Relevance of financial information in quick loans negotiation

Salvador Cruz Rambaud, Ana María Sánchez Pérez

Abstract


Nowadays, most loan transactions are contracted by using the exponential discounting as the underlying standard economic model to value this type of financial operations. In a framework of absence of fees to be paid by the borrower, the interest rate of the exponential discount function is, moreover, the true interest rate of the operation. Nevertheless, there exist a set of circumstances which make this identity false. Among others, these characteristics are: the use of linear discount as the underlying discount function, splitting time when using a nominal interest rate, and the existence of fees in a loan at 0% interest rate. All these cases will be analyzed in this paper in the context of the so-called quick loans.

Keywords


Quick loans, linear discounting, exponential discounting, true interest rate

Full Text:

PDF

References


Ayres, F. (1963): Mathematics of Finance. New York: McGraw-Hill.

Banco de España (1990): “Circular 8/1990, de 7 de septiembre, sobre transparencia de las operaciones y protección de la clientela”. Madrid: BOE núm. 226 de 20 de septiembre de 1990.

Biehler, T.J. (2008): The Mathematics of Money. Math for Business and Personal Finance Decisions. New York: McGraw-Hill.

Bodie, Z.; Kane, A. and Marcus, A.J. (2004): Essentials of Investments. 5th Edition. New York: McGraw-Hill/Irwin.

Brealey, R. and Myers, S. (2002): Principles of Corporative Finance. New York: McGraw-Hill.

Brealey, R.A.; Myers, S.C. and Allen, F. (2006): Principles of Corporate Finance. 8th Edition. New York: McGraw-Hill/Irwin.

Brigham, E.F. and Daves, P.R. (2007): Intermediate Financial Management. 9th Edition. Mason, OH: Thomson/South-Western.

Cruz Rambaud, S. and Valls Martínez, M.C. (2014): Introducción a las Matemáticas Financieras. Madrid: Ediciones Pirámide, S.A.

Cruz Rambaud, S. and Valls Martínez, M.C. (2016): Use of two valuation functions in financial and actuarial transactions. Control & Cybernetics, Vol. 45 No. 1, pp. 111-124.

De Pablo López, A. (2000): Matemática de las Operaciones Financieras, Tomos I y II. Madrid: Universidad Nacional de Educación a Distancia (UNED).

Ferruz Agudo, L. (1994): Operaciones Financieras. Descripción, Análisis y Valoración. Barcelona: Ed. Ariel, S.A.

Gil Luezas, M.A. and Gil Peláez, L. (1987): Matemáticas de las Operaciones Financieras. Madrid: Universidad Nacional de Educación a Distancia.

Gil Peláez, L. (1993): Matemática de las Operaciones Financieras. Madrid: Editorial AC.

Valls Martínez, M.C. and Cruz Rambaud, S. (2013): Operaciones Financieras Avanzadas. Madrid: Ediciones Pirámide, S.A.

Valls Martínez, M.C. and Cruz Rambaud, S. (2015): Operaciones de amortización con origen o final aleatorio de la devolución del capital prestado. XXIX Congreso Internacional de Economía Aplicada ASEPELT 2015: Sostenibilidad y Suficiencia del Sistema de Pensiones, Cuenca, junio 2015, publicación digital.

Valls Martínez, M.C.; Cruz Rambaud, S. and Abad Segura, E. (2017): Amortizing loans with random commencement and maturity.

AESTIMATIO, The IEB International Journal of Finance, 14, pp. 56-75.

Valls Martínez, M.C. and Cruz Rambaud, S. (2016): “Loan transactions with random dates for the first and last periodic instalments”. International Journal of Mathematics and Mathematical Sciences, Vol. 2016, Article ID 2152189, 14 pages.

Van Horne, J. (1997): Financial Management and Policy. New Jersey: Prentice-Hall.




DOI: http://dx.doi.org/10.23756/sp.v4i2.297

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Salvador Cruz Rambaud, Ana María Sánchez Pérez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN  2282-7765.