Can the entanglement be considered a basic concept of quantum mechanics?

Canio Noce, Lidia Truda, Alberto Trotta


Recently, several experimental tests devoted to quantitatively establish complementarity relations in quantum systems have been reported. Starting from the results of fully quantum single-particle self-nterference experiments, we critically review the concept of entanglement, arguing that this quantity is a peculiar trait of composite quantum systems, and thus it can be looked as a basic concept of quantum mechanics.


Entanglement; Particle-wave duality; Basic concepts in quantum mechanics

Full Text:



P. Grangier, G. Roger, and A. Aspect, Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences, Europhysics Letters, 1(4): 173, 1986, URL

D. Guerra and M. T. Mercaldo, The dawn of quantum mechanics, In C. Noce, editor, Modern Physics: A critical approach, pages 7/01-7/23, IOP Ltd, Bristol (UK), 2020, URL

D. Guerra, I. Rabuffo, and A. Romano, The basic concepts of classical physics as a useful path towards modern physics, In C. Noce, editor, Modern Physics: A critical approach, pages 1/01–1/35 IOP Ltd, Bristol (UK), 2020, URL

M. Horodecki, P. Horodecki, and R. Horodecki, Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps, Physics Letters A, 283(1-2): 1, 2001, URL

V. Jacques, E. Wu, T. Toury, F. Treussart, A. Aspect, P. Grangier, and J-F. Roch, Single-photon wavefront-splitting interference, The European Physical Journal D, 35(3): 561, 2005, URL

C. Jönsson, Elektroneninterferenzen an mehreren künstlich hergestellten feinspalten, Zeitschrift für Physik, 161(4): 454, 1961, URL

J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, Journal of Physics and Chemistry of Solids, 10(2-3): 87, 1959, URL

D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard, An interferometer for atoms, Physical Review Letters, 66(21): 2693, 199, URL

X-F. Qian, K. Konthasinghe, S. K. Manikandan, D. Spiecker, N. Vamivakas, and J. H. Eberly, Turning off quantum duality, Physical Review Research, 2(1): 012016, 2020, URL

T. Qureshi, Quantitative wave-particle duality, American Journal of Physics, 84: 517, 2016, URL

T. G. Rappoport, L. Ghivelder, J. C. Fernandes, R. B. Guimaraes, and M. A. Continentino, Experimental observation of quantum entanglement in low- dimensional spin systems, Physical Review B, 75(5): 054422, 2007, URL

E. Schro¨dinger, Discussion of probability relations between separated systems, Mathematical Proceedings of the Cambridge Philosophical Society, 31, 555, 1935, URL

J. Summhammer, G. Badurek, H. Rauch, U. Kischko, and A. Zeilinger, Direct observation of fermion spin superposition by neutron interferometry, Physical Review A, 27(5): 2523, 1983, URL

A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, Demonstration of single-electron buildup of an interference pattern, American Journal of Physics, 57(2): 117, 1989, URL

V. Vand Brukner, Č. Wiesniak, and M. Vedral, Magnetic susceptibility as a macroscopic entanglement witness, New Journal of Physics, 7(1): 258, 2005, URL

W. K. Wootters and W. H. Zurek, Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr’s principle, Physical Review D, 19(2): 473, 1979, URL

L-A. Wu, S. Bandyopadhyay, M. S. Sarandy, and D. A. Lidar, Entanglement observables and witnesses for interacting quantum spin systems, Physical Review A, 72(3): 032309, 2005, URL

J. Zeng, Y. Lei, S. Y. Pei, and X. C. Zeng, CSCO criterion for entanglement and Heisenberg uncertainty principle, arXiv preprint arXiv:1306.3325, 2013, URL



  • There are currently no refbacks.

Copyright (c) 2022 Canio Noce, Lidia Truda, Alberto Trotta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN  2282-7765.