, 1) = 0, ∀x ∈ [0, 1].

Example 9. i) p : [0, 1]× [0, 1]→ [0, 1], p(x, y) = xy;

ii) min : [0, 1]× [0, 1]→ [0, 1], min(x, y) =

{
x, if x ≤ y

y, if x > y

ii) tm : [0, 1]× [0, 1]→ [0, 1], tm(x, y) = max{x+ y − 1, 0}.

Definition 10. A function t∗ : [0, 1] × [0, 1] → [0, 1] will be called t-conorm
if the following conditions are satisfied:
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i) t∗(x, 0) = x, ∀x ∈ [0, 1];

ii) t∗(x, y) = t∗(y, x), for any x, y ∈ [0, 1];

iii) t∗(x, t∗(y, z)) = t∗(t∗(x, y), z), for any x, y, z ∈ [0, 1].

iv) x ≤ z ⇒ t∗(x, y) ≤ t∗(z, y), ∀y ∈ [0, 1].

Example 11. i) p∗ : [0, 1]× [0, 1]→ [0, 1], p∗(x, y) = x+ y − xy;

ii) max : [0, 1]× [0, 1]→ [0, 1], max(x, y) =

{
x, if x ≥ y

y, if x < y
;

iii) t∗m : [0, 1]→ [0, 1]→ [0, 1], t∗m(x, y) = min{x+ y, 1}.

Definition 12. The t-norm t and the t-conorm t∗ are called dual each an-
other if for any x, y ∈ [0, 1]

t(x, y) = 1− t∗(1− x, 1− y).

For example, p, p∗ or min,max or tm, t∗m are such couples.

Definition 13. A couple (U, µ) where U 6= ∅ and µ : U → [0, 1] is an
application will be called fuzzy set (on the universe U) or fuzzy subset of U .

The empty fuzzy set is given by φ̃ : U → [0, 1], φ̃(x) = 0, ∀x ∈ U .
We shall denote µ ⊆ η if µ(x) ≤ η(x), ∀x ∈ U.
By Ũ : U → [0, 1] one intend the application given by Ũ(x) = 1, ∀x ∈ U.
Let F(U) be the family of fuzzy subsets of U . The operations with fuzzy

subsets can be defined in the following way:
for µ, η : F(U), µ

⋂
t η : U → [0, 1], (µ

⋂
t η)(x) = t(µ(x), η(x))

µ
⋃

t η → [0, 1], (µ
⋃

t η)(x) = t∗(µ(x), η(x)).
The complement µ : U → [0, 1] will be given by µ(x) = 1 − µ(x). In a

similar way with the classical case one define µ
t→ η, µ

t→ η, etc.

µ
t
− η : U → [0, 1], (µ

t
− η)(x) = t(µ(x), 1− η(x));

and µ
t→ η : U → [0, 1], (µ

t→ η)(x) = t∗(1− µ(x), η(x)).
For the couples t-norm/conorm described above we obtain: �,⊕; ∩,∪;

... More precisely for µ, η : U → [0, 1] we have:

A.

µ� η : U → [0, 1], (µ� η)(x) = µ(x)η(x);
µ⊕ η : U → [0, 1], (µ⊕ η)(x) = µ(x) + η(x)− µ(x)η(x).
µ : U → [0, 1], µ(x) = 1− µ(x); and
µ	 η : U → [0, 1], (µ	 η)(x) = µ(x)− µ(x)η(x);
µ©→ η : U → [0, 1], (µ©→ η)(x) = 1− µ(x) + µ(x)η(x);
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Remark 14. We have

i) �,⊕ are commutative and associative;

ii) µ� µ ⊆ µ, µ ⊆ µ⊕ µ;

iii) µ ⊇ µ� (µ⊕ η); µ ⊆ µ⊕ (µ� η);

iv) µ⊕ (η � τ) ⊇ (µ⊕ η)� (µ⊕ τ); µ� (η ⊕ τ) ⊆ (µ� η)⊕ (µ� τ);

v) (µ� µ)(x) ≤ 1
4
, (µ⊕ µ)(x) ≥ 3

4
, ∀x ∈ U ;

v) µ⊕ η = µ� η; µ� η = µ⊕ η.

B.

µ ∩ η : U → [0, 1], (µ ∩ η) = min{µ(x), η(x)};

µ ∪ η : U → [0, 1], (µ ∪ η)(x) = max{µ(x), η(x)};

µ : U → [0, 1], µ(x) = 1− µ(x);

µ− η : U → [0, 1], (µ− η)(x) = min{µ(x), 1− η(x)};

µ→ η : U → [0, 1], (µ→ η)(x) = 1−min{µ(x), 1− η(x)};

Remark 15. We have

i) ∩,∪ are commutative and associative;

ii) µ ∩ µ = µ, µ ∪ µ = µ

iii) µ ∪ (µ ∩ η) = µ; µ ∩ (µ ∪ η) = µ;

iv) µ ∪ (η ∩ τ) = (µ ∪ η) ∩ (µ ∪ τ) = (µ ∩ η) ∪ (µ ∩ τ);

v) (µ ∩ µ)(x) ≤ 1
2
, (µ ∪ µ)(x) ≥ 1

2
, ∀x ∈ U ;

vi) µ ∪ η = µ ∩ η; µ ∩ η = µ ∪ η.
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C.

µ5 η : U → [0, 1], (µ5 η)(x) = max{µ(x) + η(x)− 1, 0};

µ4 η : U → [0, 1], (µ4 η)(x) = min{µ(x) + η(x), 1};

µ : U → [0, 1], µ(x) = 1− µ(x);

µ • η : U → [0, 1], (µ • η)(x) = max{µ(x)− η(x), 0};

µ
·→ η : U → [0, 1], (µ

·→ η)(x) = min{1− µ(x) + η(x), 1}.

Remark 16. We have

i) 5,4 are commutative and associative;

ii) µ5 η ⊆ µ, µ ⊆ µ4 µ;

iii) µ ⊆ µ4 (µ� η); µ ⊇ µ5 (µ4 η);

iv) (µ5 µ)(x) = 0, (µ4 µ)(x) = 1, ∀x ∈ U ;

v) µ5 η = µ4 η = µ5 η.

Remark 17. We have µ5 η ⊆ µ � η ⊆ µ ∩ η; µ ∪ η ⊆ µ ⊕ η ⊆ µ4 η and
µ = µ.

3 Fuzzy numbers

In the last section of the paper fuzzy number will be used.
Let R be the field of real numbers.

Definition 18. By triangular fuzzy number one intend a triple (a, b, c), where
a, b, c ∈ R, a ≤ b ≤ c.

We shall denote Rt the set of triangular fuzzy numbers.
For A = (a1, b1, c2), B = (a2, b2, c2) from Rt, if c1 ≤ a2, or
a2 ≤ c1 and a1+2b1+c1

4
< a2+2b2+c2

4
, or

a2 ≤ c1,
a1+2b1+c1

4
= a2+2b2+c2

4
and b1 < b2, or

a2 ≤ c1,
a1+2b1+c1

4
= a2+2b2+c2

4
, b1 = b2 and c1 − a1 < c2 − a2,

we shall write A . B (a special kind of ”order” being obtained in this way).

Remark 19. A triangular fuzzy number (a, b, c) ∈ Rt is uniquely determined
by a triple (λ, b, ρ) where λ = b − a, ρ = c − b are positive reals called the
left, respectively right tolerance.
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We will use the notation with the central value on the first place (b, λ, ρ).
We consider the operations (these operations are introduced by the author

and was presented for the first time at a conference given at the University
of Chieti in 2007 and was published in [6]):

(a, λ, ρ)� (b, λ′, ρ′) = (a+ b,max{λ, λ′},max{ρ, ρ′})

(a, λ, ρ)� (b, λ′, ρ′) = (ab,max{λ, λ′},max{ρ, ρ′})

and the relation ”∼” given by

(a, λ, ρ) ∼ (b, λ′, ρ′)if

{
a = b

λ− λ′ = ρ− ρ′.

One obtains:

Remark 20. We have:

i) �,� are commutative and associative;

ii) � is distributive with respect to �;

iii) (0, 0, 0) is neutral element for �, and (1, 0, 0) is neutral element for �;

iv) (a, λ, ρ)� (−a, ρ, λ) ∼ (0, 0, 0); if a 6= 0

(a, λ, ρ)� (
1

a
, ρ, λ) ∼ (1, 0, 0).

v) ”∼” is an equivalence relation on Rt.

4 Fuzzy events

Let be Ω 6= ∅ and F(Ω).

Definition 21. By fuzzy field of events one intend K ⊆ F(Ω) such that:

i) Ω̃ ∈ K

ii) µ, η ∈ K ⇒ µ
⋃

t η ∈ K;

iii) µ ∈ K ⇒ µ ∈ K.

Remark 22. We have:

i) φ̃ ∈ K;
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ii) µ, η ∈ K ⇒ µ
⋂

t η ∈ K; µ
t
− η ∈ K, µ

t→ η ∈ K;

iii) (µ ∈ K ⇒ µ ∈ K) ⇔ (µ, η ∈ K ⇒ µ
t
− η ∈ K)⇔ (µ, η ∈ K ⇒ µ

t→
η ∈ K).

Let K be a fuzzy field of events.

Definition 23. By probability on K one intend P : K → [0, 1] such that

i) P (Ω̃) = 1

ii) µ
⋂

t η = φ⇒ P (µ
⋃

t η) = P (µ) + P (η).

Remark 24. Verify the following:

i) P (φ̃) = 0;

ii) P (µ) = 1− P (µ);

iii) µ ⊆ η ⇒ P (η
t
− µ) = P (η);

iv) P (µ
t
− η) = P (µ)− P (µ

⋂
t η);

v) P (µ
⋃

t η) + P (µ
⋂

t η) = P (µ) + P (η);

vi) P (µ
t→ η) = 1− P (µ) + P (µ

⋂
t η);

vii) P (µ) + P (µ
t→ η) = P (η) + P (η

t→ µ).

In the case t = tm we suppose also that µ, η ∈ K ⇒ µ � η ∈ K. In this
context we shall denote P (µ/η) = P (µ� η)/P (η)(P (η) 6= 0).

Proposition 25. In the above condition we have:

P (µ/η) =
P (µ)P (η/µ)

P (µ)P (η/µ) + P (η)P (µ/η)
.

We have also

Proposition 26. If µ1, . . . , µn ∈ K are such that µi

⋂
t µj = φ̃ for i 6= j,

then P (µ
⋃

t, . . . ,
⋃

t µn) = P (µ1) + . . .+ P (µn).
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5 Fuzzy probability

The next step is to substitute [0, 1] in the definition of the probability (in K)
with the

It = {(a, λ, ρ) ∈ Rt/λ ≤ a, ρ ≤ 1− a, a ∈ [0, 1]}.
We have two possibilities:

A. We shall use the operations and the equivalence relation given in III.

Remark 27. If (a, λ, ρ) is such that a ∈ [0, 1] then there exists (a′, λ′, ρ′) ∈ It
such that (a, λ, ρ) ∼ (a′, λ′, ρ′).

Let K be a fuzzy field of events.

Definition 28. By fuzzy probability on K one intend an application P :
K → It such that

i) P (φ̃) = 0;

ii) µ
⋂

t η = φ⇒ P (µ
⋃

t η) ∼ P (µ)� P (η);

iii) If P (µ) = (α, λ, ρ) then P (µ) = (1− a, ρ, λ).

Remark 29. In view to obtain more properties ii) can be replaced by ii′)
P (µ)� P (η) ∼ P (µ

⋂
t η)� P (µ

⋃
t η).

Problem 30. In the case i), ii′), iii), verify the following:

i) P (Ω̃) = (1, 0, 0);

ii) P (µ
t

\η) ∼ P (µ)− P (µ
⋂

t η);

iii) P (µ
t→ η) ∼ P (µ) + P (µ

⋂
t η);

iv) P (µ) + P (µ
t→ η) ∼ P (η) + P (η

t→ µ).

B. In the following we propose new operations:
(a, λ, ρ)+̃(a′, λ′, ρ′) = (a+a′−aa′, a+a′−aa′−max{a+λ, a′+λ′},min{a+

ρ+ a′ + ρ′, 1} − a− a′ + aa′)
(a, λ, ρ)̃·(a′, λ′, ρ) = (aa′, aa′−max{a− λ+ a′− λ′− 1, 0}min{a+ ρ, a′+

ρ′} − aa′)
When the numbers are written in the form (a, b, c) (a ≤ b ≤ c), the

operation are defined by

(a, b, c)+̃(a′, b′, c′) = (max{a, a′}, b+ b′ − bb′,min{c+ c′, 1})

(a, b, c)̃·(a′, b′, c′) = (max{a+ a′ − 1, 0}, bb′,min{c, c′}).
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Remark 31. The above operations are satisfying

0 ≤ max{a, a′} ≤ b+ b′ − bb′ ≤ min{c+ c′, 1} ≤ 1

0 ≤ max{a+ a′ − 1, 0} ≤ bb′ ≤ min{c, c′} ≤ 11.

In this frame using the form (a, b, c) we can propose the following

Definition 32. By fuzzy probability on K one intend P : K → It such that

i) P (Ω̃) = (1, 1, 1), P (φ̃) = (0, 0, 0);

ii) P (µ)+̃P (η) = P (µ
⋂

t η)+̃P (µ
⋃

t η);

iii) µ ≤ η, P (µ) . P (η).

Problem 33. Verify the following:

i) P (µ
t
− η) = P (µ)− P (µ

⋂
t η);

ii) P (µ
t→ η) = P (µ) + P (µ

⋂
t η);

iii) P (µ) + P (µ
t→ η) = P (η) + P (η

t→ µ).
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