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Abstract  

In this paper, we discuss the importance of measurement in quantum 

mechanics and the so-called measurement problem. Any quantum 

system can be described as a linear combination of eigenstates of an 

operator representing a physical quantity; this means that the system 

can be in a superposition of states that corresponds to different 

eigenvalues, i.e., different physical outcomes, each one 

incompatible with the others. The measurement process converts a 

state of superposition (not macroscopically defined) in a well-

defined state. We show that, if we describe the measurement by the 

standard laws of quantum mechanics, the system would preserve its 

state of superposition even on a macroscopic scale. Since this is not 

the case, we assume that a measurement does not obey to standard 

quantum mechanics, but to a new set of laws that form a “quantum 

measurement theory”.      
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1 Introduction  

The act of measurement is a crucial point in the scientific method. It is the 

process by which we collect empirical information to formulate our hypothesis 

and build-up our models. Moreover, any physical quantity can be named as such 

only when a non-ambiguous measurement procedure is (at least in theory) 

defined. It is fair to say that measurement is one of the cornerstones of scientific 

progress in toto. 

Nonetheless, until the last century, its importance has always been taken for 

granted, and its definition has been somewhat naïve, along the lines of “the 

process done by the experimenter in the laboratory with rulers, scales and such”. 

Then, in the XX century, quantum mechanics put the measurement process 

under the spotlight. The measurement serves as the bridge between the 

macroscopic world, that obeys the laws of classical physics, and the microscopic 

world, ruled by the counter-intuitive laws of quantum mechanics.  

As stated by Bohr [10], “quantum mechanics occupies a very unusual place 

among physical theories: it contains classical mechanics as a limiting case, yet 

at the same time it requires this limiting case for its own formulation”. If we 

describe a macroscopic system with the laws of quantum mechanics, we quickly 

come to the paradoxical conclusion that an object could be in two or more 

different configurations at the same time. For example, a light bulb could be on 

and off at the same time; a football team could win and lose the same match; an 

unlucky cat could be dead and alive. This contradiction is called the 

“measurement problem”. To solve that, we assign a very peculiar role to 

measurement, defining a new set of rules known as the “quantum measurement 

theory”.  A quantum object, such as an electron or an atom, evolves according 

to quantum mechanics (i.e. the Schrödinger equation) until a measurement is 

performed. At this point, the processes of quantum measurement theory come 

into play, translating the quantum state of the system in a macroscopic 

consequence of the measuring apparatus. This ad hoc set of rules can be easily 

unsettling: indeed, a macroscopic object is made up of smaller parts, molecules 

and atoms, behaving under the laws of quantum mechanics, so why would the 

system as a whole behave differently? Moreover, a measurement is not an 

elementary process, but it can be split into simpler interactions, eventually 

described by quantum mechanics: can we really center a theory around a process 
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so weakly defined? These and many more questions bother anyone who is faced 

with the study of quantum physics. 

 

 

2  Physical quantities as operators and the 

wavefunction 

Classical mechanics is both descriptive and predictive: if we know the 

initial conditions of an object and the forces acting upon it, we can define its 

trajectory. Mathematical difficulties aside, we can always say where it will be 

after any time. To do so, the instructions to follow are straightforward: let’s 

suppose that we have a point object of mass 𝑚, and 𝑭(𝒓, 𝑡) is the net force on 

it. Given the position and the momentum of the object at 𝑡 = 0, we use Newton’s 

2nd law 𝑭 = 𝑚𝒂 to study its motion. If we are dealing only with conservative 

forces, so the net force that can be described as the derivative of a potential 

energy function 𝑉(𝒓, 𝑡), Newton’s law of motion becomes −𝛻𝑉 = 𝑚𝒂. 

Therefore we can calculate the trajectory of the object, namely the position 𝒓(𝑡) 

and the momentum 𝒑(𝑡). 

In quantum mechanics, we cannot define these function for every 𝑡; 

Newton’s law is replaced by the Schrödinger equation [9]: 

   

 
𝑖ℏ

𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚
∇2Ψ + 𝑉Ψ, 

(2.1) 

 

where 𝑖 is the imaginary unit, and ℏ is the Planck constant divided by 2𝜋. 

In this equation, we find neither the position of the particle nor the momentum; 

instead, we have 𝛹(𝒓, 𝑡), called the wavefunction. It is a continuous complex 

function of time and spatial variables, and it belongs to 𝐿2(𝑅3), that is the set of 

all the square-integrable functions over the whole space. The wavefunction 

contains all the pieces of information quantum mechanics can offer. So how do 

we get them? How can we obtain from the wavefunction the physical quantities 

we are interested in, such as position, momentum, energy?      

 

First of all, we assign to the wavefunction an abstract vector |Ψ⟩, using 

Dirac notation. We then define a scalar product as follows: 
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⟨Ψ1|Ψ2⟩ = ∫ Ψ1
∗Ψ2𝑑𝑥

+∞

−∞

 

(2.2) 

     

(it can be shown that this integral does not diverge as long as Ψ1 and Ψ2 are 

square integrable, so this product is well-defined). The set of all these abstract 

vectors constitutes a complete metric space, called Hilbert space. This is the 

space where the wavefunctions live.  

For each dynamical quantity 𝑄(𝒓, 𝒑) we define an operator 𝑄̂ such that: 

 

〈𝑄〉 = ∫ Ψ∗(𝑄̂)Ψ𝑑𝒓

+∞

−∞

, 
(2.3) 

which we can write as a linear mapping onto the Hilbert space using Dirac 

notation: 

 〈𝑄〉 = 〈Ψ|𝑄̂|Ψ〉. (2.4) 

This product gives the expectation value of 𝑄(𝒓, 𝒑) over the state 

represented by Ψ: that means that if we had infinitely many copies of the same 

system, each described by the same wavefunction, and took a measurement of 

𝑄(𝒓, 𝒑) on each one, the average of the outcomes would be precisely ⟨𝑄⟩. 
Since ⟨𝑄⟩ represents the outcome of a measurement, it must be a real 

number; we can write:  

 〈Ψ|𝑄̂|Ψ〉 = 〈Ψ|𝑄̂|Ψ〉∗ = 〈𝑄̂†Ψ|Ψ〉 = 〈𝑄̂Ψ|Ψ〉. (2.5) 

It follows that any operator that represents a physical quantity, called an 

observable, must be self-adjoint. For example, we can assign to the physical 

quantity “position” 𝒓  the following observable: 

𝒓̂ ≡ 𝒓, 

therefore the expected value of position measured on the state Ψ is given by: 

 

 

 

〈𝒓〉 = ∫ Ψ∗(𝒓)Ψ𝑑𝒓

+∞

−∞

. 

 

(2.6) 
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3  The generalized statistical interpretation 

In general, measurements made on identically prepared systems (i.e., 

with the same wavefunction) do not return the same result. However, a system 

can be in a defined state for an observable Q, in which a measurement always 

yields to the same outcome. In this case, the standard deviation is zero:  

 

0 = 𝜎𝑄
2 = 〈(𝑄̂ − 〈𝑄〉)2〉 = 〈Ψ|(𝑄̂ − 〈𝑄〉)2|Ψ〉 = 〈(𝑄̂ − 〈𝑄〉)Ψ|(𝑄̂ − 〈𝑄〉)Ψ〉

= |(𝑄̂ − 〈𝑄〉)Ψ|2. 

The only vector which has norm zero is the null vector, so: 

 

(𝑄̂ − 〈𝑄〉)|Ψ⟩ = 0       ⇔         𝑄̂|Ψ⟩ = 〈𝑄〉|Ψ⟩. 

If |Ψ⟩ is an eigenstate of 𝑄̂, a measurement will produce the outcome ⟨𝑄⟩ (the 

corresponding eigenvalue) with certainty.  

We can extend this result, with the postulate known as the generalized 

statistical interpretation: if we measure the observable 𝑄̂ on a system 

described by the state |Ψ⟩, we are sure to get one of the eigenvalues of 𝑄̂. The 

probability of getting a specific eigenvalue 𝜆 is equal to the square norm of the 

𝜆-component of |Ψ⟩, with respect to the orthonormal basis of eigenstates of 𝑄̂. 

To ensure this postulate is meaningful, the eigenstates must generate the whole 

space; this is undoubtedly the case for finite-dimensional spaces, but it is not a 

trivial question if we are dealing with infinite-dimensional ones. We will then 

consider an observable a valid one only if its eigenstates fulfil this condition.  

The eigenvalues spectrum of an operator can be discrete or continue. If 

the spectrum is discrete, we can label the eigenvalues with a discrete index 𝑛: 

 

𝑄̂|𝑒𝑛⟩ = 𝜆𝑛|𝑒𝑛⟩,    with  𝑛 = 1, 2, 3. ., 

where vectors |𝑒𝑛⟩ form an orthonormal basis of eigenvectors (the fact that 𝑄̂ is 

self-adjoint guarantees the existence of such basis, as stated by the spectral 

theorem). Any state |Ψ⟩ can be written as: 

 
 

|Ψ⟩ = ∑ 𝑐𝑛|𝑒𝑛⟩

∞

𝑛=1

. 
(3.1) 

The coefficients 𝑐𝑛 are complex numbers that can be computed using the 

orthonormality of the basis: 
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 𝑐𝑛 = ⟨𝑒𝑛|Ψ⟩. (3.2) 

Therefore, the probability that a measurement will give a specific eigenvalue 𝜆𝑛 
is: 

 

 |𝑐𝑛|2 = |⟨𝑒𝑛|Ψ⟩|2. (3.3) 

Alternatively, if the spectrum is continuous, we label the eigenvalues with a real 

variable 𝑘: 

 

𝑄̂|𝑒𝑘⟩ = 𝜆𝑘|𝑒𝑘⟩,    with   -∞ < 𝑘 < +∞. 

The eigenfunctions |𝑒𝑘⟩ are not normalizable, but satisfy the following, which 

is a sort of an orthonormality condition: 

 

 ⟨𝑒𝑘|𝑒𝑙⟩ = 𝛿(𝑘 − 𝑙), (3.4) 

where 𝛿(𝑘 − 𝑙) is a Dirac delta function. In this case, we can write a generic 

state |Ψ⟩ not as a sum but as an integral:  

 

 
|Ψ⟩ = ∫ 𝑐𝑘|𝑒𝑘⟩𝑑𝑘

+∞

-∞

. 
(3.5) 

Similarly, we find the coefficients 𝑐𝑘: 

 

 𝑐𝑘 = ⟨𝑒𝑘|Ψ⟩ (3.6) 

and probabilities: 

 

 |𝑐𝑘|2 = |⟨𝑒𝑘|Ψ⟩|2. (3.7) 

Therefore, we can write the wavefunction as a linear combination of eigenstates 

of a specific operator. Each one represents a possible state in which the system 

can be found by a measurement, with a coefficient linked to the probability that 

a particular state will occur. In general, a wavefunction can be written in many 

ways, with respect to the basis of eigenstates of several observables; those 

eigenstates are all and only the possible states in which the system can be found 

when we measure that quantity. The wavefunction mathematically expresses the 

concept of quantum superposition of states: a physical system can always be 

described by the sum of two or more different states, and vice-versa the sum of 

two or more different states is still a quantum state of the system. Quantum 
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superposition is a direct result of the linearity of the Schrödinger equation, 

which is a consequence of the principle of relativity. In Dirac’s words [6]: 

 

“The non-classical nature of the superposition process is brought out clearly if 

we consider the superposition of two states, A and B, such that there exists an 

observation which, when made on the system in state A, is certain to lead to one 

particular result, a say, and when made on the system in state B is certain to lead 

to some different result, b say. What will be the result of the observation when 

made on the system in the superposed state? The answer is that the result will 

be sometimes a and sometimes b, according to a probability law depending on 

the relative weights of A and B in the superposition process. It will never be 

different from both a and b [i.e.., either a or b]. The intermediate character of 

the state formed by superposition thus expresses itself through the probability 

of a particular result for an observation being intermediate between the 

corresponding probabilities for the original states, not through the result itself 

being intermediate between the corresponding results for the original states.” 
 

 

4  The measurement problem 

The superposition principle states that a wavefunction can be written as 

a sum of states, each one representing a different physical situation. This 

peculiar aspect of quantum theory made possible understanding many 

phenomena, such as the double slit experiment: the wavefunction of the incident 

particle carries both the state in which the particle goes through the first slit and 

the state in which the particle goes through the second slit. The coexistence of 

two macroscopically incompatible states is what makes possible explaining this 

experiment, famous for being one of the first to undermine the foundations of 

classical physics. Even if it led to inestimable development of both theoretical 

and experimental physics, this approach hides an insidious complication 

concerning the act of measurement. If we admit the possibility of superposition 

of states, we occur in a series of contradictions known as the “measurement 

problem”. Let us see in detail what it is about. 

Let us suppose that we have a microscopic object, initially described by 

wavefunction 𝜙𝑖. The object is monitored by a macroscopic measuring 

apparatus with initial wavefunction 𝜓𝑖 , in order to measure a physical quantity 

represented by the operator 𝑄̂. Let 𝛼𝑛 be the eigenstates of 𝑄̂: 

 

 𝑄̂𝛼𝑛 = 𝐴𝑛𝛼𝑛, (4.1) 
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These functions spawn the entire wavefunction space, and we suppose 

that the system is initially (before any measurement) in an eigenstate of 𝑄̂, for 

example: 

 

𝜙𝑖1
= 𝛼1 

or maybe: 

 

𝜙𝑖2
= 𝛼2. 

At the end of the measurement process, the measured system will be described 

by a new wavefunction, 𝜙𝑓1
 or 𝜙𝑓2

, depending on the initial state, and the 

measuring apparatus will be described by, respectively, 𝜓𝑓1
 or 𝜓𝑓2

. The product 

of the two functions gives the wavefunction of the whole system (microscopic 

object + macroscopic apparatus). We can represent a measurement 

schematically, as follows: 

 

 𝛼1; 𝜓𝑖 →  𝜙𝑓1
𝜓𝑓1

 (4.2a) 

 𝛼2; 𝜓𝑖 →  𝜙𝑓2
𝜓𝑓2

. (4.2b) 

We must take into account some properties of 𝜙𝑓𝑖
 and 𝜓𝑓𝑖

. In order to perform 

a consistent and useful measure, the functions 𝜓𝑓𝑖
 must express that the 

apparatus registered an unambiguous result and produced an outcome 

accordingly. That means the apparatus must be in a well-defined macroscopic 

state, univocally linked to the value of the measured quantity, so the 

measurement has meaning. For instance, if the apparatus is a screen where a 

chemical emulsion produces a black dot when it detects a particle, the point 

where the screen turns black must reflect the initial state of the measured system. 

Therefore, we must be able to interpret the apparatus left in the state 𝜓𝑓𝑖
 as a 

result of the measured quantity, being 𝐴𝑖 (the eigenvalue corresponding to 𝛼𝑖), 

without ambiguity. We cannot say much about 𝜙𝑓1
 or 𝜙𝑓2

; there is no particular 

reason they should be linked to the initial states because the measurement can 

alter the system in many ways. In the above example concerning the chemical 

emulsion, a particle after the measurement has an entirely different 

wavefunction because of the collision with the screen.  

 This schematic analysis of a measurement is simple and straightforward; 

however, if the object is not initially in an eigenstate 𝛼𝑖  of the operator 𝑄̂ we 
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have a much more complicated situation. Let us suppose that the initial 

wavefunction is a linear combination of eigenstates, for instance: 

 

 

 

𝜙𝑖 =
1

√2
( 𝛼1 +  𝛼2). 

(4.3) 

Because of the linearity of the Schrödinger equation, the final state will also be 

represented by a linear combination. Schematically, the measurement is as 

follows: 

 

 

 

1

√2
( 𝛼1 +  𝛼2); 𝜓𝑖 →

1

√2
(𝜙𝑓1

𝜓𝑓1
+ 𝜙𝑓2

𝜓𝑓2
). 

(4.4) 

In the general case, in which: 

 

 𝜙𝑖 = ∑ 𝑐𝑛𝛼𝑛

𝑛

, (4.5) 

the measurement is: 

 

 

 

𝜙𝑖; 𝜓𝑖 → ∑ 𝑐′𝑛𝜙𝑓𝑛
𝜓𝑓𝑛

𝑛

. (4.6) 

Unlike the previous case, where the system is in a well-defined state after the 

measurement (4.2), now the apparatus is left in a superposition of many states. 

Each state represents a different macroscopic situation, in which the apparatus 

produced different outcomes, like 𝐴1 or 𝐴2. This contradicts the obvious fact 

that a measurement leads to a specific result – indeed this is what we expect 

from a good measure. If we apply Schrödinger equation to the measurement 

process, as we would with any physical process consisting of elementary 

interactions obeying quantum mechanics, we come to a paradoxical conclusion: 

if the measured object is in a superposition of states, the system object + 

apparatus will be in a superposition of states as well, because of the linearity of 

the equation. To imagine a superposition of macroscopic states is such a silly 

thing that the most famous thought experiment about it, Schrödinger’s cat, is 

part of popular culture.   

As we can see, there is a conflict between the mere linearity of the 

Schrödinger equation and the basic fact that a measurement should lead to a 
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clear outcome. This conflict is the notorious measurement problem of 

quantum physics. It seems like a physical object behaves in two different ways, 

mutually exclusive. On the one hand, we have the proper dynamic evolution 

expected from standard quantum mechanics (i.e., the Schrödinger equation), and 

on the other, we have a non-linear and non-reversible process any time we make 

a measurement. While the former preserves the quantum superposition, the latter 

converts a superposition of states in a “classical” well-defined single state. The 

measurement seemingly does not obey Schrödinger equation, but it is governed 

by a distinct theory, aptly named “quantum measurement theory”. Some 

authors, like Peres, doubt that such a theory is necessary since a measurement is 

not a primary process and is not strictly defined; moreover, a measurement is 

made up of simpler physical interactions that do obey quantum mechanics [11]:  

 

“[…] there can be no quantum measurement theory—there is only 

quantum mechanics. Either you use quantum mechanics to describe 

experimental facts, or you use another theory. A measurement is not a 

supernatural event. It is a physical process, involving ordinary matter, and 

subject to the ordinary physical laws.”  

   

Still, if we apply the quantum formalism to a measurement we do not get 

a defined outcome. As we will see in the next paragraphs, many possible 

answers have been given to what a measurement theory would look like; yet no 

interpretation has been globally accepted or has been present without significant 

flaws or drawbacks. Nonetheless, their contribution is priceless, since they made 

“working” with quantum mechanics possible, without lingering too much on 

unresolved questions and not being able to do anything.  

 

5 Measurement of the first and the second kind 

We did not pose any particular condition on the final wavefunction of the 

apparatus (𝜓𝑓) nor of the object (𝜙𝑓), except that 𝜓𝑓 should be linked in some 

meaningful way to 𝜙𝑖, in order to perform a consistent measurement. To find 

what these functions look like is the job of the measurement theory. We would 

like to know how the final state of the object depends on its initial state or, 

equivalently, how 𝜓𝑓   is linked to 𝜙𝑓. These questions are inherently connected 

to the question of repeated measurements: what happens if briefly after a 

measurement we perform a second identical one? That is, what can a 

measurement reveal about the function 𝜙𝑓?  

There is not a standard answer to these questions, but it strongly depends 

on the specific measurement procedure. For instance, in many cases the result 

of a hypothetical repeated measurement is trivial: if an electron collides with a 

screen, forming a black dot in order to measure its position, it is no more 
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available for a second measurement; even when a repeated measurement can be 

performed, it may give no useful information. We can think of the following 

example: measurement of momentum on a neutron can be achieved by 

completely stopping the neutron with a series of collisions and observing the 

recoil protons. The particle is available for a second measurement, but its 

momentum has become zero independently of 𝜙𝑖.  

Finally, there are situations where a second measurement can be made, and 

the final state is linked in a relevant way to the initial state. Let us consider a 

Wilson cloud chamber [2]: an 𝛼-particle passes through a supersaturated vapour 

of water, interacting with its particles with the formation of a black mark. Since 

the blackening is macroscopic, we can think of it as an approximate 

measurement of position – indeed, compared to the scale of the particle it carries 

an enormous uncertainty. Because of this lack of precision on the position, the 

uncertainty on the momentum remains small. Therefore, we can consider the 

measure causing essentially no perturbation to the momentum, which remains 

constant. For this reason, a black track of the passage of the particle forms in the 

chamber, made up of several consecutive position measurements. This is an 

example of measurement where 𝜓𝑓 and 𝜙𝑓 are clearly related: the blackening 

of a specific macroscopic point (described by 𝜓𝑓) happens because at that 

moment the particle initial wavefunction 𝜙𝑖 is localized in that point. Since the 

measurement does not alter the motion, we can conclude that the particle 

wavefunction after the first blackening 𝜙𝑓 is located in the same place with the 

same momentum.  

A measurement as above, where the final state of the system gives 

information to the initial state because they are directly connected, is called 

measurement of the first kind. Conversely, if the final state depends entirely 

on the measurement procedure and it is not linked in a significant way to the 

initial wavefunction we are dealing with a measurement of the second kind, 

as in the screen where an electron collides or the momentum measurement on a 

neutron that stops the particle. In a measurement of the second kind, the 

information about the initial state is lost, wiped out by the measurement. From 

now on we will speak mostly of measurements of the first kind, or “moral” 

measurements [2].  

In addition to the Wilson chamber, we can think of some other practical 

situations that fit into the category of measurement of the first kind. Let us 

consider a spin-½ particle at high speed that goes through a Stern-Gerlach 

apparatus, a channel with one entry and two exits, in which there is a magnetic 

field along the z-axis. The magnetic field will deviate the particle towards one 

exit or the other, depending on its spin orientation. In both cases, it exits a 

detector is placed to indicate where the particle passes. In this apparatus, we 

directly measure the position, but doing so we obtain information on the spin of 

the particle: we perform an indirect but well-defined measurement of the third 
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component of the spin sz. Since the measurement does not affect at all the 

measured quantity, we can reasonably assume that a second measurement on the 

same particle will lead to the same result – it is easy to connect a pair of Stern-

Gerlach apparatus at the exits of the first and confirm this is the case. We can 

expand this idea by connecting 𝑁 pairs of apparatus, thus building a device that 

performs the spin measurement 𝑁 times and gets the same result every time.  

Another example would be the measurement of radioactive decay. We 

surround a radioactive nucleus with detectors, in order to be 100% sure to detect 

an eventual decay. If at some point the detectors signal the nucleus is decayed, 

a successive measurement after the first would still show that the nucleus is 

indeed decayed. Vice-versa, if under inspection the nucleus is found to be non-

decayed, then a second measurement made shortly afterwards will return the 

same outcome.  

By these simple representations of real measurements, we understand by 

intuition and common sense that a repeated measurement should give the same 

result (provided that we take it after a time so small the system would not be 

altered by the physical interactions it is subject to). Dirac [6] held this concept 

in high regard, asserting it is a matter of physical continuity, a requirement for 

any measurement theory. While it is undoubtedly desirable, is there a formal 

justification to such a necessity? If we think about a measurement of position, 

special relativity implies that repeated measurements must yield to the same 

result. Otherwise, a particle would be able to travel a finite distance in zero time. 

In reality, if we observe a particle in a point 𝑃, a second measurement made 

after a time 𝑡 could find the particle to be everywhere within a distance of 𝑐𝑡 

from 𝑃. We should remark that an exact measurement of position causes a total 

uncertainty on the momentum; therefore we limit the precision of a position 

measurement to a range of points where we can observe the particle. Doing so, 

we reduce the momentum uncertainty and expect that a second measurement 

performed after a small enough time falls within the same range. For other 

observables, it is not so clear why repeated measurement should give the same 

result, and those arguments could be as well called “moral” [2].  

 

6 Possible solutions to the measurement problem 

The measurements of the first kind preserve information about the initial 

state of the system. If we want to measure the observable 𝑄̂ and the measured 

system is in the eigenstate 𝛼1, the measurement is: 

 𝛼1; 𝜓𝑖 → 𝛼1𝜓𝑓 . (6.1) 
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A measurement of the first kind does not alter the system, maintaining the 

eigenstate. As we mentioned, if the initial wavefunction is a superposition of 

states, for instance 𝜙𝑖 = 1

√2
(𝛼1 + 𝛼2), we face the measurement problem: 

 1

√2
(𝛼1 + 𝛼2); 𝜓𝑖 →

1

√2
(𝛼1 + 𝛼2)𝜓𝑓 . (6.2) 

The most common approach to solving this problem involves postulating 

the existence of a reduction of the wavefunction. It is a process that turns a 

state of superposition (not macroscopically defined) into an eigenstate, 

whenever we make a measurement. It is irreversible and non-linear; therefore, 

it does not obey the Schrödinger equation. The reduction postulate states that 

measurements always leave the system in a well-defined state, “reducing” the 

wavefunction to only one of the eigenstates that constitute the superposition. Let 

us suppose the measurement outcome is 𝐴2, the eigenvalue relative to 𝛼2; the 

reduction of the wavefunction will result in: 

 

 1

√2
(𝛼1 + 𝛼2); 𝜓𝑖 → 𝛼2𝜓𝑓2

, (6.3) 

or, in general: 

 

 ∑ 𝑐𝑛𝛼𝑛; 𝜓𝑖

𝑛

→  𝛼𝑘𝜓𝑓𝑘
. (6.4) 

This process is entirely different from the linear evolution predicted by 

“standard” quantum mechanics. Until we observe it, the system follows the 

expected linear evolution; when we perform a measurement, returning the 

outcome 𝐴𝑘, the wavefunction is reduced to the state 𝛼𝑘. When the measurement 

ends, the system goes back to the Schrödinger dynamics, causing it to return in 

a state of superposition. However, if we performed a second measurement 

immediately after the first one, we would undoubtedly get 𝐴𝑘. The reduction 

postulate ensures that repeated measurements yield to the same result. 

Standard quantum mechanics predicts a chain of superposition: the 

microscopic object passes his superposition state on the macroscopic 

measurement apparatus, which in turn passes it on the observer’s sensory 

organs, to his brain and so on. The reduction postulate asserts that at some point 

the chain breaks and the superposition is lost. How the reduction process exactly 

works is debated, so there are several interpretations. The most accredited 

hypothesis is that it happens as we pass from a microscopic object to a 

macroscopic one. This assumption somewhat reminds of Bohr’s 

“complementarity” [10], that consists of refusing to assign a wavefunction to a 
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macroscopic system. In the same way, as Bohr does, we are posing an arbitrary 

cut between the microscopic and the macroscopic world. For this reason, it can 

not be regarded as a rigorous solution to the measurement problem, but it has 

shown to be an efficient practical workaround.   

In Von Neumann’s [12] original formulation, the reduction process instead 

happens at the level of the observer’s “mind”, that interrupts the concatenations 

of superposition thanks to its introspection abilities. Von Neumann’s theory also 

presents an interactionist aspect: the observation alters the wavefunction, thus 

shaping the physical reality. 

We should bear in mind that, if we admit the existence of a reduction 

process, we are stating that the wavefunction is subject to two separate 

evolutions: the Schrödinger dynamics and the reduction process. The strongest 

criticism to this interpretation is that a measurement is not a fundamental 

process, but it is made up of simpler interactions described by the Schrödinger 

equation, so it can not be regarded as a primitive notion of a theory. Moreover, 

what constitutes a measurement is vaguely defined, although the naïve approach 

[8] (“a measurement is that thing an experimenter does in the laboratory with 

scales, rulers, spectrometers and such”) is a good starting point from a 

pragmatical perspective.  

The reduction postulate is not the only possible solution to the measurement 

problem. Despite what we have said up to now, many theories assume that the 

superposition state (4.6) can represent a macroscopic outcome of a 

measurement, denying the necessity of a reduction process. In a theory 

pioneered by Everett [5], known as many world interpretation, any possible 

outcome of a measurement happens simultaneously in parallel universes that do 

not communicate with each other. When we perform a measurement, the 

physical reality branches, forming a parallel universe for any possible outcome. 

In this way, there is no need for a wavefunction reduction, since any possible 

state of the superposition occurs in a different world. Everett’s theory has 

internal consistency and is supported by many authors. One of its flaws is that 

it fails to rigorously discriminate what should be considered a measurement and 

what not. Another drawback is that it is not clear how “deep” the branching of 

the different realities is: if we consider an observable with a continuous 

eigenstate spectrum, we are not able to say how distant two outcomes should be 

to generate two different realities.  

Another remarkable theory is the Ghirardi-Rimini-Weber theory [7], also 

known as the spontaneous reduction theory. It consists of a correction on the 

Schrödinger equation itself, throwing in a non-linear term, which causes a 

process analogous to reduction. The difference is that this process, which we 

may call a “spontaneous reduction”, does not happen when a measurement is 

made but can happen at any time. The probability of a spontaneous reduction is 

proportional to the size of the system, so it is very likely to happen for 
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macroscopic objects. In fact, in the macroscopic world, this probability is so big 

that a superposition of states cannot exist for more than an infinitesimal fraction 

of a second. Conversely, the occurrence of a reduction on a microscopic scale is 

so small that a quantum system can retain its state of superposition virtually 

forever. This theory has been modified many times since its formulation, mainly 

to take relativity into account and to fix several incongruences.  

Some other theories, like ensemble theories, consider the superposition 

state with a statistical approach, as a collection of alternatives that occurs on a 

set of identically prepared system; the wavefunction is not suitable for 

describing a single system, such as a single particle, and indeed it has no 

physical meaning, since it does not represent a physical property of the particle 

but is an abstract statistical function.   

Another approach is that of non-local hidden variables theories, such as the 

theory of incomplete measurements [1], postulating that there exist some 

hidden quantities we cannot access that regulate the measurement process. We 

can think of it as a realist point of view on the measurement, in contrast to the 

orthodox position, according to which the wavefunction is the complete 

information on a system.  

Decoherence theories state that, when a quantum system is 

thermodynamically paired with the environment, it loses information; this 

happens because the surrounding interferes with the phase of the wavefunction 

causing a mixed state, a statistical mixture of pure states. That can explain the 

observation of the wavefunction reduction, which is an effect of the loss of 

coherence, while the hypothetical “universal wavefunction” (i.e., the 

wavefunction describing the entire universe) always remains coherent. 

Recently, interpretations focused around quantum information became 

increasingly popular. For example, according to the “it from bit” theory [14], 

quantum mechanics describes the observer’s experience of reality, but not 

reality itself: in this interpretation, physical reality is an effect (perhaps a 

consequence) of information and not the other way around. 
 

7 Conclusions  

  We saw how the laws of standard quantum mechanics unavoidably lead 

to the measurement problem. The possible solution ideas presented above are 

only some of the many possible interpretations of quantum mechanics and the 

role of the measurement, each with its strengths and weaknesses. So far, the 

question is quite open. Nonetheless, it should be noted that there is no 

experimental way to discriminate between the interpretations. For this reason, 

the question seems to be rather philosophical or ontological than physical. From 

a scientific perspective, is it meaningful to search for an answer that we cannot 

empirically prove? Most importantly, such a conjecture would not be 
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disprovable either, because there is no way to distinguish between the 

alternatives. 

 Even if, throughout this paper, we have used the words “interpretation” and 

“theory” interchangeably, they really are different, if we want to be careful. The 

ideas presented as possible solutions to the measurement problem are indeed 

interpretations of the measurement theory, and not theories themselves since the 

prerogative of a scientific theory is that it can be disproved by empirical facts. 

These interpretations aim to provide a “mental picture” to explain the same 

consequences. They all come to the same conclusions: they agree that a 

wavefunction reduction (apparent or real that is) exists, the wavefunction has a 

statistical interpretation (whether the wavefunction itself is a real physical 

property or just a mathematical tool) and so on. We could say that, if a scientific 

theory asks “how?”, those interpretations pursue the why. That surely is an 

ontological argument, trying to point out where our perception of reality ends 

and where the real thing starts, if such a thing even exists.  

Therefore, many do not bother much about it and gladly embrace a 

pragmatic instrumental position: the statistical nature of the wavefunction and 

the measurement outcomes are cold facts, and we do not care about why that is 

so. We know how to calculate probabilities from the wavefunction, we know 

how a wavefunction evolves, we know what to expect from a measurement, and 

this is everything we can hope to know. Quantum measurement theory is 

successful in describing the experimental result we get in the laboratory. We 

cannot know why, but there is no point in trying to ask this question. What we 

know is what we need to work with quantum mechanics properly. It is possible 

that in the future a new theory could entirely replace quantum mechanics, 

making those questions meaningless; at the end of the day, quantum theory is 

still the most logical description of nature we have, so we should not feel stuck 

but pave the way for research and progress one step at a time. As Bell said [2]: 

 

“This progress is made in spite of the fundamental obscurity in quantum 

mechanics. Our theorists’ stride through that obscurity unimpeded... 

sleepwalking? The progress so made is immensely impressive. If it is made by 

sleepwalkers, is it wise to shout 'wake up'? I am not sure that it is. So I speak 

now in a very low voice.” 
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