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Why is Bayesian Confirmation Theory
rarely Practiced?

Robert W.P. Luk∗

Abstract

Bayesian confirmation theory is a leading theory to decide the con-
firmation/refutation of a hypothesis based on probability calculus.
While it may be much discussed in philosophy of science, is it ac-
tually practiced in terms of hypothesis testing by scientists? Since
the assignment of some of the probabilities in the theory is open to
debate and the risk of making the wrong decision is unknown, many
scientists do not use the theory in hypothesis testing. Instead, they use
alternative statistical tests that can measure the risk or the reliability
in decision making, circumventing some of the theoretical problems
in practice. Therefore, the theory is not very popular in hypothesis
testing among scientists at present. However, there are some propo-
nents of Bayesian hypothesis testing, and software packages are made
available to accelerate utilization by scientists. Time will tell whether
Bayesian confirmation theory can become both a leading theory and
a widely practiced method. In addition, this theory can be used to
model the (degree of) belief of scientists when testing hypotheses.
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1 Introduction
In the philosophy of science, Bayesian confirmation theory is one of the lead-

ing theories to decide the confirmation or refutation of a hypothesis based on prob-
ability calculus. The theory has supporters who try to rescue (e.g., [Schippers and
Schurz, 2018]) it from challenges (e.g., [Chihara, 1987],[Wayne, 1995], [Shaffer,
2001], [Huber, 2005] and [Brössel and Huber, 2015]) or who try to extend (e.g.,
[Myrvold, 2003], [Crupi et al., 2008], [Henderson et al., 2010] and [Festa and
Cevolani, 2017]) it for greater generality and applicability. Dawid [Castelvecchi,
2015] noted that it may be used to test whether string theory is science. Norton
[2011] enumerated three theoretical advantages of Bayesian confirmation theory
as follows:

“First, the theory reduces the often nebulous notion of a logic of in-
duction to a single, unambiguous calculus, the probability calculus.
Second, the theory has proven to be spacious, with a remarkable abil-
ity to absorb, systematize and vindicate what elsewhere appear as
independent evidential truisms. Third is its most important virtue,
an assurance of consistency. The larger our compass, the more we
must digest evidence of diverse form and we must do it consistently.
Most accounts of evidence provide no assurance of consistency in
their treatment of larger bodies of evidence.”

Given many theoretical advantages of Bayesian confirmation theory, one would
have expected that many scientists apply it for making decisions to accept/reject
hypotheses. However, a casual sampling of scientific research articles (e.g., in Na-
ture and Science journals) reveals that almost all such articles did not use Bayesian
confirmation theory for hypothesis testing at present. Therefore, why is Bayesian
confirmation theory rarely practiced by scientists for hypothesis testing?

2 The practical problem with the Bayesian confir-
mation theory

To confirm a theory in Bayesian confirmation theory, it is often required that
the conditional probability, P (H|E), of the hypothesisH happening given the ev-
idence E should be larger than the prior probability of the hypothesis H without
any evidence, i.e., P (H|E) > P (H) where P (·) is the probability. This require-
ment is based on the notion that the scientist belief in the hypothesis H is revised
with more degree of belief after seeing the evidence E compared with her/his ini-
tial degree of belief of hypothesis H . To calculate P (H|E), it is based on the
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conditional probability:

P (H|E) = P (E|H)× P (H)/P (E).

It may not be difficult to estimate P (E|H) if H is the null hypothesis. Unfortu-
nately, H is typically not the null hypothesis in this case, so there may be diffi-
culties to estimate P (E|H). In addition, there are real problems to estimate the
prior probabilities, P (H) and P (E) as indicated by Earman [1992] who offered
three ways to deal with the problem. The first proposal is the hope that the priors
‘wash out’ as evidence accumulates. This is not useful for the scientists because
they need to justify the priors in order to come up with a conclusion in their papers
for publication. If more and more evidence accumulated adjusts the priors, then
the conclusion drawn may depend on the stage of the investigation. Later work
may find earlier work drawing different conclusions because the prior probabili-
ties have changed! This is not very desirable for scientists. The second proposal is
to provide rules to fix the initial degrees of belief. Earman [1992] commented that
“none of the rules cooked up so far is capable of coping with the wealth of infor-
mation that typically bears on the assignment of priors”. So, scientists cannot rely
on this proposal as there may be debate over which rules to use as well as whether
the rules are suitable. The third proposal is based on plausibility argument. Again,
the scientists cannot rely on such argument because this would open up for debate
when they draw conclusions in their paper. Therefore, there is no remedy for the
prior probability problem for scientists.

Another strategy for the scientists is to try to cancel out or embed the prior
probabilities so that we do not need to estimate them. In this case, not all Bayesian
confirmation measures [Fitelson, 1999] can be used to cancel out the prior prob-
abilities. For example, Carnap’s measure [Carnap, 1962] cannot cancel out the
prior probabilities. On the other hand, measures forming a ratio of probability
may be able to cancel out the prior probabilities. For example, Keynes [1921] is
interested in the ratio P (H|E)/P (H) so that one can consider the odds in favor
of the hypothesis H given the evidence E is known and one does not need to esti-
mate P (H). However, one still has the problem of estimating P (E) which is not
trivial. One may argue that instead of comparing P (H|E) and P (H), we compare
the conditional probabilities between two hypotheses, H0 and H1, so that P (E)
is canceled as follows:

P (H1|E)/P (H0|E) = P (E|H1)/P (E|H0)× P (H1)/P (H0).

The above ratio on the immediate right of the equal sign is called the Bayse factor
and the ratio on the far right is the prior ratio. If the above ratio on the left is larger
than one then we have a higher degree of belief for H1 over H0. However, how
can the scientists estimate P (H0) and P (H1)? One solution is to invoke the prin-
ciple of indifference so that P (H0) = P (H1) = 0.5 as there are two hypotheses.
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However, these are the two hypotheses tested and not the total number of hypothe-
ses that are in existence. This is the point where there is debate about how to set
the prior probabilities as it is uncertain how many alternative hypotheses there are
to take into account. Unfortunately, this may affect the test and the conclusion
drawn by scientists. We believe that this is why Bayesian confirmation theory is
not widely used because its application to drawn (scientific) conclusion is open to
debate.

On the other hand, if we invoke the principle of indifference then P (H0) =
P (H1) = 1/n for n hypotheses. Now, since P (H0) = P (H1) for whatever
number of hypotheses, we have

P (H1|E)/P (H0|E) = P (E|H1)/P (E|H0).

Therefore, this ratio can be used as the basis to accept or reject hypothesis H1
compared with H0 without any prior probabilities. However, there are (at least)
three problems. One problem is that it may not be easy to estimate P (E|H1) be-
cause H1 is not the null hypothesis any more. The second problem occurs when
P (H1|E)/P (H0|E) > 1, but P (H1|E)/P (H2|E) < 1. In the absence of know-
ing all the hypotheses, we do not know whether H1 is the most likely hypothesis
to be accepted. Which hypothesis has the highest probability ratio is important to
scientists since that hypothesis is supposed to be the leading one to be confirmed.
We may assume that the state-of-the-art theory or model is published in journals
or conference proceedings, and it is the leading one to form H0 in order to com-
pare with the proposed theory or model forming H1. So, the second problem may
be resolved partially. The third problem is that we still do not have any measure
of the risk involved in accepting H1, so it is difficult to appreciate the likelihood
of making an error. Although for some distributions of the underlying probabil-
ities of the ratio, we can deduce the distribution of the ratio of probabilities. In
general, we cannot deduce the distribution of the ratio for any distributions of the
underlying probabilities of the ratio. Likewise, although for nested models we can
assume the log-likelihood ratio (i.e., log[P (H1|E)/P (H0|E)]) multiplied by two
to asymptotically follow a chi-square distribution so that we can translate between
the log-likelihood ratio value and the estimated p-value, in general again it is an
open research problem especially for non-nested models and for small samples.
Therefore, given the first and last problems Bayesian confirmation theory is not
very popular among scientists.

3 Scientists’ solution
To avoid the debate about the prior probabilities and to estimate the risk of the

decision making, scientists tend to use a different statistical method. The idea is
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to compare the performance based on a control group using classical hypothesis
testing, i.e. null hypothesis significance testing (NHST) and Neyman-Pearson hy-
pothesis testing. The null hypothesis is that the performance of the particular the-
ory or model has no difference with that of the control group. If the performance
is different from the control group statistically significantly, then the scientists
can report the p-value or significance level, and claim that the null hypothesis is
rejected given a particular confidence/significance level.

For NHST, the scientists can know the risk, i.e., the type-I error of incorrectly
rejecting the null hypothesis. In this way, there is no need to estimate P (E) or
P (H) while at the same time, the risk in making the wrong decision is known.
Many scientists are only concerned with the type-I error because they are inter-
ested in rejecting the null hypothesis. Otherwise, if they cannot reject the null
hypothesis, then they usually may not be able to publish their scientific paper as
they do not have a better model or theory. Also, it is relatively difficult to estimate
the type-II error for composite alternative hypothesis because there may be more
than one parameter value for the distribution of the composite alternative hypothe-
sis. In this case, it is not clear how the Bayesian confirmation theory handles such
composite alternative hypothesis as there may be many prior distributions that fit
the composite alternative hypothesis.

The control group that has the lowest performance is based on a random model
or random guessing. This provides the lower bound performance of a model that
scientific models must perform better than according to the basic principle of mod-
eling accuracy by Luk [2017]. To establish a new scientific model, this model is
compared with the old scientific model that serves as the control group. Since the
old scientific model is supposed to be better than the random model or guessing,
the new scientific model is expected to perform better than the random model or
guessing when the new model performs better than the old scientific model sta-
tistically significantly. Therefore, when there is an established scientific model,
there is no need to compare the new one with the random one. It is sufficient to
compare the new model with the established one.

Scientists make use of many statistical tests that would give some idea about
the risk in the decision making process so that others know about the confidence
level in arriving at the acceptance or rejection of the null hypothesis. For example,
scientists may use paired tests to eliminate influence of other intervening factors in
the comparison. Typical paired tests include the Wilcoxon paired signed rank test
and the randomization test (e.g., [Smucker et al., 2007]). For testing whether laws
or principles hold in the theory, regressions may be used. Without any control
group to compare, the statistical test decides whether the null hypothesis that the
coefficients of the regression are zero is true or not. With some control group,
some scientists may use Chi-square to compare two distinct regression models,
and some scientists use the F-test to compare two nested models (i.e., one being
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the special case of the other). For a probability distribution like that specified
by the Zipf law, the Chi-square test can be used. All these examples show that
the statistical tests only compare with the null hypothesis and the reliability or
risk is about making the wrong decision to reject the null hypothesis as most
of the scientific papers report performance better than that mentioned in the null
hypothesis. Therefore, many scientists do not use Bayesian confirmation theory to
find support for their conclusion and it does not seem to be popular among many
scientists for their work.

Statistical tests are done one at a time to compare with some state-of-the-art
model or theory serving as the control group. The performance of this control
group is used to set the null hypothesis that there is no performance difference
between the control group and the new model or the new theory under test. By
showing that the null hypothesis is rejected, scientists then claim that they have
a better model or theory with statistically significant results, and this is the ev-
idence for showing that scientific progress is made. To increase the reliability,
more than one experiment reported in more than one scientific paper are used to
obtain statistical significance results to support that scientific progress is made.
For establishing a superior theory which is applied to build various models, a ran-
dom model (serving as the control group in the null hypothesis) can be used to
decide whether the new theory is better than the older theory by observing the
number of models of the new theory that are better than the corresponding models
of the old theory (similar to showing that the theory is true in [Luk, 2018]). For
the random model in the null hypothesis, we may assume that the probability that
the model of the new theory will perform the same as the corresponding model of
the old theory is a half. After comparing withN different models, we can estimate
the p-value based on the binomial distribution, so we can decide to reject the null
hypothesis or not. Hence, scientific progress can be made to advance one theory
over the other by using statistical tests in this way. However, for a widely held the-
ory, usually, the newer theory is required to perform better than the old theory for
every model they generate because there are not many models for the (expensive)
experiments in the course of scientific development. For example, the experiment
by LIGO team demonstrating gravitational waves (e.g., see [Bunge, 2018] for a
discussion) is one more experiment to the existing few (e.g., Eddington and Grav-
itation Probe B experiments) that support Einstein’s general relativity theory over
Newtonian universal gravitation theory. Note that each experiment gives rise to
a new model derived from the theory so that with several experiments, there are
several models that make predictions according to the same theory.
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4 Practical problems with the scientists’ solution
Some philosophers are knowledgeable of how scientists perform statistical

tests to claim the superiority of their model or theory. For example, Bird [2018]
commented that scientists perform NHST and the randomized controlled trial
(RCT), so he is aware that at least some scientists (at least those he examined)
do not actually use Bayesian confirmation theory in practice. He did not provide
any explanation as to why Bayesian confirmation theory is not used by the scien-
tists. Instead, he focused on explaining the replication crisis [Baker, 2016] due to
the low success rate of the concerned hypothesis.

The explanation by Bird [2018] suggests that in some scientific disciplines sci-
entists may propose many implausible hypotheses that have low success rate, in
poorly understood topics where the knowledge is highly incomplete. As a result,
the actual false positive rate may be alarmingly high compared with that specified
by the confidence level. Consequently, many experiments in such scientific disci-
plines may not be able to replicate or reproduce their results. He proposed three
responds to this situation: (1) do nothing and keep quiet, (2) seek high-quality
hypothesis (with high success likelihood) and (3) increase the confidence level.

Apart from these responses, scientists have other options that Bird did not
mention. In some scientific disciplines, instead of just one data collection, the
study may perform the experiment on several (highly different) data collections.
Statistical tests are performed for different data collections. If all the data col-
lections show statistically significant results, then it suggests that the proposed
models or theories are more reliably better. This requires more resources but for
some disciplines, this is the norm rather than the exception. Another option is to
perform some kind of replication study but with some novel twist to the theory or
model to throw some light on its generality. For example, Rainville et al. [2005]
do not reproduce any experiment. Instead, they invent a new experiment to vali-
date E = mc2 thereby supporting or falsifying special relativity. In addition, their
experiment tries to measure the precision that the famous equation holds. Yet an-
other option is to perform some comparison study. In this case, many hypotheses
may have been proposed to explain a phenomenon and the comparison study tries
to isolate which hypotheses are critical to the observation of the phenomenon.
Without further resources, another option is to partition the data into subgroups
and perform statistical tests of the subgroups to see if reliable significance results
can be obtained for each subgroup. Finally, instead of explanatory modeling, we
can perform predictive modeling as suggested by Yarkoni and Westfall [2017] for
psychology studies. In this case, we can perform N -fold cross-validation of the
predictive model to ascertain the validity of the superiority of the proposed model
or theory. Given that there are many remedies to classical hypothesis testing, the
solution using classical hypothesis testing still has some advantage over Bayesian
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confirmation theory because such theory does not provide the risk or its estimate
in making the wrong decision.

Another problem with classical hypothesis testing is the issue about optional
stopping rule (e.g., [Mayo, 1996] and [Howson and Urbach, 2006]). In this issue,
it was found that for two different sampling plans, classical hypothesis testing can
result in different conclusions for some specific set of data. Theoretically, this is
undesirable. In practice, this can be circumvented so that it is not an insurmount-
able practical problem. The idea is to use a statistical plan that is less likely to
be challenged by the reviewers. Therefore, the scientists play the “diligent re-
searcher” role when selecting the sampling plan to show that they have used a
commonly accepted sampling plan to sample that does not have many controver-
sies. Only in special circumstances, when it is not feasible to play the diligent
researcher role, a more controversial sampling plan may be selected and the re-
searcher has to provide special justifications for such sampling plan in the research
article to entice the reviewers to accept the paper.

For Neyman-Pearson hypothesis testing, it is not always possible to analyti-
cally derive the distribution of the likelihood ratio even though the likelihood ratio
can be defined for composite alternative hypothesis [Casella and Berger, 2002].
This means that it is not simple to relate the significance level with the likelihood
ratio value for some distributions. As a result, it is not always possible to know the
significance level analytically given the likelihood ratio value although there may
be some practical estimation method for discrete distributions. Therefore, one
cannot claim that this test can always assess the risk of the wrong decision mak-
ing as the likelihood ratio may not be able to translate to the significance level. In
the case that the risk cannot be assessed by Neyman-Pearson hypothesis testing,
scientists can always revert back to NHST to assess the risk of making the wrong
decision so that this is not a great handicap for classical hypothesis testing. Al-
ternatively, for nested models, scientists can gather a large amount of data if that
is possible. This is because due to a theorem by Wilks [1938], as the sample size
approaches infinity, the log-likelihood ratio (i.e., log[P (H1|E)/P (H0|E)]) mul-
tiplied by two for a nested model asymptotically follows a chi-square distribution
so that an approximate statistical test can be made in practice with knowledge of
the approximate risk involved in the decision making. However, for the general
case, this is still an open research problem.

5 Alternative theories and models
Ideally, when a paper about a theory or a model is proposed, the paper should

report a better theory or better model than existing ones by providing evidence
that better predictions are made. Accompanied with better results, there should
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also be some assessment of the reliability of the results and so some statistical
testing should be done. Typically, the null hypothesis that there is no difference
in performance is rejected. For clear cut cases, papers proposing better theories
or better models should be published. However, in real life, the proposed theory
or model may not always be better than existing ones. Worst still, some proposed
theory or model performs with no statistical significant difference from the exist-
ing ones. Should such theory or model be published by the journal or conference
proceedings?

We answer this question by recalling an example of the problem of induction
proposed by Bertrand Russell [1912]. In this example problem, a chicken (or a
turkey) observes that the farmer keeps feeding him every day. So, by induction,
the chicken concludes that the farmer will keep feeding him in the future. Until
one day, the farmer slaughters the chicken for meat. This has been a problem
for the believers of induction, as induction cannot guarantee that the future will
occur identically as the past. However, there are few guarantees in life. Therefore,
should we just accept induction as a limitation of our ability to know? With such
a drastic life or death consequence, perhaps the chicken should think twice before
accepting induction. What can the chicken do?

What the chicken should do is not to be satisfied with the only conclusion that
the farmer keeps feeding him in the future. The chicken should hypothesize al-
ternative theories or models explaining why the farmer feeds chicken in general
and then observe whether these alternative theories or models can provide an al-
ternative understanding as to why the farmer keeps feeding the chicken. Based on
the existing evidence, the chicken may not be able to find a better theory or model
but it is important for the chicken to keep in mind alternative theories and models
in order to assess what are the possible consequences. With these alternative un-
derstandings, the chicken can look for evidence to support the surviving theory or
model or weed out the other theories or models.

In science, we are faced with a similar situation as the chicken. The existing
theory or model may perform well but if we rely on them only, we may only
find what these theory or model predict (as in the confirmation bias). Instead,
we should actively seek alternative theories or models to provide an alternative
understanding of the topic so that we may assess the different impact. Initially,
these alternative theories or models may not be able to perform better than existing
ones, but they provide an alternative understanding of the topic. Therefore, they
should be published so that other scientists can find evidence to determine which
theory or model should survive. If such alternative theories or models are weeded
out of the publication process during the review, then other scientists cannot help
to find the surviving theory. In science, proposing a new theory or model, or
finding a surviving theory or model may take a life time. Therefore, it is important
for papers about alternative theories and models to be published and archived so
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that in the future they can be tested. Therefore, even theories and models that
only perform without significant difference from the existing theory and model
are worthy to be published.

If alternative theories or models are allowed to be published, will we face a
deluge of them with many junk theories and models archived? Will this pollute
the field making it hard for the research to find the signal from the noise? Our pro-
posal is that not all alternative theories or models should be published. We should
publish those that perform at least with no statistically significant difference from
the existing theory or model. If the existing theory or model is highly effective
in terms of their predictions, then this will avoid lots of theories or models get-
ting published. Apart from this criterion, we should also demand that the author
should provide an alternative understanding of the topic and give some prediction
that would distinguish the proposed theory or model from the existing ones. This
would give a lead to other scientists to find evidence to weed out the theories or
models, thereby accelerating the process of falsifying theories or models.

Note that when the null hypothesis is about comparing with the random model
or random guessing, we require the proposed model or theory to be better than the
random model or random guessing because random model or guessing represents
that there is no knowledge about the specific topic or issue. Therefore, if we have
some (scientific) knowledge, then we should get better results than no knowledge.
However, when the null hypothesis is comparing with some state-of-the-art theory
or model that is known to be performing better than the random model or random
guessing, we only require the proposed theory or model to be the same or better
than the state-of-the art theory or model for publication. In this case, similar to
the example problem, we keep a look out for an alternative theory or model that
can eventually perform better than the state-of-the-art theory or model. Thus, we
should allow such alternative theory or model to be published.

While the classical hypothesis testing can test theories or models that are per-
forming similarly with no statistically significance difference, Bayesian confir-
mation measures may have problems testing alternative theories or models. For
example, the ratio of the probabilities (i.e., P (H1|E)/P (H0|E)) needs to be ex-
actly one for the alternative theory or model to be performing similarly as the
existing theory or model. In practice, getting one exactly is very difficult. If we
relax the requirement of getting one exactly, we need to know the distribution of
the ratio of probabilities. Sometimes, it is possible to deduce the distribution of
the ratio of probabilities if we know the distribution of the underlying probabilities
of the ratio. However, sometimes we do not know. Likewise, for nested models
and large samples, the log-likelihood ratio (multiplied by two) asymptotically fol-
lows the chi-square distribution due to Wilks’ theorem so that the ratio value can
be translated into a p-value, but it is still an open research problem to find the
distribution for non-nested models or for small samples. Therefore, this creates a
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practical problem for scientists who may not rely on using Bayesian confirmation
theory.

6 Modeling scientists’ decisions
Bayesian confirmation theory can be modeling the degree of belief of the sci-

entists when testing a hypothesis rather than a practical procedure to perform de-
cisions to accept or reject the hypothesis of an experiment. Here, we provide
a sketch of how this can be done. As there is uncertainty about some of the
prior probabilities, it is difficult to know the estimated conditional probability
P (H|E). To verify whether the ratio, P (H|E)/P (H), is accurate, we can ask
scientists in a survey on how much more confident they are that P (H|E) is com-
pared with P (H) before and after they have read about the scientific work. Then,
we have the open research issue about how to translate the confidence to the ratio,
P (H|E)/P (H), which is open to yet another debate (e.g., [Kaplan, 1989] and
[Huber, 2005]). Even if we have an estimate of P (H|E)/P (H), we have the ad-
ditional difficulty to determine the p-value from the null hypothesis because we
have only a single probability for one experiment. The Bayesian confirmation
theory requires M experiments to decide. In this case, the null hypothesis is that
P (H|E)/P (H) = confidence score in the survey. Note that P (H) and P (E) vary
for different experiments because the number of hypotheses may vary with differ-
ent experiments and the nature of evidence for each experiment may be different.
As a result, we need to compare the predicted ratio P (H|E)/P (H) and the confi-
dence score by a paired test so that the null hypothesis is that the P (H|E)/P (H)
minus the confidence score is zero. A Wilcoxon paired signed rank test can be
used to obtain the p-value for instance so that the scientist can obtain the risk in
making the decision to reject or accept the null hypothesis. However, to make
such a decision, more than one experiment is needed, and it is not clear whether
the ordinary scientists are willing to put in the extra effort in addition to con-
troversies in setting P (H) and P (E) for each experiment in order to predict the
ratio, P (H|E)/P (H). Although we have a mechanism to confirm whether the
Bayesian confirmation theory predicts the subjective degree of belief of the sci-
entists by running this kind of statistical tests, it is unclear whether ordinary sci-
entists will perform such task. Most likely, this is the task for the experimental
philosophers or researchers on science of science [Fortunato et al., 2018] to verify
whether Bayesian confirmation theory makes good prediction about the relative
degree of belief of the scientists for favoring hypothesis H but this confirmation
is open to debate as how to set P (H) and P (E) for each experiment is an open
issue.

Instead of subjective probability, P (H|E) and P (H) can be interpreted as
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objective probability. One can count the number of scientists who belief in the
hypothesisH after weighing on the evidenceE and before the evidenceE is made
available. Next, P (E) can be interpreted as the proportion of scientists who can
access the evidence E. In this way, we can model the scientist decision making
process. Therefore, Bayesian confirmation theory can model a scientist decision
making process in hypothesis testing rather than using it to do hypothesis testing.

7 Jeffreys-Lindley paradox

This paradox [Lindley, 1957] has been debated in philosophy of science ([Spanos,
2013], [Sprenger, 2013] and [Robert, 2014]) and statistics for some time. It occurs
when the sample size is large. For a point value null hypothesis, as the sample size
tends to infinity, the point value may approach a particular value. For very large
samples, the deviations from the point value may be small for the significance
level in NHST, so that one may reject the null hypothesis because of tiny devia-
tions due to the large sample. However, for some prior probabilities, the Bayesian
confirmation theory suggests that the posterior probability of the null hypothe-
sis approaches one instead of rejecting the null hypothesis. This incompatibility
between NHST and Bayesian confirmation theory is the Jeffreys-Lindley paradox.

We resolve this paradox by recalling what these probabilities are supposed to
model. For NHST, the probability is modeling the chance that the data occurred
with the particular value deviating from the value specified by the null hypothesis.
For Bayesian confirmation theory, we are modeling the belief of the scientists in
accepting/rejecting the hypothesis. These two different kinds of modeling do not
necessarily imply that their probabilities have to be consistent with each other. So,
there is no paradox. For NHST, the probability is about the chance of data having
some particular value whereas for Bayesian confirmation theory, the probability
is about the belief of the scientist. In addition, the Bayesian confirmation theory
is only about modeling the degree of belief of the scientist instead of getting the
exact correct degree of belief. Therefore, even if Bayesian confirmation theory
says the probability is 1.0, it is only an estimate. It can actually be 0.6 instead of
one. Hence, whether Bayesian confirmation theory produces a probability that is
consistent with NHST is not a real practical issue. In practice, scientists follow
what the data tells them assuming that the assumed distribution is appropriate as
this is a decision based on evidence; they are not concerned about the modeling
of their belief about the hypothesis as that would mean that they are making deci-
sions based on the degree of belief rather than based on evidence. Therefore, this
paradox does not have an impact in practice for NHST but it has a negative impact
on Bayesian confirmation theory.
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8 Software packages?
Another plausible reason why Bayesian hypothesis testing is less utilized than

classical hypothesis testing is that software packages are available for classical
hypothesis testing but no software package was available for Bayesian hypoth-
esis testing in the past. Recently, Wagenmakers et al. [2018a] favor the use of
Bayesian hypothesis testing over classical hypothesis testing and gave examples
[Wagenmakers et al., 2018b] of the use of Bayesian hypothesis testing using an
open source package called JASP [Wagenmakers, 2017] trying to entice psychol-
ogists to use Bayesian hypothesis testing. Less radical is Quintana and Williams
[2018] who advocated the use of Bayesian hypothesis testing in conjunction with
classical hypothesis testing in order to be more informative about the hypothe-
sis testing as these two methods are thought to complement each other. Apart
from JASP, Quintana and Williams noted that Bayesian hypothesis testing is also
available in the ‘BayesFactor’ R package [Morey and Rouder, 2018].

Despite such software packages are now available, there is still the thorny
issue of choosing the prior distribution or prior probabilities for Bayesian hypoth-
esis testing. At present, Quintana and Williams [2018] suggested to perform some
robust or sensitivity analysis to check whether changing the prior distribution will
have a great impact on the results and the conclusion drawn. If not, the conclusion
drawn would be robust to different prior distributions. Otherwise, care should be
taken to interpret the results. This is, however, what a responsible scientist should
do. Alternatively, an irresponsible scientist may perform prior distribution hack-
ing similar to p-value hacking, trying to obtain the most favorable results based
on finding the suitable prior distributions to reject the null hypothesis. Therefore,
Bayesian hypothesis testing is not immune to abuse.

Apart from the issue about choosing the prior distribution, sometimes the prior
distribution specification is vague so that it is not possible to perform the hypoth-
esis testing. However, NHST may still be able to perform the significance test.
Similarly, sometimes there may not be an alternative hypothesis apart from the
negation of the null hypothesis. For example, when the alternative hypothesis is
θ 6= θo, then it is not clear how to specify the alternative hypothesis for Bayesian
hypothesis testing since the alternative hypothesis does not specify θ to take on
a specific value but rather to indicate that it should not take on a specific value.
In Bayesian hypothesis testing, the practical solution for this kind of problem is
to specify a number of prior distributions that can satisfy this general condition
(e.g., θ 6= θo) of the alternative hypothesis, and determine whether the results are
robust to these different prior distributions. As can be seen, it is not clear whether
such Bayesian hypothesis testing has real advantage over NHST when presenting
results and inferences in a paper as such results or inferences may be inconclusive.

Apart from problems with the prior distributions, using the software packages
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for Bayesian hypothesis testing does not directly indicate the risk that we make
the wrong decisions whereas classical hypothesis testing gives us some idea based
on the p-value (or significance level). The Bayes factor reported by such packages
gives us the odds comparing the alternative hypothesis with the null hypothesis
but this is not the same as how likely we made the wrong decision in accept-
ing/rejecting the null hypothesis. To do this, we need to know the underlying
distributions of P (E|H) which cannot guarantee to derive the distributions of the
Bayes factor. In addition, it is unclear what the final distribution is since the Bayes
factor is multiplied by the prior ratio (which has its own distribution). Likewise,
although for nested models, the log-likelihood (i.e., log[P (H1|E)/P (H0|E)])
multiplied by two asymptotically follows the chi-square distribution so that we
can translate the approximate likelihood ratio value (estimated by multiplying the
Bayes factor with the prior ratio) to a p-value, it is still an open research problem
to find the distribution in the general case especially for non-nested models and
for small samples. Therefore, there is no general solution to provide the risk in
accepting/rejecting the null hypothesis for Bayesian hypothesis testing.

Given these practical shortcomings, it is not clear whether Bayesian hypoth-
esis testing can become as widely utilized as classical hypothesis testing since
Bayesian has many theoretical advantages. Time will tell whether Bayesian hy-
pothesis testing will be as popular as classical hypothesis testing, or even more
popular than classical hypothesis testing or still remains obscure in practice com-
pared with classical hypothesis testing.

9 Conclusion
This article does not compare classical hypothesis testing with Bayesian con-

firmation theory as there are better suited articles for this (e.g., [Romejin, 2017]).
It is also not an advocate of classical hypothesis testing as it has many unresolved
statistical and philosophical issues (e.g., violation of the likelihood principle). In-
stead, this article is about the practical problems that explain why Bayesian confir-
mation theory is not practiced by scientists. Specifically, (a) Bayesian confirma-
tion theory does not measure the reliability or risk of the decision making, (b) the
assignment of probabilities to some of its (prior) probabilities may be open to de-
bate affecting the conclusion drawn by the scientists, and (c) software package for
Bayesian hypothesis was not available before whereas software package for classi-
cal hypothesis testing is widely available. Therefore, scientists use other methods
to support their conclusion in scientific discourse. Specifically, scientists use clas-
sical hypothesis testing to obtain the significance level or p-value measuring the
risk of rejecting the null hypothesis (based on some control group). Evidence of
scientific progress is made when scientists found their theory or model obtaining
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statistical significant results when they compare the performance of their model
or theory with the state-of-the-art model or theory (serving as the control group in
the null hypothesis) or in the absence of any model or theory a random model is
used. To avoid the problem of induction, it is suggested attention should be paid
not to just better theories and models but similarly performing theories and mod-
els so that the alternative theory may guide us to look for what kind of evidence
to weed out the unsuccessful theory or model and the better surviving theory or
model may be found in the future. While at present Bayesian confirmation theory
may not be widely used by scientists to make decisions about which model or the-
ory is better, time will tell whether it will be widely utilized due to the availability
of software packages that accelerate utilization of Bayesian hypothesis testing.
In addition, Bayesian confirmation theory has the advantage that it is not biased
against the null hypothesis, so that scientists showing significance results based on
Bayesian hypothesis testing appears to be more robust than classical hypothesis
testing. However, the prior distributions of Bayesian hypothesis testing need to be
examined carefully, and the classical hypothesis testing can adjust its significance
level for better robustness, so that the advantage of Bayesian hypothesis testing is
not that apparent. Finally, the Bayesian confirmation theory offers a probabilistic
model of scientists making decisions in accepting or rejecting hypotheses.
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