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Abstract  

Indeterminate problems are problems that can be written with κ equations 

with more than κ unknowns and have been used since ancient times from 

many civilizations. 

Problem solving constitutes a critical part of Mathematics Educations, in 

which emphasis is given on the Curricula of Mathematics. Open-ended 

problems may have several correct answers or differed ways of finding the 

correct answer. 

In the present study, the way students of the 5th grade manage an open-

ended problem is examined and also elements of the way they solve it are 

presented. 

Keywords: Indeterminate; Open-Ended Problems; Primary Education 
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1. Introduction  

 
Indeterminate problems are a type of problems, whose theory is an important 

part of Number theory [1]. When the conditions of an indeterminate problem are 

such that its solutions may only be integers numbers, then the problem is called 

Diophantine [2]. 

In his Arithmetic Diophantus of Alexandria (3rd century A.D.) gave special 

emphasis on indeterminate problem solving, that is to say on problems which 

can be written with κ equations with more than κ unknowns [3]. For this reason, 

the branch of Mathematics which sometimes is referred in literature as 

indeterminate analysis, is also called Diophantine Analysis [4]. 

The solution of diophantine equations of first and of second degree is found 

in several Indian works, such as Aryabhatiya (5th century A.D.) In their works, 

Brahmagupta (7th century) and Bhaskara ΙΙ (12th century) gave integer solutions 

of Diophantine equations of the first and of the second degree. Problems of 

linear equations with one or two unknowns are also contained in the Bakhshali 

manuscript, which was found in 1881 [5].  

Problems of indeterminate analysis are also found in Chinese works, for 

example in Sun-Tsu Suan-ching (65 A.D) [6] while in the Classic Arithmetic of 

Chang-chiu-chien (468 A.D.) is emerged the well-known ‘Hundred Fowls 

Problem’ [7]. In Middle Ages we find many similar problems in Indian, Arabic 

and European works. 

Specifically, Alcuin (703-854 A.D.) in Propositiones ad Acuendos Juvenes 

(775 A.D.) mentions the following indeterminate problem:  

 “A certain master of a household has 100 people in his service to whom he 

proposes to distribute 100 bushels of corn: 3 bushels per man, 2 bushels per 

woman and 
1

2
 bushel per child. Can anyone say how many men, women and 

children there were?” [8].  

One of the solutions that can be given in Alcuin;s problem is the following: 

Let the number of men be x, the number of women y and that of children z. Then 

x,y,z ∈ 𝑍+, therefore we have: 

{
𝑥 + 𝑦 + 𝑧 = 100

3𝑥 + 2𝑦 +
1

2
𝑧 = 100

  ↔ {
𝑧 = 100 − 𝑥 − 𝑦

6𝑥 + 4𝑦 + 100 − 𝑥 − 𝑦 = 200
 ↔ 

{
𝑧 = 100 − 𝑥 − 𝑦
5𝑥 + 3𝑦 = 100

 (1). We have  5𝑥 + 3𝑦 = 100 ↔ 𝑥 = 20 −
3𝑦

5
 . Since x ∈ 𝑍+, 

we conclude that  
𝑦

5
= 𝑡 ↔ 𝑦 = 5𝑡 with 𝑡 ∈ 𝑍+ (1) because y>0.  

If 𝑦 = 5𝑡, then 𝑥 = 20 − 3𝑡 and 𝑧 = 100 − 20 + 3𝑡 − 5𝑡 ↔ 𝑧 = 80 − 2𝑡.  

Since x>0, then  20 − 3𝑡 > 0 ↔ 𝑡 <
20

3
 (2). From (1) and (2) we obtain t=1, 2, 3, 

4, 5, 6.  
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Therefore, for t=1,2,3,4,5,6, from the relations 𝑥 = 20 − 3𝑡 , 𝑦 = 5𝑡 and 𝑧 =
80 − 2𝑡 , the corresponding solutions of the following table (Table 1) are given:  

 

t 1 2 3 4 5 6 

x 17 14 11 8 5 2 

y 5 10 15 20 25 30 

z 78 76 74 72 70 68 

Table 1. The six solutions of Alcuin’s indeterminate problem 

 

As it follows from the above, there are six different solutions for the previous 

problem:  (17, 5, 78), (14, 10, 76), (11, 15, 74), (8, 20, 72), (5, 25, 70), (2, 30, 

68). Alcuin gave only one of them, the (11, 15, 74) [8].  

Leonardo of Pisa (approximately 1180-1250), one of the most important 

mathematicians of the Middle Ages [4], in the work Liber Abaci mentions the 

next problem: 

“... a partridge is worth 3 denari, a pigeon 2, a turtledove 
1

2
 denaro, a 

sparrow 
1

4
 denaro, and I wish from them 30 birds for 30 denari” [9], which can 

be solved as follows:  

Let x be the partridges, y the pigeons, z the turtledoves and w the sparrows. 

Then x,y,z,w ∈ 𝑍+  , therefore we have:  

  {
𝑥 + 𝑦 + 𝑧 + 𝑤 = 30

3𝑥 + 2𝑦 +
1

2
𝑧 +

1

4
𝑤 = 30

 ↔ {
𝑤 = 30 − 𝑥 − 𝑦 − 𝑧

12𝑥 + 8𝑦 + 2𝑧 + 30 − 𝑥 − 𝑦 − 𝑧 = 120
 ↔  

{
𝑤 = 30 − 𝑥 − 𝑦 − 𝑧
11𝑥 + 7𝑦 + 𝑧 = 90

  ↔ {
𝑤 = 30 − 𝑥 − 𝑦 − 𝑧
𝑧 = 90 − 11𝑥 − 7𝑦

  

Because z>0, it will be 90-11x-7y>0 ↔ 11x+7y<90 (1). Since x,y,z,w ∈ 𝑍+, 

from (1) we have 𝑧 = 90 − 11𝑥 − 7𝑦 and την w=30-x-y-z. The following table 

(Table 2) gives the corresponding values of x,y,z,w: 

 

x 1 2 3 4 6 7 

y 11 9 8 6 3 1 

z 2 5 1 4 3 6 

w 16 14 18 16 18 16 

Table 2.The six solutions of Leonardo’s indeterminate problem 

 

In conclusion, we may have six different solutions: (1, 11, 2, 16), (2, 9, 5, 14), 

(3, 8, 1, 18), (4, 6, 4, 16), (6, 3, 3, 18), (7, 1, 6, 16) Leonardo mentions in Liber 

abaci mentions only  the following two: (7, 1, 6, 16), (4, 6, 4, 16) [9].  

In his Elements of Algebra (1770), L.Euler on ‘Part II. Containing the 

Analysis of Indeterminate Quantities, Chapter I.Of the Resolutions of Equations 



George H. Baralis 

 

28 

 

of the First Degree, which contain more than one Unknown Quantity’ defines 

Indeterminate Analysis as follows: 

‘When a question [...] does not furnish as many equations as there are 

unknown quantities to be determined, some of these must remain undetermined 

and depend on our will; for which reason, some questions are said to be 

indeterminate; forming the subject of a particular branch of algebra, which is 

called Indeterminate Analysis’ [10].  

Subsequently, he solves that type of indeterminate problems following a 

method called Regula Coeci (‘Blind Man’s Rule’) in Chapter II which is entitled 

‘Of the Rule which is called Regula Coeci, for determining by means of Two 

Equations, Three or more Unknown Quantities’ [10], [2]. 

One of the indeterminate problems Euler mentions is the following: 

“Thirty persons, men, women, and children, spend 50 crowns in a tavern; the 

share of a man is  3 crowns, that of a woman 2 crowns, and that of a child is 1 

crown; how many persons were there of each class?” [10].  

One of its solution is the following: 

Let x be the men, y the women, and z the children. Then x,y,z ∈ 𝑍+, therefore 

we have:  

{
𝑥 + 𝑦 + 𝑧 = 30

3𝑥 + 2𝑦 + 𝑍 = 50
  ↔ {

𝑧 = 30 − 𝑥 − 𝑦
3𝑥 + 2𝑦 + 30 − 𝑥 − 𝑦 = 50

 ↔ {
𝑧 = 30 − 𝑥 − 𝑦

2𝑥 + 𝑦 = 20
 

(1).  

↔ {
𝑧 = 30 − 𝑥 − 𝑦

𝑥 = 10 −
𝑦

2

. Therefore, if we make  
𝑦

2
= 𝑡 ↔ 𝑦 = 2𝑡, then t>0, since 

y>0. For 𝑦 = 2𝑡 from (1) we have: 𝑥 = 10 − 𝑡 and z=20 –t. Because t>0 and  

x>0 ↔ 10-t>0 ↔ t<10, it will be t=1, 2, 3, 4, 5, 6 , 7, 8, 9.  

For t= 1, 2, 3, 4, 5, 6 , 7, 8, 9, x=10 –t, y=2t and z=20-t, therefore the problem 

has  nine different solutions: (9, 2, 19), ( 8, 4, 18), (7, 6, 17), (6, 8, 16), (5, 10, 

15), (4, 12, 14), (3, 14, 13), (2, 16, 12), (1, 18, 11). 

Other important mathematicians involved with indeterminate problem solving 

was J.H.Poincaré (1854-1912), who published a paper on number theory which 

was referred to the study of Diophantine equations as well as  D.Hilbert (1862-

1943) who dealt with the solvability’s  problem of Diophantine equations [4]. 

 

 

2. Problem Solving in Education 

 
In his effort to define ‘problem’, Schoenfeld (1985) mentions the relativeness 

of the term, since it does not consist an inherent property in a mathematical task. 

“The same tasks that call for significant efforts for some students may well be 

routine exercises for others and answering them may just be a matter of recall 

for a given mathematician... being a ‘problem’ is particular relationship between 
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the individual and the task that makes the task a problem for that person... if one 

has ready access to a solution schema for a mathematical task, that task is an 

exercise and not a problem’ [11]. For the above reason he used the following 

definition of the Oxford English Dictionary: Problem. A doubtful or difficult 

question; a matter of inquiry, discussion, or thought; a question that exercises the 

mind’ [11]. 

According to G.Polya, mathematical problem solving is a process which can 

be divided in four phases: understanding the problem, devising a plan, carrying 

out the plan and looking back [12]. Solving a mathematical problem involves 

four serially initiative cognitive processes: translating, integrating, planning and 

execution [13]. Mathematical problem solving includes several activities, for 

example doing word problems, creating patterns, interpreting figures, developing 

geometric constructions, proving theorems, etc. Every mathematical activity can 

also be considered as a problem solving [14]. 

Students, using one or more different strategies, such as applying a solution 

rubric that has been presented in class, using logical-mathematical reasoning or a 

trial-and-error approach or a ‘guess and check’ approach [15], are led to a 

correct or an incorrect answer, which is a part of a larger set of cognitive 

processes [16].  

According to NCSM (1989) problem solving can be understood as "a process 

where previously acquired data are used in a new and unknown situation" [17]. 

The National Council of Teachers of Mathematics includes problem solving in 

the process standards referring that: Solving problems is not only a goal of 

learning mathematics but also a major means of doing so. It is an integral part of 

mathematics, not an isolated piece of the mathematics program. Students require 

frequent opportunities to formulate, grapple with, and solve complex problems 

that involve a significant amount of effort. They are to be encouraged to reflect 

on their thinking during the problem-solving process so they can apply and adapt 

the strategies they develop to other problems and in other contexts. By solving 

mathematical problems, students acquire ways of thinking, habits of persistence 

and curiosity, and confidence in unfamiliar situations that serve them well 

outside the mathematics classroom’[18].   

In the Interdisciplinary Unified Context of Mathematics Curriculum (2003) of 

Greece, problem solving is one of the cognitive content’s axes for all six classes 

of Primary Education, which aims: ‘Students to inquire a situation, to construct, 

questions and problems based on specific data, to reformulate the same problem 

in a different way, to identify and describe similar situations, to investigate open 

problematic situations, to use mathematics in daily life and to become familiar 

with new technologies’[19]. " 

Regarding the New Curriculum in Compulsory Education (2011) which is 

applied along with the previous one, problem solving is a main goal in 

Mathematics and is included in specific mathematical operations’ development. 
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Particularly is mentioned that: ‘Problem solving constitutes the core of the 

development process of mathematical knowledge and mathematical thinking. 

Students learn better when they themselves have the opportunity to investigate 

mathematical ideas through problems solving, since their involvement in this 

procedure helps them to gradually ‘construct’ mathematical knowledge 

deepening conceptually in it and realizing not only its functional aspect but also 

its cultural and historical dimension’ [20]. 

 

 

3. Open-Ended Problems in Primary Education 

 
As Euler characteristically mentions ‘this part of analysis (he means the 

indeterminate analysis) frequently requires artifices entirely appropriate to it, 

which are of great service in exercising the judgment of beginners, and giving 

them dexterity in calculation’ [10]. Although the majority of problems that are 

traditionally used in teaching Mathematics require students to give a predefined, 

specific and unique answer, the last years the approach of open-ended problems 

was developed [21]. 'Tasks are said to be open, if their starting or goal situation 

is not exactly given’[22]. The type of open-ended problems may have many 

solutions or different ways of finding the correct answer [23]. 

Some types of open-ended problems are: investigations (a starting point is 

given), problem posing, real-life situations (with roots in the everyday life), 

projects (larger study entities, which require independent working), problem 

fields (a collection of contextually connected problems), problems without a 

question, and problem variations (”what-if”-method) [24]. The last years, several 

studies have shown the effective use of these problems in students’ creativity 

and mathematical thought [25], [26]. Nowadays, open-ended problems are 

considered a useful tool in the development of Mathematics teaching at schools, 

since, apart from their creativity and mathematical thinking cultivation, their 

flexibility and freedom allow all students to participate in solving them. For that 

reason they are offered for differentiated teaching [27]. In addition, the 

introduction of these types of problems in classroom brings mathematical 

education closer to real life Mathematics [28].  

Open-ended problems, however, seem to be difficulty manageable from 

teachers in classroom. ‘Teachers do not usually possess either the tools to 

evaluate the work of the different students or the tools for promoting higher 

levels of problem solving. There are also some other disadvantages such as 

difficulty of successful problem posing, difficulty of developing meaningful 

problem situations, and difficulty of summarizing the lesson’ [29].  

Open-ended problems are found in Greek school textbooks of Primary 

Education from the first grade [30], however not frequently. 
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4. Research 

 
Research took place in a set of 115 students of the fifth grade in five different 

areas of Attica. Mathematics’ teachers of those five classrooms, when they read 

the worksheet, they mentioned that their students: a. were already familiar from 

the first grade to solve that type of problems, b. were usually give one correct 

answer, since similar problems are included in school textbooks. They also 

mentioned that they were rewarding their students who were giving one correct 

answer, as well as those who were giving more than one answer, in the same 

way as when they were solving problems in more than one way. However, all 

five teachers of the research, when asked if and whether they have managed with 

their students the whole set of the solutions of such type of problem, answered 

that they had never done something like that. The four of them who had 5,7,10 

and 25 years of teaching experience, said that they considered that something 

like that was not important since their goal was many students to be rewarded 

for solving the problem. Only one of them, with 20 years of teaching experience, 

said that, although he intended to do so, he did not have the time. However, 

every time he was trying to record on the board and to discuss in his classroom 

the different answers of his students. 

A two-page worksheet was given to 115 students, which included the 

following problem along with the picture of the five notes:  

 

“I find different ways with which I can 

exchange a 100€ note with notes of 50€, 20 €, 

10€ and 5 €” 

 

Figure 1. The problem and the pictures of the worksheet. 

 

The worksheet was divided in four parts, in each of which respectively were 

requested the answers for the exchange of notes of: A. one value, B. two 

different values, C. three different values and D four different values. 

A discussion was preceded about whether students have met the specific 

problem in their daily life. Out of the 115 students, 93 replied affirmatively. The 

68 mentioned that they had got as a gift a note of 100€ and they had to exchange 

it with notes of lower value. Other 25 students answered that they had also got as 

a gift a note of 100€ but they gave it to their parents because it was of great 

value and it was not possible for them to use it. Only 22 students said that they 

had never seen a note of 100€ before. However, all of them showed great 

interest in solving the problem, something that shows that, when dealing with 

open ended problems associated with real life, students are encouraged to be 

independent thinkers, to share, reflect on and value alternative responses, to be 
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excited about learning, to be responsible for their learning and to complete tasks 

reflective of their true abilities [31]. 

 

 

5. Research’s Results 

 
Subsequently, the four tables (Table A-D) corresponding to the four parts in 

which the worksheet was divided, which they include the solutions of the 

problem, as well as the answers of the students, are presented. 

 

Table Α. Exchange with notes of one value 

Students’ answers 

Solution’s 

number 

Value of 

note 

Algebraic solution Correct Incorrect  No 

answer 

1st 50 € 2x =50=100 115 0 0 

2nd 20€ 5x20=100  111 3 0 

3rd 10 € 10x10=100  114 1 0 

4th 5 € 20x5=100  93 17 5 

 

In the case of the exchange of one value’s notes, of the 115 students 108 gave 

answers of the type: ‘...notes of ...€’, as well as in the cases of the exchange of 

notes of two, three or four different values ‘...notes of ...€ +...notes of ...€’. The 

other 7 students gave answers of the type: ‘50€+50€=100€’. 

The above show that students’ majority was able to calculate mentally. 

Mental calculation is the process in which the person accurately estimates the 

arithmetic result without the use of external means, for example specific objects, 

pencil and paper, etc. [32]. In the last decades special emphasis has been put, not 

only in the in the curriculum but also in the school textbooks, on mental 

calculations and improvised strategies. In parallel, on international level a 

reluctance to teach specific traditional algorithms in instructive textbooks is 

observed [33], [34]. 

  All the students of the sample wrote correctly the first answer of Table A. 

Regarding the second answer, 111 wrote it correctly and the other three gave an 

incorrect answer. Specifically, two of them wrote” ‘3 notes of 20€’ and the one: 

‘4 notes of 20€’. This shows that these students were not able to calculate that 

the exchanges they suggest were giving 60€ and 80€ respectively. 114 students 

wrote correctly the third answer while one of them, using notes of two different 

values, answered: ‘1 note of 50€ and 5 notes of 10€’ (that is the 5th answer of 

Table B). The fourth answer wrote 93 students while 5 students did not answer 

at all. Of the 17 students who answered incorrectly, 12 answered ‘3 notes of 
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20€’ and 5: ’20 notes of 20€’. Answers like the last one, which is inappropriate 

in the context of solving the problem were included in incorrect ones [29]. 

   In all four answers related to the exchange with notes of one value, 42 of 

the 93 students who wrote correctly all these four answers, followed descending 

order regarding to notes; value, as given in the worksheet.  Concerning the 

others, 5 began with the notes of 5€ and followed the descending order of the 

notes’ value. The rest 46 wrote the answers: 1st, 3rd, 2nd and 4th, which shows that 

the calculations with notes of value: 50€, 10€, 20 and finally of 5 €, were easier 

to them. It is also interesting that 17 students wrote a 5th solution: ‘1 note of 

100€’, which shows that they probably did not read carefully the problem. 

 

Table B. Exchange with notes of two different values 

Students’ answers 

Solution’s 

number 

Value of note Algebraic 

solution 

Correct Incorrect  No 

answer 

5th  50 € and 10 € 1x50+5x10=100 95 16 4 

6th  50 € and 5 € 1x50+10x5=100 75 25 15 

7th  20 € and 10 € 1x20+8x10=100 93 0 42 

8th   2x20+6x10=100 86 5 24 

9th   3x20+4x10=100 54 0 61 

10th   4x20+2x10=100 63 0 52 

11th  20 € and 5 € 1x20+16x5=100 65 0 50 

12th   2x20+12x5=100 39 0 76 

13th   3x20+8x5=100 48 0 67 

14th   4x20+4x5=100 47 0 68 

15th  10 € and 5 € 1x10+18x5=100 63 3 49 

16th   2x10+16x5=100 52 0 63 

17th   3x10+14x5=100 33 0 82 

18th   4x10+12x5=100 45 0 70 

19th   5x10+10x5=100 53 0 62 

20th   6x10+8x5=100 51 0 64 

21th     7x10+6x5=100 57 0 58 

22th   8x10+4x5=100 50 0 65 

23th   9x10+2x5=100 46 0 69 

     

Regarding the exchange with notes with two different values, five 

combinations are distinguished: i.50 € and 10 €, ii. 50 € and 5 €, iii. 20 € and 10 

€, iv. 20 € and 5 € and v. 10 € and 5 €. The combination of the notes of 50€ and 

20€ does not constitute solution of the problem. It is interesting that there was 

not any of the students who wrote it. As far as the students answers are 
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concerned, it seems that the majority of them start every combination taking the 

highest value note once and calculate accordingly that of the lower’s. As it can 

be seen from Table B., students found more correct answers for the 

combinations involving notes of  high value (i.50 € and 10 €, ii. 50 € and 5 €, iii. 

20 € and 10 €). Almost half of the students did not write any answer for the 

combination of 10 € and 5€. Many students, having found one correct answer for 

each combination, which was usually the one with one note of the higher value, 

afterwards they did not try to find more answers.  

 

Table C. Exchange with notes of three different values 

Students’ answers 

Solution’s 

number 

Value of 

note 

Algebraic solution Correct Inco

rrect  

No 

answer 

24th  50 € and 

20 € and 

10 € 

1x50+1x20+3x10=100 68 12 35 

25th  1x50+2x20+1x10=100 75 9 31 

26th  50 € and 

20 € and 

5 € 

1x50+1x20+6x5=100 49 0 66 

27th  1x50+2x20+2x5=100 53 0 62 

28th  50 € and 

10 € and 

5 € 

1x50+1x10+8x5=100 36 0 79 

29th  1x50+2x10+6x5=100 36 0 79 

30th  1x50+3x10+4x5=100 29 0 86 

31th  1x50+4x10+2x5=100 19 0 96 

32th  20 € and 

10€  and 

5€ 

1x20+7x10+2x5=100 24 0 91 

33th  1x20+6x10+4x5=100 15 0 100 

34th  1x20+5x10+6x5=100 15 0 100 

35th  1x20+4x10+8x5=100 24 0 91 

36th  1x20+3x10+10x5=100 34 0 81 

37th  1x20+2x10+12x5=100 15 0 100 

38th  1x20+1x10+14x5=100 15 0 100 

39th  2x20+5x10+2x5=100 45 0 70 

40th  2x20+4x10+4x5=100 21 0 94 

41th  2x20+3x10+6x5=100 9 0 106 

42th  2x20+2x10+8x5=100 21 0 94 

43th  2x20+1x10+10x5=100 21 0 94 

44th  3x20+3x10+2x5=100 21 0 94 

45th  3x20+2x10+4x5=100 34 0 84 

46th  3x20+1x10+6x5=100 9 0 106 

47th  4x20+1x10+2x5=100 39 0 76 
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Regarding the wrong answers, they were combinations of notes not of two but 

of one value or there were inappropriate. Furthermore, there were several 

students who repeated the same answer twice, either as it was or vice versa, as 

for example: ‘4 n.of 20€+2n.of 10€ along with 2n.of 10€+4n.of 20€. 

Concerning the exchange with notes of three different values, four 

combinations are distinguished: i.50 € and 20 € and 10 €, ii. 50 € and 20 € and 5 

€, 50 € and 10 € and 5 € and iv. 20 € and 10 and 5€. Students’ answers show that 

the majority of them start each combination by taking the note of the highest 

value once, the largest number of the note of the immediate lower value and 

calculating that of the lowest accordingly. As it can be seen from Table C., 

students found more correct answers for the combinations involving high-value 

notes (i.50 €, 20€ and 10 €, ii. 50 €, 20€ and 5 € and iii. 50 €, 10 € and 5 €). Only 

45 out of the 115 students gave at least one answer to the combination of the 

three smaller values (20€ and 10€ and 5€). The smaller was the value of notes 

they had to combine the fewer students was able to answer correctly. Many 

students, after having found one correct answer for the exchange with notes of 

three different values, did not go further. From their written results one can 

understand that they did not work systematically but they wrote correct answers 

randomly. Nevertheless, there were 9 students who worked systematically and 

wrote all the correct answers. Regarding the mistakes, these were relative only to 

the first combination since they combined notes not of three different values but 

of two. There were also several students who repeated the same answer. 

 

Table D. Exchange with notes of four different values 

Students’ answers 

Solution’s 

number 

Value of 

note 

Algebraic solution Corr

ect 

Inco

rrect  

No 

answer 

48th  50€, 20€, 

10€ and 

5€ 

1x50+1x20+1x10+4x5=100 81 31 3 

49th  1x50+1x20+2x10+2x5=100 70 29 16 

   

  In the case of the exchange with notes of four different values, 81 students 

wrote the 48th answer and 70 the 49th. It seems that these students were able to 

discern that this exchange was needed only one note of 50€ and one of 20€ was 

necessary.   

Furthermore, it was probably more difficult to discern that they could then 

use either one or two notes of 10€ and two or four notes of 5€ respectively. In 

addition, students who did not write the 49th answer were more than those who 

did not write the 49th. From the wrong answers, 29 of students used notes of the 

same value twice, (as for example, ‘2n.of 20€+1n.of 10€+1n.of 20€+2n.of 5€’), 
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that is they used notes with three different values. 2 of those students answered: 

‘1n.of 50€+10n.of 5€’. 

 

6. Conclusions  

   Indeterminate analysis’ problems are found in Primary Education and are 

included in open-ended problems, that is to say in problems amenable to many 

correct answers. 

   In the present research an open-ended problem of exchanging notes was 

given to students of the fifth grade of Elementary School. It was found that 

students showed a great interest in solving the problem, as it was related to real 

life situations and experiences of most students. All students participated in its 

solution and gave more than one correct answers in each of the four main 

different combinations of notes according to their abilities. 

   Most of student answers were the result of mental calculations. In a few 

cases they used formal algorithms especially addition. The different answers and 

the different way of approaching the problem showed that problems of that type 

give students the opportunity to promote their mathematical thinking and 

creativity. It is also of great interest the development of strategies students of 

this age used so as to find all of the correct answers and even more without such 

a problem’s management previously preceded in the past by teachers. However, 

there is no research data on whether Elementary School teachers in Greece 

identify that many of these open-ended problems in school textbooks are 

indeterminate problems. 
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