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ABSTRACT

One has considered the Hypergroupoid Hr= < H;or> associated with a multivalued function
I' from H to a set D, defined as follows:

VxeH, x orx= 4y| [y)NI(x)=Dr,

v (y,z) e H?, yorz =yoryuJuzorz,
and one has calculated the fuzzy grade O(Hr) for several functions I defined on sets H, such
that |H| € {3,4,5,6,8,9, 16.

INTRODUCTION

The analysis of the connections between Hyperstructures and Fuzzy Sets dates since
1993 when Corsini defined and studied the join spaces H, obtained from the fuzzy set
< H, p >, and a little later Zahedi and Ameri considered fuzzy hypergroups. These subjects
were studied in the following years by several scientists in Romania, Iran, Greece, Italy,
Canada.

In 1993 Corsini associated a hypergroupoid with every fuzzy subset, and he proved
that this hypergroupoid is a join space [8].

In 2003 Corsini [14] associated a fuzzy set pg with every hypergroupoid < H, o > and
considered the sequence of the fuzzy subsets py and of the join spaces H,, constructed from a
hypergroup. This sequence has been studied in depth for several classes of hypergroups by
Corsini [14], Corsini—Cristea [16], [17], [18], Corsini—Leoreanu-Fotea [22], Corsini—
Leoreanu—Iranmanesh [23], Cristea [25], [26], Stefanescu—Cristea [70], Leoreanu-Fotea V. —
Leoreanu L. [ 53] .

In this paper one has considered the hypergroupoid < H, or > associated with a
multivalued function I" from a set H to a set D, defined as follows

VxeH, xorx = {y‘F(y)ﬂF(x)?&@},
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V (y,z) € H*, yorz =yory Uzorz
and one has calculated the fuzzy grade 0(Hr) , for several functions I" defined on sets H such
that |[H| e {3,4,5,6,8,9, 16}.
We can remark that we have d(H) = s+1, for all the examinated cases with the exception of
(15%), (259, (35%), (1)), if n = 2°q , where m.c.d. (q,2) = 1.

We remember here some definitions, notations and results which will be the basis of what
follows.

With every fuzzy subset (H; pa) ofaset H, it is possible to associate a hypergroupoid
<H; o,>, where the hyperoperation < o,> is defined by: V (x,y) € H?,

(D xopy =1z | min3 pa(®), pa@t < pa) < max{ pax), pa@y)t f

One proved [8] that <H; o> is a join space.
With every hypergroupoid < H; o>, it is possible to associate a fuzzy subset, as follows:

Set V (x,y) e H*,VueH, Uy (W)=0 ugxoy

ifuexoy,px,y(u)Zl/‘xoy ,
set VueH, A) = Zuyer’ oy (W), Qu=1{ (xy) luexoyt, qu= | Q)

2

(D) pu(uw) = A(u)/q(u), see [14].
So it is clear that, given a hypergroupoid < H; o>, a sequence of fuzzy subsets and of join
spaces is determined Py =i, W2 ,.... kst ..., <H; 0> = oH, H, ... hH..., such that

Vi1, y; =M o and ;H is the join space associated, after (I), with z;.

We call “fuzzy grade of H”, if it exists, the number OJ(H) (or f.g.(H)) = min 1s | wH~ o H P
and “strong fuzzy grade of H” , if it exists, the number s.f.g.(H) = min {s | mH = e H b , see
[17].
In this paper one has determined

6 hypergroupoids of 3 elements such that o(H) = 0,

4 hypergroupoids of 3 elements such that 6(H) =1,

5 hypergroupoids of 4 elements such that d(H) = 0,

8 hypergroupoids of 4 elements such that d(H) = 1,
12 hypergroupoids of 4 elements such that o(H) =2,

5 hypergroupoids of 4 elements such that o(H) = 3,

2 hypergroupoids of 5 elements such that d(H) =1,

2 hypergroupoids of 6 elements such that o(H)= 1,

8 hypergroupoids of 6 elements such that o(H) = 2,

3 hypergroupoids of 6 elements such that o(H) = 3,

1 hypergroupoid of 8 elements such that 6(H)= 4,

1 hypergroupoid of 9 elements such that o(H)= 2,

1 hypergroupoid of 16 elements such that o(H)= 5.
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$ 1. Let T be a multivalued function from a set H= {u;, us...., u,} toasetD, i.e.

I''H— P*(D). Then we have the following
THEOREM 1 If there exists d € D, such that Vi, I'(u;) > d, then d(Hr) = 0.

Indeed, we have V1, x; or xi = {u; | I'(uj) N I'(u)) # 9} = H, therefore V(1, j), u; oru; = H.
Whence H =T, from which Vs, H = H, so d(Hr) = 0.

THEOREM 2 Let I be a multivalued function from a set H to a set D, that is
[':H— P (D), and let <or > be the hyperoperation defined in H :

Vx € H, Xorx={z|F(Z)ﬂF(x);ﬁ@},

Y(y, z), yorz=yory 4 zor z

Then the hypergroupoid < H; or > is a commutative quasi-join space, that is
V(a, b, c, d) e HY,

)] a/bNc/d#0 = aordNborc#0A.

Let’s supposea/bNc/d > v, thatis a € bor v, ¢ € d or v. Then, since
bov=borbu vorv, dorv=dord v vorv,and

V(x,y) € H?, YyEXOrX=>X€Eyory,

at least one of the following cases is verified

(I) aeborb, cedord, ({II)aeborb, cevorv

(Ill)a e vorv, cedord, ((IV)aevorv, cevorv

(I) implies b € aor a, whence b € a or d, and we have alsob e borbcbor ¢
(I) Wefind beaordNborc asin(l).

(ITT) We obtain c e dordcaord,andalso cecorccborc.

(IV) implies veaoracaord andalsovecorccborec.

Therefore the implication (j) is always satisfied whence < H; or > is a quasi-join space.
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$ 2. Set H = {u;, u, us}. Then there are functions I' : H — P"(D) such that the fuzzy grade of

the associated sequence is respectively 0, 1.

(16>  Set I'(u))={d;}, ['(uz) = (u3) = {dy, d3}. We have clearly

oH W | W u3 So  pi(u)=0.467, pni(up) = pi(uz) =0.417.
U U H H

It follows {H = H.
u Uz us | Uz us

By consequence  0(1°) = 0.
u3 Up U3

(26> Set T'(u)= {di, d2}, [(uz) =T'(u3) = {d3}. We have

g]u] w | u One obtains  p(u;) = 0.467,

u | W H H ].11(112) = ].11(113) =0417.

u Uz U3 | U U3 So (H=(H, then 8(25’)=0.
u3 Up U3

(303) Set F(Lh) = {d1, dz}, F(U2) = {dz, d3}, F(U3) = {d3, dl}

oH | Bt |t We have {H=gH=T,
uy |[H|H|H \
0(307)=0.
u H|H Go)
us3 H

(40>) Set T'(u)) = {di, d2}, T(uz) = {d2 }, T'(uz)= {d3}. We have

OH u Uy u3 .

I We obtain pu(1)=0.417 =pn(2),
il Bl u(3) = 0.467,
u; uu | H So d(4¢°) =0.

Uz u3

(50°) Set T'(u))= I'(wy)={d;}, T'(us)={ds}. We have



()H Ui 185} usz
ulmuwluyu | H
185 u; Up H
us3 us3

Ratio Mathematica, 20, 2010

As in (4¢%), we obtain

a(50°) = 0.

(1.°) Let|H|=3= |D]|. Set T(u)) = {d;}, ()= {ds}, T(u3) = {ds}.

So we have
()H Ui 185} u3
Uy (U [ UrUz | U U3
up Uz Up U3
u3 u3

We have clearly
Hi(ur) = pa(u2) = pa(uz) = 0.6.

Therefore we obtain {H =T, whence 8(1,)= 1.

(213) Set F(U.1) = {d], dz, d3}, F(uz) = {dz}, F(u3) = {d3} We have

oH up | w2 us3
uy |H| H H
u wuw | H
u3 up us
By consequence,

1H u Uy u3
U u H H

U2 Uu3 | U2 U3

u3 Uz us

We obtain :  py(u;) =0.37,
M1(u2) = M](U.3) =0.354.

So we have : p,(u;) =0.467,
Mz(llz) = Mz(u3) =0417.

From this, we obtain »H = {H, whence 8(2,°)= 1.

(313) Set F(ul) = {d1, d, d3}, F(U2) = { dl, dz}, F(Ll3) = {d3} We have

5



()H Ui 185} u3
u |H| H H
185 u; U H
us3 up us
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See (2,°).
So we obtain again

a3 =1.

(413) Set H= {ul, Uy, 113}, F(U1) = {dl}, F(U2) = {dz, d3}, F(U3) = {d3, d1}

So we have
oH| W W | u By consequence
w jwus| H ' H wi(uy) =0.354 = py(uy),
U2 wus | H wi(us) = 0370,
u3 H
Therefore we obtain
(H| Y | " |91 Hence pa(ur) = pa(uz) = 04167, pa(us)
u [uwu fuyuy | H
=0.467. It follows ,H = 1H. Therefore
185) U up H
3\ —
o o o4,)=1.

$ 3. Set H = {uy, uy, u3, us}. Then there are functions I' : H — P*(D) such that the fuzzy grade

of the associated sequence is respectively 0, 1, 2, 3.

(104) Set F(ul) = {dl, dz}, F(le) = F(LI3) = F(U4) = {d3, d4} Then we have

We obtain p;(u;) = 0.357,

Hi(u2) = pi(uz) = p(ug) = 0.300.

By consequence |H = gH

OH u 185) us Ug
Ui U H H H

185 Uzus | Upusz | Upx U3
U4 U4 U4

u3 Uy U3 | Up U3
Ug Ug

Ug Uz U3
Ug

and therefore (1" )=0.
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(204 ) Set F(U1) = {d1, dz, d3}, F(UZ) = F(U3) = F(U4) = {d4} . Then

o ] w s s We have as in (1)
u|w| H|H | H oH=1H so 820" =0.
Y) Uz U3 | U2 usz | Up U3
Uy Uy Uy
u3 Uz us | Uz us
Uy Uy
Uy Uz U3
Uy

(30h) Set T(u)= {di,ds}, T(w)={ds, ds}, T(uz) =T(uy) = {ds}. Also in this case

OH up u us3 Uy

u |y | H H H By consequence
= t2ts | H2 s | H2 U3 oH=1H from which
Uy Ug Ug
u3 Uus | Ux U3 6(3()4) =0.
U4 Uy
Uy Up U3
Uy

(40") SetT(u) = {di, do, ds, da}, T(uz) = {do, d3, da}, T'(uz)=T(us) = {ds}. We have

oH | Wi| U2 us | Clearly, {H=gH=T.
w  H HHH So A(4") = 0.

u; H| H|H

u3 H|H

Uy H

(114) Set F(ul) = {dl, dz}, F(LQ) = {dz, d3}, F(U3) = {d3}, F(U4) = {d4} We have

oH| W u u3 W Whence
Ui |z | Uil ) U1Tz | U1 W) wi(w) = pi(us) = 0.333

u3 us U4

=0.344 =0.405.

w2 uu |uu | H Hi(uz) , i(ug)

1 s from which we obtain {H :
us uus | upus

U4

U4 W
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Hence

pa(ur) = pa(uz) = 0.36,
Ha(uz) = 0.394,

H2(ug) = 0.429.

By consequence pH=1H, then J(1 =1

['(u;) = {di, d2}, T'(u2)={ds, ds}, ['(us) = {ds}, T'(us4) = {ds}. So we have

1H Ui 185} usz Uy
u |wmus|uwyus|{uyus| H
U
u wu |uyus| H
U
usz 185} Uy Uy
Uy Uy
(214) Set
OH u 185 us Ug
u | U H u; Uz | Uy Uy
us3 Uy
185 Uzus | Uxu3 | Ux U3
Uy U4 U4
us uzus | Uz us3
U4
Uy Up Uy
We obtain 1H:
1H u | u us3 U4
u |[u |y w H H
Uy 185 Uz U3z | Uy U3
Uy Ug
u3 Uz U4 | U3 Uy
Uy u3 Uy
(31  Set
OH u 185) u3 Ug
U (U Jurux | urus | uyus
5 5] U usz | UpUy
us U3 U3 Uy
Uy U4

Whence
ul(ul) =0.405
pi(up) = 0.344, p(us) = w(ug) = 0.3.

So we have : p(u;) = 0.429,
].12(112) = 0394, Mz(u3) = ].12(114) =0.361

whence one finds that

>H = (H. It follows 8(2;*)=1.

Cu) = {di}, [(w) = {d2}, ['(u3) = {ds}, ['(ug) = {ds}. So

Then Vi, pi(u)=0.571.
By consequence {H=T and

therefore  9(3,") = 1.
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(414) Set F(lh) = {d1, dz, d3}, F(UZ) = {d]}, F(U3) = {dz}, F(U4) = {d3} We have

()H U 185} u3 Uy
u | H H H H So pi(u;) =0.328,
el Al P ) = ) = pua(u) = 0.299.
3 Uy
u3 upusz | upus
Uy
Uy U1 Ug
Hence
1H u W u3 U4 So Mz(ll]) =0.357
U u H H H _ _ _
115 Uz Uz | Uz U3 | Uz U3 uz(uz) Hz(u3) Mz(ll4) 0.3
Usg | U4 | W4 from which ,H = {H. Therefore a(4,*)=1.
u3 Uz Uz | Uz U3
Uy Ug
Uy uz U3
U4

(514) Set F(Lh) = {d1, dz}, F(le) = {dz, d3}, F(LI3) = F(U4) = {d4}

H| W %) u3 Uy
0 We have

B e R A (1) = () = pa(us) = pua(u) = 0.333.
U u; u H H

u3 U3 U4 | U3 Ug So {H=T, whence aG5iH=1.

U4 U3 Ug

(61") Set I'(w)= {di, do}, T(w2) = {do}, T'(us) = {ds, da}, T'(us) = {da}.

oH| W u2 u3 U4 We have clearly
wojuuwuy H | H Vi, pi(u) = pi(w).
u uu | H H

u3 UszlUg | U3zlUy

Uy u3 Ug

Therefore {H = T and by consequence (6, )= 1.

(71" Set T(u)= {di, ds, d3}, T(w)= {ds, d3}, T(u3) = {ds}, T(ug) = {ds}.
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()H Ui 185} usz Uy

u |wyu|luu| H H See (514) and (614)-
H H

2 L5 We have (H=T,

us UszlUy | UzUy

Uq U3 Uy whence 8(7,Y = 1.

(604) Set F(lh) = {d1, dz}, F(U2) = {dg, d4}, F(U3) = F(U4) = {d4} We have

()H U 185} u3 Uy
u | U H H H

Y) Uz U3 | U2 U3 | U2 U3
Uy Uy Uy

us Uz U3 | Uz U3 So 8(60" )= 0.

Uy Uy

Uy Uz U3
Uq

(504) Set F(ul) = {dl, dz}, F(LQ) = F(U3) = F(Ll4) = {d4} We have

OH Ui 185 us3 Uy
w|w| H H H So u(1)=0.357,
up U3 | Uz U3 | U2 U3
u | u | wy w2 = u3) =pn+4)=03.

u3 Uy U3 | Up Uz

Uy Uy
™ Uy U3 It follows (50" )=0.

Uy

(124 ) Set F(Lh) = {d1, dz}, F(Ilz) = F(U3) = {dz, d3}, F(U4) = {d3, d4}

oH| W | U2 U3} U4
u (wu |H{H| H One obtains p;(u;) = 0.256 = p;(us),
us3 _ _
u HIHI H i (uz) = pi(us) = 0.260,
5 H| H whence we obtain {H:
Ur us

10
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1H uy Uy U2 u3
u lmu juyyu| H H
U4 U Ug H H
up Uu3 | Up U3
u3 Up U3

Therefore oH =T (the total hypergroup). Then a1, )=2.

(224) Set F(Lh) = {dl, dz}, F(LQ) = {dz, d3}, F(U3) = {d3, d4}, F(U4) = {d4} Then

OH up U2 u3 U4
u (ywuw | luyu| H H whence
us3 _ _
up) =0.292 = py(ua),
o wwl H | H Hi(ur) 1i(ug)
u3 pi(uz) = wi(uz) =0.3.
u3 U U3z | Up U3
Uy Uy
Uy U3 Uy So, we have
1H U U4 185) u3
U Ui Ug | U Ug H H
W wu| H |H Then pi(ur) = pi(us) = pi(u2) = pi(us) ,
2 Hath 32 whence >H =T, and by consequence
3
u3 u (2, )=2.
us

(324) Set F(U.1) = {d], dz, d3}, F(uz) = {dz, d3, d4}, F(u3) = { dz, d4}, F(u4) = {d3}

OH U | Uy u3 Uy
u |H|H H H
up H H H
U3 wuw | H
u3
Ug up uz
U4

We have p(u;) = pi(uz) = 0.260, pi(us) = py(ug) = 0.256, whence we obtain

11
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1H 185 18 5] us3 Uy

U (upuz | uyuy H H

U u; up H H

5 Uslls | Uyt Then oH = T, from which  6(3,%)=2.
Uyq U3 Uy

(4,") SetT'(u)) = {di, ds, d3}, T'(uz)={d, ds},T(uz)={ds}, T'(us)={ds}. We have:

OH 185 up u3 Uy
W lwwm| H lww| H Then pi(u))=0.3=p(w),
u3 u3 pi(us) = wi(ug) = 0.292.
u uu | H juyw
Ug Ug
u3 uus | H It follows
Ug Uz Ug
1H u Uy u3 Uy
u (yuw | wu | H H
Uy uuw| H H
u3 U3z U4 | U3 Uy Therefore ,H =T, whence (4, )=2.
Uy u3 Ug

(5,") SetT'(u;) = {di, d, d3}, T'(uz) =T(u3)= {ds, s}, T(usg) = {ds}. We have

()H Ui Uz | U3 Uy
w yw | H|H| H So pi(u) = pi(us) = 0.23,

U3 = = 0.260.
o AT |’ wi(uz) = pi(uz)
usz H H
Uy Uz U3

By consequence, we obtain

1H uj Uy uz u3

u (upug fuuy| H H

U4 U Ug H H

Uy U u3 | Up Uy 4

U3 W us Therefore we have oH =T, whence 0(5;" )= 2.

12



Ratio Mathematica, 20, 2010

(624) Set F(ul) = {dl}, F(Ilz) = {d1, dz}, F(Ll3) = {dz, d3, d4}, F(LI4) = {d4} We have

OH Uy U2 us3 Uy
U | Uiuz | upux H H
U3
Uz uj up H H
U3
us3 Uz U3 | Upx U3
U4 U4
Uy Us Uy
1H Uy Uy 185) us
u juyw uyus| H H
Uy wu| H | H
185 Uzus | Up U3
u3 Uz Uj3

Then »H = T. Therefore 8(6," )= 2.
2

Hence M](ul) =0.292 = }l](ll4),
i(u2) = pu(uz) = 0.3.

We obtain

whence Vi, pi(u) = pi(ur).

(724) Set F(ul) = {d1, dz, d3}, F(Ilz) = {dz, d4}, F(Il3) = {d3, d4}, F(U4) = {d4}

OH Uy Uz | U3 Uy
up | Ui U H|H H
U3

up H|H H

u3 H H

Uy Uz uj3
1H Uy Uy 185) u3
u |[upug|uuy| H H
Uy uu| H H
up Upus | Upus
u3 Up U3

We have pi(up) = pi(ug) = 0.256,
pi(uz) = wi(us) = 0.260.

So, we obtain 1H:

Then V 1, po(u;) =0.389,s0 oH =T, and A7, )=2.

13
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(8" Set T(w)= {d;, &b}, T(w)={ds}, T(ws)={ds}, T(us)= {ds}. We have

OH U 185 us Ug '

w | w g | oy u | U | g ug We obtain p(u;) = 0.389 = pi(uy),
u3 Uyg },ll(U3) =0.476 = }l](ll4).

up up Uz | upuz | U uz
u3 Uy

u3 Uz | usuly By consequence,

Uy Uy

1H U 185 u3 Ug

U (U uz | uyup H H

u ww| H H

usz U3z ug | Uz Uy

Uy U3 Uy Therefore sH=T and (8" )=2.

(95) Set I'(u;) = [(w) = {dy, db}, T(us) = {ds}, T(ws)= {ds}. We have

()H U 185} u3 Uy
U jwmuw luyu |uu | uyyu See (824).
us Ug
Y) Uil | upuz | upuz
u3 s Therefore 6(924 )=2.
u3 U3 u3 Uy
Uy U4

(10,*) SetT'(u) = {d;, do}, T(uz)= {ds}, T'(u3) = T'(ug) = {ds}. We obtain

oH M| % | B | B whence pi(ur) = pi(w) = 0.476,
U | u | U up ug
Uusug | Uz lUg M(U3) = M(U4) =(0.389.
Y) Y) DY) Y)
Usuyg | Uzly
u3 Uz Uy | Uz Ug
L U3 t4 So, we obtain

14
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1H u 185 us Ug

u |uuy | uiup H H

5 u;up H H

usz Uz uUg | Uz Uy . 4

™ U3 Uy Hence oH =T, from which 6(10," )= 2.

(11,*) SetT(u) = {di}, T(uz)= {dy, ds}, [(u3) = {ds, dg}, T(ug) = {d4, d;}. We have

oH| M | % | % | W Hence pi(ur) = pu(us) = 0.291,
u |uyw| H H |uu
uy Hi(uz) = pi(us) = 0.3.
185 Uz U3 | Uz U3 H
U4
u3 Uz us H
Uy
U4 U us
Uy

One obtains 1H as follows:

1H U U2 u3 Uy

U |upup | Uugup H H

U wu | H H From 1H, one finds p(u;) = pa(vy), V(i, j).
us Uz Uy | Uz Uy

Uy U3 Uy

Therefore s H="T, so 6(11,* )=2.

(12,%) Let T(u) = {d, d2}, T(u) = {do, ds}, T(us) = {ds}, T(ws)= {d;}. We have

oH| W U2 u3 Uq Then p(u;)=0.3, pi(u)=0.3,
wjwu | Ho O H wi(us) = 0.2917, wi(us) = 0.2917.
Uy Uy
18] Uiy uz | U Uy H
u3 u3
u3 Uz U3 H
U4 Ui Uq

By consequence,

15
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1H U 185 u3 Uy

u (uw | wu| H H B

u wu, | H H Therefore we have oH = T (the total
= e hypergroup) whence d(12,* )= 2.

U4 JIERIP]

(15  SetI'(u)) = {di, d2},

[(u2) = {da, ds3}, ['(u3) = {da}, T'(us)= {ds}.

We have
H u Uy u3 Uy
0 wi(u) = 0.272 = py(us),
u |yyuw | H|juyuw| H
u; u3 ti(uz) = 0.286, pi(us) = 0.271,
up H| H H
u3 uu| H
U3
U4 Wl | whence
1H 185) U u3 Ug
So we have py(uz) = 0.405 = py(ug),
Uy | U2 | Ux2U7 | U Uy H
U3 U3 Mz(ul) = ],Lz(l,l3) =0.34.
u; upus | upuz [ upu3
Uy
U3 Uj U3 | Uj U3 We obtain
U4
Uy U4
2H U u3 185) Uy
We have clearly
U; (Uju3z | uyus H H
p3(ur) = pa(uz) = p3(uz) = p3(us).
u3 uj us H H
u Uz Ug | U2 Uy
Therefore 3H is the total hypergroup of order 4
Ug Uz Ug

and o(15* )= 3.

16
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(234) Set F(lh) = {d1, dz}, F(UQ) = {dz, d3}, F(Il3) = F(U4) = {d3, d4}
We obtain the following

oH| W U2 W U4 We have p(u;) =0.27083,
3; Uy Uy E g g i (u2) = 0.286, py(us) = pui(us) = 0.272.
u3 Uz U3 | Uz U3
Uy Ug
Uy uz u3
Uy

Therefore the second hypergroupoid is

(H| W] W U4 Ui Hence pa(uz) = pa(u;) = 0.405,
U Uy | WU WUy | H 2(u3) = po(ug) = 0.369.
Uy Uy
usz UzlUg | UsUg | U3 Uy
uj
Uy Uz ug | U3 Ug
uj
uj up

By consequence we have again

2H 185 Ui us Uy

U | U Uy H H H

U Uy U H H

U3 usuy | H From oH we obtain 3H = T. Then 325" )=3.
Uy U3 Uy

(35") IfD(u) = {d;, ds, d3}, T(uz) = {ds, ds}, T(uz) =T(uy) = {dy}.

oH ug u | u3 U4
u [yyu | H H H
up H| H H
s 1 uflu3 One finds the same sequence as in (23*).
4
Uy Uz u3 Therefore 635" )=3
Uy

17
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Set F(lh) = {d1, dz, d3}, F(UQ) = {dz, d3}, F(U3) = {d3, d4}, F(U4) = {d4} We have

(45"
OH U 185 usz Ug
u |uiuluuw | H H
us3 u3
185 u; Up H H
u3
usz H H
Uy U3 Uy
1H us3 U Y) U4
usz | U3 us3 us3 H
upup | U up
up Up Uz | upuz | U uz
Uy
u up Uz | U Uz
Uy
Uyq U4

Hence sH=T and (45" )=3.

So Ml(lh) =0.272= },l1(l,12),
wi(us) = 0.286, p(us) = 0.271.

Hence

Then py(us) = po(ug) = 0.405,

pa(ur) = pao(uz) = 0.369,

from which we obtain

2H Ui 18 5] us3 Uy
1981 Uiy uz | U Uy H H
U wu| H H
U3 Uz U4 | U3 Ug
Uy us3 ug

$4. Set H= {uy, up, us, ug us}. Then there are functions I' : H — P*(D) such that the fuzzy

grade of the associated sequence is respectively 1, 2.

(1% Let |[HI=5= D[, )= {di, &b}, T(w) = {ds, d5}, T(u3) = {ds, ds}, T(us) = {dal,
I'(us) = {ds}. We have

oH up uz us U4 Us
Up | upuz | upuz | upu | upuz | Ui

us3 u3z Uy | U3z Ug Us
185} U (U2 [ U U2 | U U
u3 Uz U4 | Uz Ug | U3 Us
u3 UzUsz | UpUu3z | Uz U3
Uy Uy U4 Us

Uy Uz g u3
U4 Us

Us Us

18

So M1(u1) =0.29167= M1(u4),

pi(uz) = pi(uz) = 0.2936, pi(us) = 0.370.

We obtain
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(H|Us| W u3 i W From this we have p,(us) = 0.348,
Us | Us Us Us H H _ _
U Us | up us H2(u2) = pa(uz) = 0.3067,
u Uz U3 | Uz U3 | Uz U3 | Uy U3 ta(up) = po(ug) =0.3.
up Ug U; Ug
us Uz Uz | Uz Uz | uzu3
Urlg | Wilg | So pp(us) > pa(uz) = p(uz) > p(ur) = p(us).
Ui U Uy u; Uy
W ujuy | It follows that oH = jH. Therefore o(1 D)=1.

2°) Set|H|=5=|DI|, T()={d, do, ds}, T(w)={ds, ds, ds}, T(uz) = {ds, ds, ds},
F(U4) = {d4}, F(U5) = {ds} So we have

oH up U2 u3 Ug Us
ur fuuus e | Hjuw | uw Whence we obtain p;(u;) = 0.228,
u3z ug Uz Ug [ U3 Us
up wu |H{uyu| H ni(up) =0.234, w(usz) =0.2447,
U3 Uy U3 Uy _
o ol o T i (us) = pa(ur)
Uy u; | upus pi(us) =0.231.
U3z Ug | Ug Us
Us u3 Us
(H{Us| W | Us U W We have p,(u3) = 0.3852,
Uz | U3z | Uz ulgluz H H Hz(uz) _ 0.3644,
5
185 18 5] UzUs | UpUs | Ux U5 },lz(us) =(0.341 2,
Uy U4 | U Ug
us us us us ]Jz(ul) = ]Jz(u4) =(0.3208.
Up Ug | U Ug
U Up Ug | U] Ug
Uy U Uy

So oH = {H and by consequence 9(2,°) = 1.

$5. Set H= {uy, up, us, ug, us ue}. Then there are functions T : H — P*(D) such that the fuzzy

grade of the associated sequence is respectively 1, 2, 3.

19
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(1% Set |[HI=6=|DI, T(u) = {dy, ds}, T(w) = {do, ds3}, T(u3) = {ds, dsl,
F(U.4) = {d4, ds}, F(u5) = F(uﬁ) = { ds, d6} We have

OH u Uy us3 Uy Us Ug
U (iU | uiuz | Ui up H U Uz u; Uz
u3 U3 Uy U4 UsUg | U4 U5 Ug
185 uiuz | Ui up H H H
usz U3 Ug
u3 Us Uj3 Uz Uj3 Up uj3 Up uj3
Ug UgUsUg | UgUs5 Ug | UgUsUg
Uy U3 Uy U3 Uy U3 U4
Us Ug Us Ug Us Ug
Us Ug Us Ug Us
Ue Ue
Ue U4 Us
Ue

So pi(u;) =0.231667, pi(uz) = 0.2284, pi(us) = 0.22654, pi(us) = 0.22656,
pi(us) = pi(us) = 0.219.

Hence we obtain

1H U 18] U4 u3 us Ue
Ur |tttz gtz ot H H Therefore pa(u;) = 0.348,
Ug u3 Uy
u U (WU | Waus | wus | upuy | Ma(up) =0.3315,
u U3 UsUg | Uz us U
3 3UsUg | U3 U5 Ug Lo(ug) = 0317,
Uy U4 Uq U3 Ug U3 Ugq U3
Us Ug Us Ug p2(uz) = 0.303,
u3 us3 u3 u3
usug | usug | Ho(us) = pa(ue) = 0.29.
Us U5 Ug U5 Ug
Ue Us Ug

By consequence >H = {H, hence 0(1 9=1.

(21°) Set T(u) = {di}, T(u) = {ds, ds, da}, T'(u3) = {ds, da, ds}, T(us) = {da}, [(us) = {ds},
I"(ug) = {ds, d¢}. We have

20
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()H Uy 185 u3 Uy Us Ug
u | u | uu H U up uj u3 U u3
u3 ug us Uy Us Ug Us Ug
Uy Up U3 Up U3 Uz U3 Up U3 Uz Uj3
Uy U4 Us Ug Ug Ug Us Ug U4 Us Ug
usz Uz U3 Uz U3 Uz us3 Uz U3
UgUs5Ug | U4UsUg | UgUs5 Ug | UgUs5Ug
Uy Uz U3 Uz U3 Uz U3
U4 UgUs Ug | U4Us5 Ug
us us us us us
Ue Ue
Ug usz us
U

Setting {uy, u4, us, ug} =P, we have

1H Uy u3 U | U4 [ Us | Ug
up | Up | Uupus H| H|H|H
u3 u3 H|{H H|H
u P|(P|P|P
Uy P/ P|P
Us P P
Ue P

We obtain
pi(ur) =0.303
wi(u) = 0.22469
pi(us) = 0.24

Hi(ug) = p(up) =
i (us) = p(ug).

One finds H=1H. So 8(2,%=1.

(1% Set |H|=6=|DI|, T'(u)={d;, d}, T(w)={ds, ds}, [(us)={ds,ds},

['(ug) = {d4, ds}, T'(us) = {ds}, I'(ue) = {ds}. So we have

OH u 185 us Uy Us Ue
Up [ uruz | upuz | Upup up Uz up Uz up U2
u3 U3 Ug | U3 Ug Us U4 Us Ue
Uz Uz | U2 u; U2 u; U2 up U2
u3 UsUg | U3UqUs | U3 U4Us | U3 Ug
u3 Uz U3 Uz U3 Uz U3 Uz U3
Uy Ug Us Ug Us U4 Ug
Uy us3 Ug us3 Ug u3 Uy
Us Us Us Ug
Us Ug Us U4 Us
Us
Ue Ue

21

wi(ur) = 0.268,
ui(uz) = 0.267,
wi(us) = 0.260,

i(ug) = pi(u2),
wi(us) = p(w),
M](u6) =0.348.



Therefore we obtain
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1H Ue U Us 18 5] Ug us
Us | Ug | U Us | U Us | Up UsUg | Ul UsUg H
Us Ug U Uy U Uy
U U uUs | Uy Us up Us up Us up Us
Up Uy Up Uy Uy Ug U3
Us Up Us u; Us u; Us u; Us
Uz U4 Uus | UxUy U3
185) Uz Uy Uz Uy Uz Uy
us
Uy Uz Uy Uz Uy
us
us us

Setting I' = {uy, us, Uz, us},

Q = {ug, u3} we have

>H

up | Us

U

Us

5]

o ||

Uy

||| E

Ue

(@]juojjas]jasijan

u3

(@) @jjasfjenfjasijan

So we have

So Mz(uﬁ) = Mz(u3) =0.315

ta(ur) = po(us) = pa(ur) =
Mz(ll4) =0.279.

wi(un) = pi(us) = pi(uz) = pi(us) = 0.208
ul(u6) = Ml(u3) = 0.233

It follows 3H =,H, by consequence 1,0 =2.

2% Set|Dl=6=|HI|, T(u)={d;, d}, T(w) = {ds, ds}, T(us3) = {ds, ds?},
F(U4) = {d4, d5}, F(U5) = {ds, d6}, F(u6) = {d6} We have

()H Ui 185 u3 Uy Us Ue
U (iU | uruz | U u u; U U U U U
u3 Uz Ug | U3 Ug Us | Ug Us Ug Us5 Ug
u uuw | uyup u; up H u; up U3
u3 usz Ug | U3z Ug Us U5 Ug
u3 Uz U3 Uz U3 Uz U3 Uz U3
U4 Ug Us UgUs Ug | UgUs5Ug
Uy U3 Uy U3 Uy U3 Uy
Us Us Ug Us Ug
Us Us Us Us Us
Ue Ue
Ue Us Ug

22

So we obtain
pi(uy) = 0.2467 = py(ue),
ui(u) = 0.243 = py(us),

},ll(Ll3) = }l](ll4) =0.2407
Whence
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1H u Ue up Us U3 U4
U | Wug | Ujue | Ujug | U ug H H
Uz Us | U2 Us
Ug Uil | U1 Ug | U Ug H H
Uz Us | U2 Us
185} U Us [ UpUs | Uz Us | U2 Us
Uz U4 | U3 Ug
Us Uz Us | Upx Us | Uz Us
Uz U4 | U3 Ug
usz u3z ug | U3z Ug
U4 U3 ug

Therefore we set P = {uy, ug, u3, us}. We obtain

2H Up | Ug | U3 | Ug 185 Us
uy |P|P|P|P H H
Ug P/P|P| H H
u3 P|P H H
Uy P H H
u Uz Us | Uz Us
Us Uz Us

Hence

Ha(ur) = pa(ug) = po(u3) =
ua(ug) = 0.2667,

H2(uz) = wa(us) = 0.2619.

We have clearly 3H =,H, whence 9(2,°) =2.

(32%) Set ['(w)={di, do, ds}, T(u) = { ds, da}, T'(u3) = { dy, ds}, ['(ua) = {ds},
['(us) = {ds, de}, I'(ue) = {de}.

oH| W u us3 Uy Us Ue So we have
u |ujuz |uu H
WU [ upu | upup up uz up iz ui(uy) =0.233,
u3 U3 UsgUs | Uz UsgU;s Us Ug
U u; U u; up uup H up U2 Ml(u2) =0.230,
u3 U3z UsgUs | U3 Ug Us U3 Us Ug
},ll(l,h) = 0.228,
usz Uz U3 Uz U3 Uz U3 Uz U3
U4 Us UsUs | U4Us Ug | UgUsUg ni(ug) =0.218,
Uy U3 Uy U3 Uy us Uy
Us Us Ug Us Ug HI(US) = Ml(U3) = 0228,
Us usz Uy uz Uy HI(UG) =0.231.
U5 Ug U5 Ug
Ue Us Ug
We obtain

23
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1H Uy Ue 185 us3 Us Uy
U | U | Uiug | Ujug | UjUgU2 | U Ug U2 H
u U3 us U3 us
Ug Us | UsU2 | UgU2 Ug U2 Ug U2
U3 Us UsUs | U3UsUy
Uz DY) U2 U2 Uz U3 Us
u3 Us u3 us Ug
u3 us3 us u3 us uz us
U4
Us U3 us uz us
U4
Uy Ug
We have

Ha(uy) = 0.345 > pa(ug) = 0.326 > py(us) = 0.324> pa(z) = 0.306 > py(us) = pa(us) = 0.296.

Therefore we have

2H U Ug Ug 185] u3 Us
U U | UiUg | Uy Ug | Ug Ug H H
U4 g Up
Ug Ug UgUg | UgUg U Ug U Ug
U |UU3Us | UpU3Us
Uy Uy Ug Uy 185) 185
us Us us Us
up Uz u u
us Us us Us
us us Us us Us
Us us Us

We obtain now
usz(up) = 0.348 > us(ue) = 0.33158> pz(ug) = 0.317 > ps(uz) = 0.303 > ps(uz) = ps(us) = 0.29.

Therefore 3H =,H and it follows that 3(3,%) = 2.

(42°) Set T(up) = {di, da}, T(u) = { d, d3}, T(us) = { ds, da}, T(us) = {da}, T(us) = {d3},
['(ug) = {d4}. We have

24
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()H Uy 185 u3 Uy Us Ue
U | Uiuz | Urur U3 H UruUg (UpU2U3 | U Uz U3
Ug Ug Us Ug Us Ug Ug
u wwu | H U up u; up Uz H
U4 Us Uz ug Us | UqUs
usz Uz U3 H Uz U3 Uz us3
Us Ug Us Ug Us Ug
U4 up U2 Uruzu3 | Uy vz U3
U4 U4 Us U4 Ug
Us Uz U3 Uz us3
Us Us Ue
Us U3 U
Hence we obtain
1H Us U4 Uy us3 Ug 18]
Us | us| us Us |Uusus | usuy H
UgU; | UgU; | UU3 | Ul U3 Ug
Ug Ugup | U4 g u3 Ug Uy Ug U
u; Uy us3 Ug us3 Ug Un
U Ug U u3 U4 U Ug U
u; Uy u3 Ug u3 Ug Uz
u3 u3 u3 Ue u3
Us U2
U Us U U2
U U

Therefore pa(uz) > pa(ue) > pa(us) > pa(us) > pa(ur) = po(us).

Therefore we have

2H u Ue Us us3 U Uy
U2 | U2 | U2 Ug 185 Uz Ug H H
Ug Us | Us U3
Ug Us | UgUs | UgUs | UgUsU3 | Ue UsU3
u3 U Ug u; Uy
Us Us Us us Us us Us us3
U Ug u; Uy
us3 us us us3
U1 Ug u; Ug
U u; Ug up Uy
U4 up Uq

25

We find :
wi(u) =0.210 = pi(ug)
pi(up) = 0.221
pi(us) =0.216
wi(us) =0.208
wi(ug) = 0.219.
We have :

Ho(us) = 0.324

H2(up) = 0.345

Ha(ug) = 0.326

p2(uz) = 0.3058

t2(up) = pa(ug) = 0.296.

We can see that 3H =7H and

it follows that 5(4,%) = 2.
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(526) Set F(Lh) = {dl}, F(uz) = {dz, d3}, F(Il3) = {d3, d4}, F(U4) = {d4, d5}, F(Ils) = {d5, d6}
[(ug) = {ds}. We have

oH W | W u3 U4 Us Us We obtain p;(u;) = 0.348,
u | u up upuz | upus U ug U us _ _
pi(u2) = 0.268=p;(ue),
Uzus | Uz Ug | UgU;s Us Ug Ue
u Upu3z | UaUu3 | UpU3 | U2U3 Uz u3 pi(us) = 0.2667=p1(us),
Ug | UqUs [ U4Us5Us | UsUe (1s) = 0.260
us u | uuz | uu Uz U3 Hilts T
UzUsg | UgUs | UgUs5 Ug | Ug U5 Ug
Uy U3 Uy U3 Uy us Uy
Us Us Ug Us Ug
Us U4 U4
Us Ug Us Ug
Ug Us Ug
So, we have
H u; U | Ug u3 Us Uy
up | up oW Up | Upu2le | U Uz Us H Now we obtain
Uz Ug | Ua Ug U3z us U3z us
w WUg | Uzug | Uz U U Us up Us Ha(ur) = 0.324
uu uzu u u
3Us 3Us5 5 Uq U3 ta(ug)= 0.315,
Ue Uz Ug Uz Ug Uz Ug Uz Ug
UsUs | U3Us | UsU4Us H2(us) = pa(uz) =po(up) =
u3 U3 us U3z us Us U4 U3
]-12(116) =0.279.
Us U3 Us Us U4 U3
Uy U4

Setting P = { uy, ue ,us us }, we find o H

»H u; Us (U2 | Ug|U3|Us

U | Ui Ug | U Ug

Uy U Uy We have clearly 3H = oH whence a5 =2.
up
Ue
u3

Us

gcljen] Ipgar
o | |T

a~lla-lia-Alan

a~Aia-lis=Ris-Njan! o

26
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(62%) Set T(w) = {di, dp, ds}, T'(u2) = {da, ds, ds}, T'(u3) = {ds, ds},
I'(us) = {ds, d6}, I'(us) = {ds}, I'(us) = {ds}. So, denoting {ui, Ui+1,..., Uj.1, Uj} by ui, we have

oH | W U | us | Uus | us Ug We have py(u;) =0.233,
3 3 3
u |wuxlu ju H|u uu
1 1uU2 1 1 1 1 U2 M1(112) _ 02302’
U4 Ug
3 3 3 q

uy wur H6 U WU i(us) = pi(ug) =0.228,
u3 Uy | U up u

6 6 6 us) =0.218, pi(ug) = 0.2308.
W N s i (us) 11 (us)
Us U35 u36
U, g U,

8 46 Hence
1H u Ue u Uz Uy Us
Ui U tite | Uite | Uile Ui le H We have po(u;) =0.345454,
U Up U3z U4 | Up U3 Ug

Ug Us | UgUy | Ug2 Ug Uz Ug U2 H2(ug) = 0.326316,

us u. u uz usu

304 | Usls 105 Uals to(us) = 0.305797,

U up U Y) Uz Us

U3 Uy U3 Uy U3 Uy p2(uz) = ta(ug) = 0.29615,
u3 U3 U4 U3 ug U3 Uy

Us MQ(U5) =0.32424.
Uy U3 Uy U3 Uy
Us
Us Us
From this, we have >H as follows
2H u Ug Us up u3 Uy
U |Up | UiUg | Ul Ug | U Ug H H
Us Us Uy

Ue Ue Ue U5 | Ug Us Ug Us Ug Us

U Uz U3 Uy | Up U3 Ug
Us Us Us Uy Us Up Us Uy

U3 Uy u3 Uy One can see that 3H = oH,
Uy up Uy 185 6
U3 Uy Us Uy therefore 0(6,°) = 2.

u3 U3 Uy U3 Uy
Uy us3 Ug

27
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(726) Set F(Lh) = {d1, dz, d3}, F(U2) = {d4}, F(U3) = { d3, d4, ds}, F(U4) = {d4, d5, d6},
['(us) = {ds}, I'(us) = {ds}.

We have p(u;) =0.22,

wi(u) = 0.20864,

M](U}) = 022762,

i (us) = pa(us)

ri(us) = pi(uz) = 0.20864,
},ll(Ll()) = },ll(ul): 0.22.

Hence,

OH u Uy u3 Uy Us Ue
U |Uiu3 | Uiuz | upuzx us H up us Ui us
U3 Uy Ugq Us U4 U5 Uq Ug
185 Uz U3 U U Uz U3 Uz U3 Uz U3
Uy U3 U4 Us | U4 U5 Ug Ugq U5 Uq Ug

u3 uup H uj up H

U3 Ug Us U3 Ug Us
Uy Uz U3 Uz U3 Uz U3
UgUs5Ug | UgUs5Ug | UgUs5Ug

Us u3 Uy u3 Uy
Us Us Ug
Ue U4 Ug

].il(U3) = |.i1(u4) =0.22762 > ul(ul) = ul(u6) =0.22> ul(uz) = ul(us) =0.20864. We obtain

1H u3 g u Ug up Us
U3 [usUg|Usug [Uzug fusug | H H
Ui Ug | U Ug
Uy uzug (Usug fuzug | H H
UjUe | Ui Us
up UjlUe | UrlUg | UpUe | U Us
UxUs | Uy Us
Ug UilUg | UrlUg | Uy Ug
Uz Us | Uz Us
Uy Uz Us | Uz Us
Us Uz Us

Set P = {us, ug, up, us}, Q= {uy, ug}. We obtain

>H

Us | U4

c
=)

u3

Uy

U

||

Us

o |||

uj

r@}j=sjjasijasijas

Ue

(@)'@jjas]jar]jasijan

It follows that

We have
H2(u3) = pa(us) = 0.2667,
Mz(ul) =0.2619 = ].12(116),

Ha(u2) = pa(us) = po(us) =
},lz(ll4) =0.2667.

Ha(us) = p3(us) = ps(uz) = pa(us) =0.208,
M3(ll1) = M3(u6) =0.233.

We have clearly 3H =7H, so A7,%) =2.

28



(8,°) Set I'(uy) = {dy, d>}, T(uz) = {ds, ds, ds?,
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['(ug) = {ds, ds}, T'(us) = {ds}, T'(ue) = {ds}.

['(u3) = {ds, d4, ds}

29

oH up uz us Uy us Ue
i i wueus | Ho b wn ) wi | we obtain p(uy) = 0.233,
u3 U4 Us U3 U4 Us Uq Ug
u ujus | ujusaus H umpuz | uup mi(uy) =0.230247,
e S8 B (us) = 0.228125,
u3 U U3 Uz U3 U4 Uz U3 Uz U3 U4
Ug Us Us Ug Uyg Us Us Ug pi(ug) = pi(uz)
Uy U3 U4 us Uy us Uy
Us Ug Us Ug Us Ug pi(us) =0.218518,
Us us us Uy pi(ue) = 0.230833.
Ug Us Us5 Ug
Us Us Ug From this, we have {H.
(H U] U | W s e us From 1H we obtain :
Uy [ U | UUg | Ul U U1 Ug U1 Ug H
Ug Upusz Ug | Up U3 Ug Mz(ul) = 034545, Mz(uﬁ) = 03263,
Ug Us | U2Ug | UW2Ug Uz Ug Uz Ug 1o(us) = 0.324242,
U3 Uy Usug | UszlUqUs
185 18 5] 185) 185 Uz U3 },lz(uz) = 0.305797,
U3 Uy U3 Uy Uq Us _ _
U3 U3 uy Us Uy Us Uy },lz(Ll3) = },lz(U4) 0.296.
Us
Uy us ug u3 u4
Us
us us Therefore we find »H as follows
pH [ U] Y6 us W s e From >H we obtain : p3(u;) = 0.34848,
Up | U | ujug | urue | ugug H H
Us Us U us(ug) = 0.331579, ms(us) = 0.31739
Ug Ug Us Us | Ug Us Ug Us Ug Us l.l3(1l2) — 0302898,
35 Up Uz Uy | Up U3 Uy
Us us Us Uy Us Uy Us Uy ]J3(113) = |.i3(u4) =0.29
U3 Uy U3 Uy
™ U U U We have clearly 3H = >H, by
3 Hs 4 consequence O(8; 6y =2.
u3 u3 Uy us Uy
Uy U3 Uy
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(136) Set F(ul) = {d1, dz, d3}, F(UZ) = {dz, d3, d4}, F(U3) = {dg, d4, d5}, F(U4) = {d4, d5, d6}
I'(us) = {ds}, T'(ue) = {de}.

We obtain p,(u;) = 0.2006173,
wi(uz) = 0.2005208,

mi(us) =0.20714,

pi(ug) = 0.211905,

pi(us) = 0.198765,

pi(us) = 0.206667.

Hence we have

Ha(ug) = 0.354545 = py(us),

Us | 1a(us) = 0.34035 = pa(wp)

Mz(llﬁ) =0.33188 = },lz(ul)

from which we obtain >H.

From >H it follows

13 (ug) = pa(us) = ps(ue) =ps(ur)

K3 (UQ) = M3(U3) =0.26190.

OH u Uy u3 Uy Us Ug
U |[Uiuz | Uiuz | Uguzus H Ui up Ui Uz us
U3 UsUg | UgqUs U3 Ug Us Ug Ug
185 Uiuz | Uiuzus H Ui Uz us U U
U3 Uy Ug Us U4 Us U3 Ug Ug
Uz u; up Uz H uj U Uz H
U4 Us U4 Us
U4 Uz U3 Uz U3 Uz U3 U4
UgqUsUs | UqUsUs Us Us
Us u3 U3 Uy
U4 Us Us Us
Ug U4 Ue
By consequence we have 1H.
1H Uy u3 Ue uj w2 Us
Us | Ug | Usus | Ususz | Ug U3 Ug U3 H
Ug Ug Ug | Ug U Up
u3 u3 U3 Ug | U3 Ug U3 Ug U3 Ug
185 u; U u; Uz
Ug Us Us Wy Us Uj Us Wy
u Up Us
up up u; uz up up
Us
Uy Uy Uz Us
Us Us
2H Uy Us us3 U Ue U
Ug | UgUs5 | UgUs | UgUs | UgUs H H
Uz Uz | Us Up
Us UgUs | UgUs | UgU;s H H
Uz Uz | Us Up
us3 W [uu | usw | usup | =0.26667
Us U | Us Uy
up Uz Uz | Uz Uz | U3z Uz
Ue U1 | Ug Ug
Ug U U1 | Ug U
Ui Ug U
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Set P = {u4, us, us, u1}, Q = {us, uz}. Then we obtain ;H as follows

3H

Us

Uy

Us

Ue

o ||

U

o || T |

u3

O || | = |

U

(@) @]jas]jer]jasiiar

(25°) Set '(u;) = {d;, do, ds},
['(us) = {ds}, I'(ue) = {ds}.

From 3H, it follows that 4H = 3H and

we have finally 8(15°%) = 3.

F(LQ) = {dg, d4}, F(U3) = {d3, d4, ds}, F(U4) = {d4, d5, dﬁ},

()H U 185 us Ug Us Ue
U luywm |y | uyu H u; up u; up
u3 U3z Ug | U3z Ug U5 U3z UgUs | Uz Ug Ug
u uw | uu H u; up up
U3z Ug | U3z Ug U5 usz,uUg Us | U3 Ug Ug
U3 U up H u; up H
u3 Ug Us u3 Ug Us
Uy Uz U3 uz U3 Uz us3
U4Us5Ug | U4Us5Ug | UgUs5Ug
Us U3 Uy us Uy
Us Us Ue
Ug U4 Ug

whence 8(15 ®)= 6(2:°)=3.

(336) Set F(ul) = {d1, dz, d3}, F(UZ) = {dz, d4}, F(u3) = {d3, d4, ds}, F(U4) = {d4, d5, d6}
F(U5) = {ds}, F(u6) = {d6} We have

()H 1851 185 u3 Ug Us Ue
U |uiuz | urup u; Uy H u; U U U
u3 U3 Ug | U3 UgqUs U3 U4 Us | U3 UgUg
u wuw | uyu H wwu | uyu
U3 Ug | U3 UgqUs Uq Us U3 U4 Ug
U3 uj Uz U3 H uj; U Uz H
Ug Us Ug Us
Uy Uz U3 Uz u3 Uz U3
UgUsUg | UgUsUg | UgUs5Ug
Us u3 Uy U3 Uy
Us Us Ug
Ug U4 Ug

31

See (15°).

We have 8(3; %)= 6(15%)=3.



Ratio Mathematica, 20, 2010

$6. (1% Set H= {u}, u, us, ug, us, ug, uz, ug} and T(uy) = {dy, d, d3}, T(up) = {ds, ds, ds},
I'(u3) = {d3, ds, ds}, I'(ug) = { ds, ds, ds}, I'(us) = {ds, dg, d7}, I'(ue) = {dy, dg},
['(u7) = {d7}, T'(ug) = {ds}.

So, denoting {ui, Ui+1,..., Uj.1, uj} by ui, we have

We have
OH Uy U [ U3 | U4 Us Ug u7 ug Hl(ul) = 0_1756,
u u13 u14 u15 u15 u17 u13 u58 U13 U57 U13
! w1 (uz) = 0.17470,
Ug Ug
U wle’luw’ | w | H w’ | owt | p(us) =0.1754978,
8 ~0.172
s we lul | u H ! | u® ug pi(ug) =0.1729,
Uy w | w [ w w | wlus | py(us)=0.1803,
Us U37 U38 U37 u38
U U58 Ll58 Us ],11(116) = 01813,
7 3
uy Us Us ui(uy) =0.175641 = wy(uy),
ug Up Usg

mi(ug) = 0.19073.
So pi(us) > pi(ue) > pius) > p(uy) = p(ur) > pi(us) > pi(uz) > p(us).

One obtains | H as follows

1H Ug 185 u3 ui uy Us Ug us
Ug | Ug | UgUn | U4 U2 Ug U2 Ug U2 U4 Uz U3 Ug Uz U3 H
u3 Uuszuju7 | uz3ujuy7 | Uiuy Us | Uy Uy Us Ug
185} 185} Uz U3 Uz U3 Uz U3 Uz us3 Uz us Uy Uz us Uy
upuy upuy Uju7Us | U7UsUe | U7 Us Ug Ug
u3 u3 u3 u3 usz ug uszupuy uszupuy
u;uy u;uy Us uy Us Ue Us Ue Ug
up upuy upuy upuy upuy upuy
Us Us Ue Us Ue Ug
u7 upuy upuy upuy upuy
Us Us Ue Us Ue Ug
Us Us Us Ug Us Ue
ug
Ug Ug Us Ug
us usg

from which  pa(u4) = pa(ug) = 0.2890, po(uy) = pa(ue) = 0.2724,

ta(uy) = wa(uy) = 0.247567, pa(us) = pa(us) = 0.2549. So we obtain o H.

32



Ratio Mathematica, 20, 2010

2H Ug us 185 Ug u3 Us ui uy
Ug |UgUg [ UgUg | UgUg | UgUg | Ug UgUy | Ug UgUn H H
UyUg | UxUg | Ug U3z Us | Ug U3 Us
ug Ugug | UgUg [ UgUg | UgUgUr | Ug UgUn H H
UzUg | UxUg | Ug U3 Us | Ug U3 Us
uz Uz2U6 | U2U6 | U2Ug UUs | U2UgU3 | Uz U U3
U3 Us U3 Us Usupu7 | Us uuy
Ue U2 Ug U2 Ug Uz Ug Uz Ug U3 | Uz Ug U3
U3 Us U3 Us Usuipu7 | Us upuy
us3 U3 Us U3 Us U3 Us U3 us
u; uy up uy
Us U3 us U3 us us us
u; uy up uy
u u; Uy u; uy
Uz ujuy

Hence we have :
H3(usg) = p3(ug) = ps(ur) = ps(ur) = 0.22619, ps(uz) = ps(ue) = p3(us) = ps(us) = 0.2197.

Setting P= {u4, usg, uj, u7}, Q = {us, us, uy, ue}, we find 3H

cLi 8 Ml Tl e el el Bl il From this, we obtain :
u ([ PLPIP P HIHITIH D o ) =0.166.
Ug P|P|P H|H H|H

u; P|PIH|H|H|H

uy P H|H|H| H

U QIQ|Q|Q

U QlQ|Q

u3 Q Q

Us Q

It follows 4H =T, whence 6(14%)= 4.
$7.(12°) LetH={u|1<i<9} and fori<7, set

['(ui) = { di, dix1, disa}, T(ug) = {ds}, T'(uy) = {do}.
We obtain
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oH | w U u3 Uy Us Ug Uy ug Uy
Uy | Wiuz | Ui Uz | U U u; Uz U; Uz U3 U; Uz U3 u; Uz U3 u; Uz U3 U; Uz Uus
usz uUszug | U3z Uy us3 Ug Ug Us UgU7 | Ug Us Ug Us Ug U7 Ug Ue U7 Ug u7 Ug
Us Us Ug U7 Ug Uo
[ Y) Uruz | upuz | upup up uz us up Uz us up uz u3 U U2 U3
Uslg | Uz U4 | U3 U4 U4 Us Ug U4 Us Ug H Ug Ug U7 Ugq U7 Ug
Us Us Ug u7 U7 ug ug
u3 uruz | upuz uruz u3 up U2 u3 up Uz us U U2 us
Usuyg | U3 U4 U4 Us Ug U4 Us Ug H Usg Us Ug | Ug UsU7 U9
Us Us Ug u7 U7 ug U7 Ug
Uy Uz Uus U U3 Ug | U2 U3 Ug | U2 U3 U4 Us Uz U3 Uy U U3z U4
U4 Us Us Us U7 Us Ug U7 Ue U7 Ug Us Ue U7 Us Ue U7 U9
Ue us Ug ug
Us U3 U4 Us U3 UgqUs5 | U3 UgqU5Ue U3 U4 Us U3 U4 Us
Ue U7 Ue U7 Ug U7 ug Ug Ueg U7 Ug Ug U7 Ug
Ug Ug U5 Ug Ug Us Ug Ug Us Ug Ug Us Ug
U7 ug U7 ug Ug U7 ug U7 ug Ug
u7 Us Ug U7y Us Ug U7y Us Ug U7 Ug
ug Ug ug Ug Ug
us U U7 Ug Ug U7 Ug Ug
U9 U7 Uo
From oH we have
pi(ug) = 0.1729 > py(u7) = 0.1648 > py(u;) = 0.1616 > py(uz) = 0.160 > py(ug) = 0.1599
> wi(ug) = 0.1597 > py(uz) = 0.159169 > py(us) = 0.157387 > p;(ug) = 0.159218.
From these data, we obtain ;H as follows
Hlu | uy u U3 Us ug Uy u Us
Ug | Ug Ug Ug Uy Ug U7 Ug Uy Ug U7 Ug Ug U7 U Ug U7 Up U3
u7 U u; us U; U3 Ug u3 Ug ug U3 Ug Ug Uy Ue Ug Uy Uy H
u7 u7 U7 ug u7 ug u7 ug u7 ug U7urusleg | U7Up U3zl Ug | U7 U U3 Ug
u3 U3 Ug U3 Ug Ug Ug Uy Uz Uy Ug Uz Us
U4
up U Up us | Urusle | Up U3 Ug U U3 Ue Ug U U3 Ug U U3 Ue Ug
Ug Uy Ug Uy Uy Uz Us U4
u3 u3 U3 Ug U3 Ug Ug U3 Ug Ug Uy U3 Ug U3 Ug Ug
Ug Uz Ug Uz Us Ug
Ug Ug Ug Ug Ue Ug Uy Ug Ug Up Uy Ug UgUr Us
Uy
ug ug ug U4 ug uz U4 ug U2
Us Ug
U4 Uy Uz U4 Up Us U4
185 185 Us U
Us Us
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H2(ug) = Ha(us) = 0.2740 > pa(ur) = pa(uz) = 0.261085 > po(uy) = pa(us) =
=0.250716 > pa(u3) = pa(ug) = 0.24495 > pu(ue) = 0.243116.

2H| w | us Uy u u ug u; ug Us
Ug | Us Us Us Ug UsUg | UslUg U7 Uz | UsUg U7 U2 | UsUg U7 | UsUgUy
Ug Ug u7 Uz u7 Uz u; Uy u; ug Uz U3 Ug us ug Uz H
U Uy U Ug
Us Us Us Ug Us Ug UsUg U7 Uz | UsUg U7 Uz | UsUg U7l | Us Ug Uy
Ug uz Uz uz7 Uz u; Ug up Uy U U4 U3 Ug Uz U H
Ug Uszug
u7 u7 Uy uy Uy uy Uy u7 Uy U7uUzU;Ug [ U7U2U7 | U7 U2 Ug Ug
u; Uy u; Uy us ug Ug U3 Ug | Ug U3 Ug
185} u7 Uy u7 Uy u7 Uy U7uUzu; Us | U7 Uz U; | U7 Uz Ug Uy
u; Uy up Uy us ug Usg U3 Ug | U4 U3 Ug
up u; Uy U Ug up Uy u; Uy uj U4 Ug
U3 ug U3 ug U3 ug
U4 U Ug up Uy u; Uy U Uy
U3 ug u3 ug U U3 Ug
us3 U3 us u3 ug U3 ug U
ug u3 ug U3 ug Us
Us U
From ,H we obtain p3(ug) = p3(us) =0.211805, ps(u7) = ps(uz) =0.205433,
]J3(111) = U3 (114) = 020504, 3 (U3) = u3(ug) =0.21 155, M3(u6) =0.24407.
Then we have ;H as follows
3H Ue Ug Us u3 ug 18] u7 Uy Uy
Ug | Ug | UgUg | UgUg Ug Ug Ujs Ug Ug Uj Ug Ug Us U Ug Us
Us Us U3 us usz ug U3 ug uuy u3 ug Uz uzy H H
Ug Ug Us | U9 Us Ug UsU3 UgUs U3 | UgUs U3 Ug | Ug Us U3 Ug | Ug Us UsUg | Ug U5 U3 Ug
us us Up Uy U Uy U uzujlg | Uy U7Uj U4
Us Ug U5 | Ug U5 U3 UgUs U3 | UgUs U3 Ug | Ug Us U3 Ug | Ug U5 U3 Ug | Ug Us UszUg
us us Uz Uy Uz Uy Uz U7 U1 Ug Uz U7 Ug Uy
u3 U3 usg U3 usg u3 ug uz uy u3z uguz uy uz ug up u3 ug un
Uz U Uy U7u; Uy
us uz us Uz uguz U7 | Uz ugUz Uy U3 ug up U3 ug up
Uz U Uy U7u; Uy
185} Uz Uy Uz Uy Uz U7 U1 Ug Uz U7 Up Uy
uy Uy uy Uz U7 U Ug Uz U7 U1 Uy
U U; Ug U; Ug
Uy U1 Uy
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It is possible to verify that the function ¢ : ;H — ;H defined as follows
o(uz) =uy,  ¢(us)=us,  @(ur)=us,

e(u) =us,  @(w)=u,  @(us)=us  G(u7) =uy,

o(u2) =u,  ¢(ue) = us,

is a hypergroup isomorphism.

It follows that the fuzzy grade of (1,°) is 2.

$8. (1% Set H={ul1<i<16}, D={d|1<i<l16}, T(w)={d, ds, ds},
I'(wy) = {da, d3, ds}, and

Vi: i<13, T(w)= {di di+1, dixa},

[(u14) = {dis, dis}, T'(uis) = {dis}, T'(uie) = {die}.

Since V 1, we have ujo ui= {y; | ['(w) N I'(w) # D}, it follows that we have
ujou;={uy,uyuz}, upouy={uy Uz us s},

u3 o uz3= { uy, Uz U3 U4 Us},

Vi: 4<i<13, uioui= { Ui, Ui, Ui U1, Uisa},

U140 Uja= { Uj3, U4, Ugs Uie),

Uis0 uys= { U3, Uig, Uis),

Ui60 Uie= { U4, U6}-

For gH we have the following table :

36



Ratio Mathematica, 20, 2010

oH Up | U2 | us | Ug | Us | Ug u7 ug U9 Ui ur ui2 ui3 Uiq uis Uie
3 ;S 3 6 7 g 3.9 3 10 11 3 12 3 13 3 4 3 15 3 16 3 15 3
u (up (up |up (U |ur (U (U Us | U Ug ur uy u; ug u; Uo up Ujo up un up uj3 u; uj3 U; U4 Ue
i 3 6 7 g 9 410 I I 12 4 13 4 14 z 13 416 1 15 z
u u (ur (U [ | W U u; Ue u uy u; ug ur Uy up Ujo u; un up U3 up ui3 u; U4 Uge
3 6 7 3 9 10 T 5 12 513 5 14 5 15 5 16 5 15 3
u3 u [(u (uw W U U up uy up ug u; Ug Uy Ujo up U Uy U3 Uy ui3 U Ui4 Uje
6 7 g 9 10 I 612 6_ 13 6 14 6_ 15 6_ 16 6_ 15 6
Uy W | | W u u u Uz ug Uz Ug Uz Ujo Uz uj Uz U3 Uz uj3 Uz U4 Uje
7 g 9 10 1 2 713 7 14 7 15 7 16 7 15 7
Us Uz | U3 u3 u3 u3 u3 us Uy U3 ujo usz uji u3 uj3 U3z uj3 U3 ui4 Uje
3 9 10 I 2 13 8 14 g 15 8 16 g 15 3
Ug Uy U4 U4 Uy Uy Uy U4 Ujo Ug Ug U4 U3 Ug Uj3 Ug U4 Uje
9 10 I 2 13 4 9 15 9 16 9 15 9
uy Us Us Us Us Us Us Us uj Us U3 Us U3 Us U4 Uje
10 1 2 I3 4 13 10 16 10 15 10
ug Ue Ug Ug Ug Ug Ug U U13 U U13 Us U4 Ule
11 2 13 iz 13 IT_ 16 15 11
Ug uy uy uy uy uz U7 Uj3 uy U7 U4 Uge
2 13 4 15 16 15 2
Uio ug ug ug ug ug ug Ug U4 Uje
I3 4 13 16 I3 4
ur Ug Ug Ug Ug Ug Ug Uje
4 3 16 13 14
up2 Ujo Uio Uio Uio Uio UWie
13 16 15 16
ui3 ur ur U1 ur
16 16 16
U4 ui3 ui3 ui3
13 16
Ujs ui3 ui3
Uie U4 Uie
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From gH we obtain p;(uis) = 0.15673, pi(uis) =0.13992, wi(uis) = 0.141293, py(u;) = 0.13867,
pi(uz) =0.134942, py(uis) = 0.134215, pi(us) =0.132574, pi(us) = 0.129700, py(us) = 0.128076,
pi(ue) = 0.127554, wi(uy) =0.126581, pi(uiz) =0.1283654, pi(ur) =0.126441,

pi(uio) = 0.126878, wi(ug) =0.12671, wi(ug) =0.126608.

For |H, set vi=uj6, V2=u14, V3=Uuy5, Va=Uuj, Vs=Uz, Vg=1U3, V7=1U3, Vg =U4, Vo =Uj2,

Vio = Us, Vi1 =Us, Vi2 = U0, Vi3 =Us, Vi4 = U9 Vi5s=U7, Vie = Uql.

V(i j), such that i<jset vi= {v; Vi+1,...Vj}. So we have vjo; vj = vi. For yH we have

V1 02 V] =V] 02 Vig =Vi6 02 Vie = {V1, Vie}, V202 V2 =V2 02 Vi5s =Vi5 02 Vis = {Va, Vis}. Generally,

Vi 02 Vi = Vi 02 Vi6-(i-1) = Vie6-G-1) 02 Vie-(i-1) = {vi, Vie-Gi-1) y.For 1<}, vioz Vi = U Vs 02 Vs,

i<s<j
Set P; = {vi, Vie, Vs, Vo}, P2 = {vo, vis, v7, Vio}, P3={v3, Via, Ve, Vi1}, Pa= {va, Vi3, Vs, vi2}.

Then for 3H, Vk: 1<k<14, wehave V(vj, V) € Py x Py, viozv;=P.

If s<t, V(vj,vj) € PsxP, wehave vjo3vj= U P, For 4H, setting

s<u<t

Q=P U P4, Q2=P; U P3;, we have V(v;, vj)) € Qi x Qj, viosvj =Q; U Q;.

By consequence, if 1#j, viosv;j=H and vjo4v; =Q; Since |Q1 |= | Q: | ,we have Vv; € Qq,

V vie Qa, Ma(vi) = pa(vy). It follows that sH =T (total hypergroup) and by consequence a(15'%) = 5.
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Abstract

We introduce and study term functions over fuzzy hyperalgebras. We start from
this idea that the set of nonzero fuzzy subsets of a fuzzy hyperalgebra can be
organized naturally as a universal algebra, and constructing the term functions
over this algebra. We present the form of generated subfuzzy hyperalgebra of a
given fuzzy hyperalgebra as a generalization of universal algebras and multialgebras.

Finally, we characterize the form of the fundamental relation of a fuzzy hyperalgebra.
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1 Introduction

Hyperstructure theory was born in 1934 when Marty defined hypergroups, began to
analysis their properties and applied them to groups, relational algebraic functions (see
[15]). Now they are widely studied from theoretical point of view and for their applications
to many subjects of pure and applied properties ([7]). As it is well known, in 1965 Zadeh
([28]) introduced the notion of a set p on a nonempty set X as a function from X to the
unite real interval I = [0, 1] as a fuzzy set. In 1971, Rosenfeld ([25]) introduced fuzzy sets
in the context of group theory and formulated the concept of a fuzzy subgroup of a group.
Since then, many researchers are engaged in extending the concepts of abstract algebra
to the framework of the fuzzy setting ( for instance see [23]).

The study of fuzzy hyperstructure is an interesting research topic of fuzzy sets and
applied to the theory of algebraic hyperstructure. As it is known a hyperoperation assigns
to every pair of elements of H a nonempty subset of H, while a fuzzy hyperoperation
assigns to every pair of elements of H a nonzero fuzzy set on H. Recently, Sen, Ameri
and Chowdhury introduced and analyzed fuzzy semihypergroups in [21]. This idea was
followed by other researchers and extended to other branches of algebraic hyperstructures,
for instance Leoreanu and Davvaz introduced and studied fuzzy hyperring notion in [13],
Chowdhury in [5] studied fuzzy transposition hypergroups and Leoreanu studied fuzzy
hypermodules in [15].

In this paper we follow the idea in [20] and introduced fuzzy hyperalgebras, as the
largest class of fuzzy algebraic system. We introduce and study term functions over
algebra of all nonzero fuzzy subsets of a fuzzy hyperalgebra, as an important tool to
introduce fundamental relation on fuzzy hyperalgebra. Finally, we construct fundamental
relation of fuzzy algebras and investigate its basic properties.

This paper is organized in four sections. In section 2 we gather the definitions and
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basic properties of hyperalgebras and fuzzy sets that we need to develop our paper. In
section 3 we introduce term functions over the algebra of nonzero fuzzy subsets of a fuzzy
hyperalgebra and we obtained some basic results on fuzzy hyperalgebras, in section 4 we

will present the form of the fundamental relation of a fuzzy hyperalgebra.

2 Preliminaries

In this section we present some definitions and simple properties of hyperalgebras from
2] and [3], which will be used in the next sections. In the sequel H is a fixed nonvoid set,
P*(H) is the family of all nonvoid subsets of H, and for a positive integer n we denote
for H™ the set of n-tuples over H (for more see [6] and [7]).
For a positive integer n a n-ary hyperoperation 3 on H is a function 8 : H" — P*(H).
We say that n is the arity of 5. A subset S of H is closed under the n-ary hyperoperation
B if (z1,...,x,) € S™ implies that G(z1,...,2,) € S. A nullary hyperoperation on H is
just an element of P*(H); i.e. a nonvoid subset of H.
A hyperalgebraic system or a hyperalgebra (H, (3; : i € I)) is the set H with together a
collection (f3; | i € I) of hyperoperations on H.
A subset S of a hyperalgebra H=(H, (5; : ¢ € I)) is a subhyperalgebra of H if S is
closed under each hyperoperation f;, for all ¢ € I, that is G;(ay,...,an,) € S, whenever
(a1, ...,a,,) € S™. The type of H is the map from [ into the set N* of nonnegative integers
assigning to each ¢ € I the arity of ;. In this paper we will assume that for every i € I |
the arity of (; is n;.
For n > 0 we extend an n-ary hyperoperation 3 on H to an n-ary operation 3 on P*(H)

by setting for all Ay, ..., A, € P*(H)

B(A1, ... Ay) = J{B(a1, ... an)la; € Ai(i =1, ...,n)}
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It is easy to see that (P*(H), (8, :i € I)) is an algebra of the same type of H.
Definition 2.1. Let H=(H,(3; : i € I)) and H=(H,(3; : i € I)) be two similar
hyperalgebras. A map h from H into H is called a
(1) A homomorphism if for every i € I and all (ay, ..., a,,) € H™ we have that
BB (1, an)) € Balh(an), oo Bl
(17) a good homomorphism if for every i € I and all (ay,...,a,,) € H™ we have that
W(B((ar, - 0n)) = Bilhlar), - h(aw,)),

for more details about homomorphism of hyperalgebras see [12]. Let p be an equiva-

lence relation on H. We can extend p on P*(H) in the following ways:

(i) Let {A, B} C P*(H). We write ApB iff

Ya € A,3b € B, such that apb  and Vb € B,da € A, such that apb.

(ii) we write ApB iff Va € A,Vb € B we have apb.
Definition 2.2. If H=(H,(f; : i € I)) be a hyperalgebra and p be an equivalence
relation on H. Then p is called regular (resp. strongly regular) if for every ¢ € I, and for
all ay, ...,ap,, b1, ..., b,, € H the following implication holds:

a1pby, ..., ap, pbp, = Bi(ay, ..., an, ) pBi(b1, ..., by,)
(resp. aipby, ..., an,pby, = Bi(ar, ..., an,)pBi(b1, ..., by,))-
Definition 2.3. Recall that for a nonempty set H, a fuzzy subset p of H is a function
e H—[0,1].

If w; is a collection of fuzzy subsets of H, then we define the fuzzy subset ﬂ,uz- by:

(ﬂ pi)(x) = /\{Mz(x)}7 Vo H.

i€l i€l
Definition 2.4. Let p be an equivalence relation on a hyperalgebra (H, (3; : i € I)) and

el

w1 and v be two fuzzy subsets on H. We say that upv if the following two conditions hold:
(i) pla)>0=3be H: vb)>0, and apb

(i1) v(z) >0 = 3Jye H:uly) >0, and zpy.
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3 Fuzzy Hyperalgebra and Term Functions

Definition 3.1. A fuzzy n-ary hyperoperation f™ on S'is amap " : Sx..xS — F*(9),
which associated a nonzero fuzzy subset f"(as,...,a,) with any n-tuple (ai,...,a,) of
elements of S. The couple (S, f™) is called a fuzzy n-ary hypergroupoid. A fuzzy nullary
hyperoperation on S is just an element of F*(S); i.e. a nonzero fuzzy subset of S.
Definition 3.2. Let H be a nonempty set and for every ¢ € I, ; be a fuzzy n;-ary
hyperoperation on H. Then H=(H,(3; : i € I)) is called fuzzy hyperalgebra, where
(n; : 4 € I) is the type of this fuzzy hyperalgebra.

Definition 3.3. If yy, ..., 4, be n; nonzero fuzzy subsets of a fuzzy hyperalgebra H=(H, (5; :

i€l)), we define for all t € H
Bipn, ooy pn)() = \/ (p1 (1) /\ /\Mn(iﬁ'n) /\@;(xb ooy T ) (1))
Finally, if Ay, ..., A,,, are nonempty subsets of H, for all t € H

Br(Ay, . A ) () = Vo Belar, . an,)(1)).

If A is a nonempty subset of H, then we denote the characteristic function of A by x4.
Note that, if f: H; — H, is a map and a € Hy, then f(xa) = Xf(a)-

Example 3.4.

(1) A fuzzy hypergroupoid is a fuzzy hyperalgebra of type (2), that is a set H together
with a fuzzy hyperoperation o. A fuzzy hypergroupoid (H, o), which is associative, that

iszo(yoz)=(xoy)oz, forall x,y,z € H is called fuzzy hypersemigroup[22]. In this
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case for any p € F*(H), we define (a o p)(r) = \/((a ot)(r) A u(t)) and (pnoa)(r) =

\/ (u(t) A (toa)(r)) for all r € H.

teH
(17) A fuzzy hypergroup is a fuzzy hypersemigroup such that for all z € H we have

xoH = H ox = xg (fuzzy reproduction axiom)(for more details see [22]).
(1ii) A fuzzy hyperring R=(R, ®, ®) ([13]) is a fuzzy hyperalgebra of type (2,2), which in
that the following axioms hold:

1) a®d(b®dc)=(a®b)@c forallabceR;

\]

) t®R=R®x=xg for all x € R;

w

) a®b=b®a for all a,b € R;

4) a®©boc)=(a®b ®c foralla,bce R,

5 a@(bdc)=(a0b)®(adc)and (adb) ©c=(a®c)® (boc) forall a,b,ce R.
Example 3.5. Let H=(H, (f; : i € I)) be a hyperalgebra and p be a nonzero fuzzy
subset of H. Define the following fuzzy n-ary hyperoperations on H, for every i € I and

for all (ayq,...,a,,) € H™;

wla) N\ - A\ p(an,) t € fBla,...,an,)

0 otherwise

ﬁ:(a’h '“’am)(t) =

and letting

51‘O<a17'-'7ani) :X{al ,,,,, an; }-
Evidently H°=(H, (87 :i € I)), H°=(H, (55 : i € I)) are fuzzy hyperalgebras.
Theorem 3.6. Let H=(H, (§; : i € I)) be a fuzzy hyperalgebra, then for every ¢ € I and

every ap, ..., a,, € H we have [3;(Xq,, "'7Xani) = Bi(ay, ..., an,).
Definition 3.7. Let H=(H, (5; : i € I)) be a fuzzy hyperalgebra . A nonempty subset S

of H is called a subfuzzy hyperalgebra if for Vi € I,Vay, ..., a,, € S, the following condition
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hold:
Bi(ay, ..., an;)(xz) > 0 then z € S.

We denote by S(U) the set of the subfuzzy hyperalgebras of H.
Definition 3.8. Consider the fuzzy hyperalgebra H=(H, (f; : i € I)) and ¢ # X C H
be nonempty. Clearly, (X) =({B: B € S(H)| X C B} with the fuzzy hyperoperations
of H form a subfuzzy hyperalgebra of H called the subfuzzy hyperalgebra of H generated
by the subset X . Evidently if X is a subfuzzy hyperalgebra for H then (X) = X.
Theorem 3.9. Let H=(H, (; : i € I)) be a fuzzy hyperalgebra and ¢ # X C H. We
consider Xg = X and for any k£ € N,

Xip1 =XpU{a€e H|Jiel,n € Ny, ...,x,, € Xy; Bi(x1, ..., x,,)(a) > 0}.

Then (X) = | J X;.
keN
Proof. Let M = U Xk, and Vi € I, consider ty,...,t,, € M and [;(t1,....t,,)(x) > 0.
keN
From X, C X; C ... C X, C ... it follows the existence of m € N such that ¢4, ...,¢,, € X,,,
which implies, according to the definition of X,,,; that + € X,,;;. Thus x € M and

M = U X} is a subfuzzy hyperalgebra. From X = X, C M, by definition of the
keN

generated subfuzzy hyperalgebra, it results (X) C (M) = M. To prove the inverse inclu-
sion we will show by induction on k£ € N that X, C (X) for any £ € N, and we have
Xo = X C (X). We suppose that X C (X). From (X) € S(H) and the definition
Xk4+1 we can deduce that X1 C (X). Hence M C (X). The two inclusion lead us to

M = (X).00
Let H=(H, (; : © € I)) be a fuzzy hyperalgebra then, the set of the nonzero fuzzy

subsets of H denoted by F*(H), can be organized as a universal algebra with the opera-

tions;
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for every i € I, puy, ..., in, € F*(H) and t € H. We denote this algebra by F*(H).

In [13] Gratzer presents the algebra of the term functions of a universal algebra. If we
consider an algebra B=(B, (§; : i € I)) we call n—ary term functions on B (n € N) those
and only those functions from B™ into B, which can be obtained by applying (i) and (ii)
from bellow for finitely many times:

() the functions e}’ : B — B, €21, ...,on) = x;, i = 1,...,n are n—ary term functions
on B;

(12) if p1, ..., pn, are n—ary term functions on B, then (;(py, ..., pn,) : B" — B,

Bi(P1y ooy Py ) (X1 ooy @) = Bi(p1(T1,y ooy Ty ooy Dy (T, o0y ) 18 also a n—ary term function
on B.

We can observe that (ii) organize the set of n—ary term functions over B (P™(B)) as a
universal algebra, denoted by B™(B).

If H is a fuzzy hyperalgebra then for any n € N, we can construct the algebra of n—ary
term functions on F*(H), denoted by B™ (F*(H)) = (P™(F*(H)), (3 : i € I)).
Theorem 3.10. A necessary and sufficient condition for F*(B) to be a subalgebra of
F*(U) is that B is to be a subfuzzy hyperalgebra for U.

Proof. Obvious.l

The next result immediately follows from Theorem 3.10.

Corollary 3.11. (i) Let H=(H,(5; : ¢ € I)) be a fuzzy hyperalgebra and B a sub-
fuzzy hyperalgebra of H, and p € P™(F*(H)),(n € N). If uy,...,pu, € F*(B) , then
P15 s pin) € F*(B).

(i1) Let H= (H,(0; : i € I)) be a fuzzy hyperalgebra and B a subfuzzy hyperalgebra of
H, and p € P™(F*(H)),(n € N). If 21, ...,2, € B, then p(Xay, - Xa,) € F*(B).0
Theorem 3.12. Let H=(H, (5; : i € I)) be a fuzzy hyperalgebra and ¢ # X C H.

Then a € (X) if and only if In € N, Ip € P™(F*(H)), and Iy, ..., 7, € X, such that
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p(X:EU Xy Xxn)(a> > 0.
Proof. We denote

M={ae H|3IneN,3peP"FM), 31, ...00 € X : p(Xay,.--Xa,)(a) > 0}.

For any z € X we have ej(x,)(z) = xo(x) = 1, thus z € X and hence X C M. Also
from Corollary 3.11 (ii), it follows that p(xu,, ..., Xz,,) € F*((X)), therefore M C (X).
We will prove now that M is subfuzzy hyperalgebra of H. For any ¢ € I, if ¢4, ...,c,, € M
and B;(cq, ..., ¢n,)(x) > 0, we must show that z € M. For ¢y,...,c,, € M, it means
that there exist m, € N,pp € Pmk(f*(H)),x’f,...,xfnk € X,k € {1,...,n;}, such that
Pr(Xat ""Xx’ﬁnk)(ck> > 0, Vk € {1,...,n;}. According to the Corollary 8.2 from [12], for
any n—ary term function p over F*(H) and for m > n there exists an m—ary term
function ¢ over F*(H), such that p(uy, ..., tin) = q(t41, -y fm), for all py, ..., i, € F*(H);
this allows us to consider instead of pi, ..., p,, the term functions ¢y, ..., gy, all with the
same arity m = my + ... + m,, and the elements yi, ...,y € X (which are the elements
1 1

Ty ooy Ty ooy T oy ), such that gu( Xy, - Xy ) (ce) > 0,Vk € {1, ..., n;}. But we have

Biladr(Xyns -+ X ) -+ @ (X -+ X)) () =
\/ (@1 (X5 -0 X )(@1) A woo Ay (X -5 X ) (@) A Bi@ns oo ) (),
and for (ay,...,an,) = (c1,...,¢n;) We have (5;(q1, s @n;) Xyrs -r Xy )) () > 0 . On the
other hands we have (g1, ..., gn,) € P (F*(H)),(m € N) , 91, ..., ym € X which implies
that © € M. Therefore, M = (X)) and this complete the proof.[]
Remark 3.13. If H has a fuzzy nullary hyperoperation then
< ¢>={a€ H|3Ipe€ P (F*(H)), such that pu(a) > 0}.

Recall that if H=(H, (5; : i € I)) and B=(B, (; : i € I)) are fuzzy hyperalgebras with

the same type, then a map h: H — B is called a good homomorphism if for any i € I we
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have ;

h(Gi(ai,...,an,)) = Bi(h(ar), ..., h(an,)),Vay, ..., a,, € H.

An equivalence relation on H ¢ is said to be an ideal if for any ¢ € I we have:

Bi(x1, ..., xn;)(a) >0 and zpeyp(k € {1,..,n;}) = Fbe H: Bi(y1, ..., Yn;)(b) >0 and apb.

For example the fuzzy regular relations on a fuzzy hypersemigroup are ideal equiva-
lence. (for more details see [13, 21])
Definition 3.14. Let H=(H, (0; : i € I)) be a fuzzy hyperalgebra and ¢ an equivalence
relation on H. Then H/¢p can be described as a fuzzy hyperalgebra H/p with the fuzzy

hyperoperations:

Bilp(x1)s s p(@n))(P(@n 1)) =\ Bilyrs oY) Yi)-

TrPYk

Theorem 3.15. Let h: H — B be a good homomorphism of fuzzy hyperalgebras H and
B. Then the relation ¢ = {(x,y) € H|h(xz) = h(y)} is an ideal relation on H. Conversely,
if ¢ is an ideal relation on H, then p = p, : H — H/p is homomorphism (which is not
strong).

Proof. Straightforward.lJ

Remark 3.16. Let H and B be fuzzy hyperalgebras of the same type and h be a
homomorphism from H into B. We will construct the algebras F*(H) and F*(B). The
homomorphism h induces a mapping b’ : F*(H) — F*(B) by h'(n) = h(p), for any
we F*(H).

Let us consider H a set and F*(H) the set of its nonzero fuzzy subsets. Let ¢ be an

equivalence on H and let us consider the relation 3 on F*(H) as follows:
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pov < Yae H:pu(a) >0 = Jbe H:v(b) >0 and apband

Voe H: v(b)>0 = dacH:pula)>0 and apb.

It is immediate that @ is an equivalence relation on F*(H). The next result immediately
follows.

Theorem 3.17. An equivalence relation ¢ on a fuzzy hyperalgebra H is ideal if and only
if ¥ is a congruence relation on F*(H).

Proof. Let us suppose that ¢ is an ideal equivalence on H and let us consider ¢ € [
and g, vy € F*(H) nonzero and pypuy, k € {1,...,n;} . Then for any a € H such that
Bi(tt1y oy fin;) (@) > 0, we have

Bilprs )@ =\ (@) A A g (2,) A Bi(@, 1) (a).

Thus there exists (z1,...,x,,) € H™, such that p(zx) > 0 for £ € {1,...,n;} and
Bi(z1, ..., xp,)(a) > 0. From the definition @ and hence there exists (y1, ..., yn,) € H™, such
that v (yr) > 0 for k € {1,...,n;} and x,pyy, and sice ¢ is an ideal and G;(z1, ..., z,,)(a) >
0, there exists b € H, such that 5;(yi,...,yn,)(b) > 0 and apb. Analogously, it can be
proved that for all b € H, such that 5;(yi, ..., yn,)(b) > 0, there exists a € H, such that
Bi(x1, ..., xn,;)(a) > 0 and apdb. Hence, it is proved that ¥ is a congruence on F*(H).
Conversely, let us take i € I and a,xp,yp € H, k € {1,...,n;} such that z,py, and
Bi(x1, ..., xn,;)(a) > 0. Obviously, x., @xy,, Vk € {1, ...,n;}, and because ¥ is a congruence
on F*(IH) We can write 3i(Xay, s Xan, JPBi(Xyrs > Xum, )> hence Bi(x1, ..., 20, )OBi(Y1, -5 Yn, ),
which leads us to the existence b € H, such that 5;(yi, ..., yn,)(b) > 0 and apb. This com-
plete the proof.[]

Corollary 3.18. (i) If H=(H,(8; : i € I)) is a fuzzy hyperalgebra, ¢ is an ideal equiv-

alence relation on H and p € P™(F*(H)) If for any nonzero, pu, v, such that @y
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ke {1,..,n}, then p(uy, ..., tn)Pp(V1, ooy Vn).

(1) Let H=(H, (8; : i € I)) be a fuzzy hyperalgebra, ¢ an ideal equivalence relation on H.

If xppyp, k € {1,...,n},p € P(”)(}"*(H)) . Tk, Y € H. Then have p(Xay, s Xan )PP(Xy1s s Xyn )-

Let h be a homomorphism from H into B and take ¢ = {(z,y) € H? | h(z) = h(y)}.
Then we have p = {(u,v) € (F*(H))?> | /(1) = W(v)}. Obviously, ¢ is an ideal of H if
and only if P is congruence on F*(H).

Theorem 3.19. The map h is a homomorphism ofthe universal algebras F*(H) and
F*(B) if and only if A is a good homomorphism between H and B.

Proof. Straightforward.[]

The next result immediately follows from Theorem 3.12.

Corollary 3.20. (i) Let H=(H, (§; : i € I)) and B=(B, (8; : i € I)) be fuzzy hyperalge-
bras of the same type, h : H — B a homomorphism and p € P"™(F*(H)). Then for all
fi1, oy fin € F*(H) we have B (p(pa; .., pin)) = p(h'(p1), -, W (1))

(i7) Let H=(H, (5; : i € I)) and B=(B, (; : i € I)) be fuzzy hyperalgebras of the same

type, h : H — B a homomorphism and p € P™(F*(H)). Then for all ai,...,a, € H, we

have 7'(p(Xa,, -+ Xan)) = P(M'(Xar ), -+, B (Xa, ) -H

4 Fundamental Relation of Fuzzy Hyperalgebra

As it is known that if R is an strongly regular equivalence relation on a given hyper-
group (resp. hypergroupoid, semihypergroup) H, then we can define a binary operation
® on the quotient set H/R, the set of all equivalence classes of H with respect to R, such

that (H/R,®) consists a group (resp. groupoid, semigroup). In fact the relation 3* is the
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smallest equivalences relation such that the quotient H/3* is a group (resp. groupoid,
semigroup) and it is called fundamental relation of H. The equivalence relation 3* was
studied on hypergroups by many authors( for more details see [6]). As the fundamental
relation plays an important role in the theory of algebraic hyperstructure it extended to
other classes of algebraic hyperstructure, such as hyperrings, hypermodules, hypervec-
torspaces( for more details see [25], [26] and [27]). In [20] Pelea introduced and studied
the fundamental relation of a multialgebra based on term functions. In the sequel we
extend fundamental relation on fuzzy hyperalgebras and investigate its basic properties.
Let B=(B, (f; : i € I)) be an universal algebra. If we add to the set of the operations of
B the nullary operations corresponding to the elements of B, the n—ary term functions of
this new algebra are called the n—ary polynomial functions of B. The n—ary polynomial
functions P™"(B) of B form a universal algebra with the operations (5; : i € I), denoted
by P™)(B), P (B)=(P"(B), (5; : i € I)).

Let H=(H,(B; : i € I)) be a fuzzy hyperalgebra. For any n € N, we can construct
the algebra P (F*(H)) of n—ary polynomial functions on F*(H), ( P™(F*(H)) =
(P"(F*(H)), (8; : i € I))) . Consider the subalgebra 775_?) (F*(H)) of P™ (F*(H)) obtained
by adding to the operations (5; : i € I) of F*(H) only the nullary operations associated
to the characteristic functions of the elements of H. Thus the elements of Pg) (F*(H))
(n € N) are those and only those functions from (F*(H))" into F™*(H) which can obtained
by applying (i), (i7), (zii) from bellow for finitely many times:

(¢) the functions C7 : (F*(H))" — F*(H), defined by setting C7 (i1, .., fin) = Xa, for all
Wiy -y fin € F*(H) are elements of Pg)(f*(H)), for every a € H;

(17) the functions el : (F*(H))" — F*(H), €1, ..., ttn) = i, for all pq, ..., u, € F*(H),
i=1,...,n are elements of Pg)(F*(H));

(3i) if py, ..., pn, are elements of 77%1)(.7:*(]1-]1)), and ¢ € I then G;(p1,...,pn,) : (F*(H))" —
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F*(H), defined by setting for all p1, ..., i, € F*(H), (Bi(p1y s Dny) ) (11 oovy i) =

Bi (D1 (415 oy 1) s ooy Doy (f11, s ) 15 also an element of P4 (F*(H)).

In the continue, we will use only polynomial functions from Pg_?) (F*(H)). Thus we will
drop the subscript with no danger of confusion.

Definition 4.1. Let a be the relation defined on H for x,y € H set zay follows:

zay <= p(Xays - Xa,)(®) > 0and p(Xays s Xa, ) (y) > 0, for some p e P"(F*(H)),aq,...,a, € H.

It is clear that « is symmetric. Because for any a € H, el(x,)(a) > 0, the relation a is
also reflexive. We take a* to be the transitive closure of . Then «o* is an equivalence
relation on H.
Lemma 4.2. If f € PY(F*(H)) and a,b € H satisfy aa*b then f(xa)ﬁf(xb).
Proof. By the definition of o* : a = y1aysax...ay,, = b for some m € N and s, ..., y_1 €
H. Let f(xy,)(w;) > 0,7 =1,...,m. Consider 1 < j < m. Clearly y;joy,+1 means that
P (Xars s Xan)(3) > 0 and py(Xays - Xar) (451) > 0, for some n, € N,p; € P (F*(H)),
ai,...,an, € H. Define the nj—ary hyperoperation ¢; on F*(H) by setting

0 (Xars -+ Xan,) = \/{f(Xt) : Pj(Xas s Xa, )(8) > 0} for all @, ..., z,; € H. Clearly

q; € P (F*(H)) and for @ € H; q;(Xays -+ Xa, ) () = \V fOe) ().

Pj(Xal 77777 Xlln)(z)>0
From p;(Xays - Xan)(¥5) > 0 and pj(Xay, s Xan ) (Yj+1) > 0 we get

0 < fOx,)(45) < g5 (Xars -+ Xan)(w;)  and
0< f(ij+1)(uj+1) < d; (Xam '--7Xan)(uj+1)
proving w;aujq. Thus wja*u,. Since f(xq)(w1) = f(xy)(u1) > 0 and f(xp)(um) =

JF(Xym ) (wm) > 0 were arbitrary, we obtain f(x.)a* f(xs).0

Remark 4.3. For a given fuzzy hyperalgebra H and equivalence relation p on H, the set

H/p can be considered as a hyperalgebra with the hyperoperations

56



Ratio Mathematica, 20, 2010

61(:0((11)7 "'7p<ani)) = {p(2> | Bi(blv 7bnz)<z> > O7bk € p(ak)7Vk € {17 7n2}} (1)

for all i € I.
Lemma 4.4. Let p be an equivalence relation on H such that H/p be an universal algebra

. Then for any n € N, p € P"(F*(H)) and ay, ..., a, € H the following gold:

P(Xays 5 Xap ) (@) >0 and p(Xays s Xa,)([y) >0 = xpy.

Proof. We will prove this statement by induction over the steps of construction of an
n—ary polynomial function( for n € N arbitrary).

If p=Cy, from CF (Xays -+ Xan ) (@) > 0 and C7 (Xay, -+ Xan)(y) > 0 we deduce that
r =1y = a, thus xpy.

If p=cel withi € {1,...,n}, from €'(Xay; -, Xa,,)(®) > 0 and €' (Xays s Xan ) (y) > 0 we
deduce that © = y = a;, , and hence xpy.

We suppose that the statement holds for the n—ary polynomial functions py, ..., p,, and

we will prove it for the n—ary polynomial function Sg(p1, ..., pn, ). If

0 < Br(Pry s Py ) (Xans -+ Xan) () = B(P1r(Xars -+ Xan )5 -+ Py (Xar s -+ Xan ) (T) =

\/ (P1(Xays s Xan) (1) A oo A Dny (Xags -5 Xan ) (@) A Br(@1, .oy T, ) ()
and if we set y instead of x, above statement is true. Thus there exist
Ty ooy Tpps Y1y ooy Yny, € H, such that p;(Xay, - Xan) (2i) > 0 and p;(Xays -5 Xan ) (%) > 0,
fori e {1,....,n} and Gi(x1, ..., xpn, ) (x) > 0 and Bi(y1, ..., Yn, ) (y) > 0. Obviously, x;py; for
all i € {1,...,nx} and according to (1) and by the hypothesis we obtain that p(z) = p(y),
i.e., zpy, as desired.[]
The next result immediately follows from previous two lemmas.
Theorem 4.5. The relation o* is the smallest equivalence relation on fuzzy hyperalgebra

H such that H/p is an universal algebra.
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We call H/p, fundamental universal algebra of fuzzy hyperalgebra H such that H/p.
Proof. At the first, we show that H/p is a universal algebra. For this we take any
x,y € H, such that a*(z), a*(y) € Bp(a*(a1),...,a*(ay,)) for k € I and ay, ...,a,, € H.
This means that there exist x1, ..., T, , Y1, ..., Yn, € H, such that G(z1, ..., z,,)(z) > 0 and
Br(Y1y -y Un,, ) (y) > 0 and z;0*a;ay; for all @ € {1, ...,y }.

Applying Lemma 4.2 to the unary polynomial functions

Bi(z, O e O ), GO 20O s O )y Bi(CR e Gl L2),

K Xynk—l,

we obtain the following relations:

6i(X:B17 ceey ank )§5(Xy17 Xzoy s ink)

ﬁi (Xyn sz? R3] Xl’nk )aﬁz(Xyl 9 X227 X:):g-"a Xxnk)

ﬂ’i(Xym Xyza ceey Xxnkfl)mﬁi(Xyn Xy27 ceey Xy',Lk)?

which leads us to za*y (from definition o), i.e. a*(x) = a*(y). Clearly, 5; in (1) is an
operation on H/a*, for any ¢ € I, and H/a* is a universal algebra. Now we prove that
a* is smallest. If p is an arbitrary equivalence relation on H such that H/p is a universal
algebra, we can show that a* C p. If zay then there exist n € N, p € P*"(F*(H)) and
ai,...,a, € H for which p(Xa,, s Xa,) (@) > 0 and p(Xa,, -, Xa,)(y) > 0, and hence by
Lemma 4.4 we have xpy, hence o« C p, which implies a* C p.[J
Remark 4.6. For a given fuzzy hyperalgebra H and equivalence relation o on H. Let
us define the operations of the universal algebra H/a* as follows :

Bi(a*(a), ..., (ay,;)) = {a*(b) | Bi(ai, ..., an,)(b) > 0}.
Moreover, we can write

BGi(a*(ay), ...,a*(an,)) = a*(b)  Bi(ai,...,an,)(b) > 0.
Example 4.7. Let H=(H, o) be a fuzzy hypersemigroup, i.e. a fuzzy hyperalgebra with

one binary fuzzy hyperoperation o, which is associative, that is x o (yo z) = (x o y) o z,

58



Ratio Mathematica, 20, 2010

for all z,y,z € H ( for more details see [21]). Let F*(H)=(F*(H),o) be the universal
algebra with one binary operation defined as follows:

(pov)(r) =\ w@)Avy)A(zoy)(r) ¥V pmrveF (H)reH
r,yeH
By distributivity of the lattice ([0, 1], V, A) and associativity of o in H, we will prove that

the operation o in F*(H) is associative. So for every u,v,n € F*(H) and r € H we have

(ovyon)(r)=\/ [(nov)(@) Anly) Az oy)(r)] =

z,yeH

\V 1OV wlp) Avig) Apog)(x) Any) Az oy)(r)] =

z,yeH p,qeH

\ (1) Avig) An(y) A\ (pog)(@) A (zoy)(r)] =

\/ (p) A () An(y) A\ (pox)(r) Agoy)(z)] =

V 1) Apox)(r) A\ vla) Any) Algoy)()] =

\/ (o) A (o 2)(r) A (v 0 m)(a)] = (0 (v o m)(1).

Consider now the universal algebra of polynomial functions of (F*(H),o). The images

of the elements of this algebra are the sums of nonzero fuzzy subsets of H. Thus we can

define @ on H by:
acb <= 3z, ...z, € Hn € N): (Xgy ©... 0 Xa,,)(@) > 0 and (x4, © ... © Xz, )(b) > 0.

Consider the quotient set H/a* with the hyperoperation

a*(a)oa*(b) = {a*(c) | (' 0b')(c) >0, da*a, ba*b}.

Really o is an operation, because o* is the fundamental relation on H. Also

a*(x)oa*(y)oa’(z)) = a*(x)oa®(k) = a*(l), where (yoz)(k) >0 and (zok)(l)> 0.

Therefore, 0 < (w0 (yo2)(l) = ((woy)o2)() = \/[(@oy)p) A (poz)1)]. Thus

peEH
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there exists p € H, such that o*(l) = a*(p) o a*(2) = (a*(x) o a*(y)) o a*(z), that the
operation o in H/a* is associative. Moreover, if H=(H, o) be a fuzzy hypergroup, that is
xoH = Hox = xp, for every x € H, since for every o*(a),a*(b) € H/a*, there exist
a*(t),a*(s) € H/a*, such that, a*(a) o a*(t) = a*(b) and o*(s) o a*(a) = a*(b), it is
concluded that H/a*=(H/a*, o) is a group.

Example 4.8. Let R=(R,®,®) be a fuzzy hyperring. This means that (R,®) is a
commutative fuzzy hypergroup, (R, ®) is a fuzzy hypersemigroup and for all z,y,z € R
satisfies: 2O (y®z) = (zQY)®(zGz) and (xPyY) Oz = (x©2) B (y® z) ( for more details
see [13]). Let F*(R)=(F*(R),®,®) be the universal algebra with two binary operations

defined as follows:

(pov)(r) =\ @) Aviy) Az y)r)],

z,yeH

(mov)r) =\ @) Avly) Aoy,

z,yeH

for all u,v € F*(R), r € R. Obviously, the operation @ in F*(R) is commutative, and &
and ® in F*(R) are associative. By distributivity of the lattice [0, 1] and distributivity ®
with respect to @ in R, we will prove that the operation ® in F*(R) is distributive with
respect to the operation &, too.

For every p,v, eta € F*(R) and r € R we have:

(o wen)(r) =\ @) A ey Az oy)r)] =

V @) A () vl(s) Zy;éi) ANs@t)(y) Az oy)r)] =
xi;R[ V (u(;ite/\RV(S) AnE) A (s @) (y) Az O y)(r)] =
w:y\G/R S[Le(i) Av(s) An) A\ (@ @y)(r) Als @ ) (y)] =
rﬁsv\:/:[u(w) Av(s) An(t) A (ye\ZR(ﬂf ©s)p) Az O8)(@) A (p@g)(r)] =
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V 1V (@) Ant) (@ 0 )(g) Au(z) Av(s) Az @ s)(p) A(p©g)(r))] =

z,s,teER p,qeER

VIOV u@) Ay Aot @) A\ wlz) Av(s) Az s)p)Ap o)) =

V [ 0m@ A 1o n)E) A @ ar)] = (10 0) & (1o n)r).

And analogously, (u®v) ©@n = (L ©n) ® (v ©®n). Now we can construct the universal
algebra (with two binary operations) of the polynomial functions of 7*(R) for any n € N.
The images of the elements of this algebra are the sums of products of nonzero fuzzy
subsets of R. Thus we can define o on R by;
aah <= ;5 € Ry e {1,...k;},je{l,.. I}, kj,l e N:
(@1 (D11 Xar,))(@) > 0 and (B (O 1Xa,))(B) > 0.

Consider the quotient set R/a* withe two following hyperoperations :

a*(a) ® a*(b) = {a*(c) | (d ®V)(c) > 0,d a*a,b'a*b}, and

a*(a) © a*(b) = {a*(c) | (d ©®V)(c) > 0,d'a*a, b/ a*b}
Actually @ and ® are operations, because o is the fundamental relation on R. By con-
sidering the previous example, obviously (R/a*, @) is a commutative group. We verify
the distributivity of ® with respect to @ for the universal algebra R/a*=(R/a*, &, ®).
We have
a*(a) © (a*(b) ® a*(c)) = a*(a) ©® a*(d) = a*(e), where (b& ¢)(d) > 0 and (e ® d)(e) > 0

0<(@o@®c)(e)=\(a@p)(e)A(b®c)(p). Thus

0<((a®b)@(aGc)) (Z) = \/ (a®b)(x) A(a®c)(y) A(x®y)(e). Therefore, there exist
£, € R such that a*(¢) = a*(2) + a*(y) = (o () +a*(5)) @ (a*(a) ®a*(¢)). and hence it
was proved that a*(a) ® (o*(b) ® a*(c)) = (o*(a) + a*(b)) ® (a*(a) ® a*(c)). Analogously,
we can prove that (o (b) @ a*(c)) ® a*(a)) = (a*(b) ® a*(a)) ® (a*(¢) ® *(a)). Thus it

concluded that R/a*=(R/a*, &, ®) is a ring, as desired.[

Conclusion
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We introduced and studied term functions over fuzzy hyperalgebras, as the largest
class of fuzzy algebraic systems. We use the idea that the set of nonzero fuzzy subsets of
a fuzzy hyperalgebra can be organized naturally as a universal algebra, and constructed
the term functions over this algebra. We gave the form of generated subfuzzy hyperalgebra
of a given fuzzy hyperalgebra as a generalization of universal algebras and multialgebras.
Finally, we characterized the form of the fundamental relation of a fuzzy hyperalgebra, to
construct the fundamental universal algebra corresponding to a given fuzzy hyperalgebra,
and this result guarantee that that fundamental relation on any fuzzy algebraic hyper-

structures, such as fuzzy hypergroups, fuzzy hyperrings, fuzzy hypermodules,... exists.
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1 Introduction

Burst errors are the type of errors that occur quite frequently in several
communication channels. Codes developed to detect and correct such
errors have been studied extensively by many authors. Abramson [1959]
developed codes which dealt with the correction of single and double
adjacent errors, which was extended by Fire [1959] as a more general

concept called ‘burst errors’. A burst of length b is defined as follows:

Definition 1. A burst of length b is a vector whose only non-zero
components are among some b consecutive components, the first and the

last of which is non-zero.

The nature of burst errors differs from channel to channel depending
upon the kind of channel. Chien and Tang [1965] proposed a modification
in the definition of a burst and they defined a burst of length b, which
shall be called as CT-burst of length b, as follows:

Definition 2. A CT-burst of length b is a vector whose only non-zero
components are confined to some b consecutive positions, the first of which

1S non-zero.

Channels due to Alexander, Gryb and Nast [1960] fall in this

category. This definition was further modified by Dass [1980] as follows:

Definition 3. A burst of length b(fixed) is an n-tuple whose only non-zero
components are confined to b consecutive positions, the first of which is
non-zero and the number of its starting positions is among the first n—b+1

components.

68



Ratio Mathematica, 20, 2010

This definition is useful for channels not producing errors near the
end of a code word. In very busy communication channels errors repeat
themselves. So is a situation when errors occur in the form of bursts. Dass,
Garg and Zannetti [2008] studied this kind of repeated burst errors. They
termed such errors as m-repeated burst errors of length b(fixed) which has

been defined as follows:

Definition 4. An m-repeated bursts of length b(fixed) is an n-tuple whose
only non-zero components are confined to m distinct sets of b consecutive
digits, the first component of each set is non-zero and the number of its

starting positions is among the first n — mb + 1 components.

In particular a 2-repeated bursts of length b(fixed) has been defined
by Dass and Garg [2009(a)] as follows:

Definition 5. A 2-repeated bursts of length b(fixed) is an n-tuple whose
only non-zero components are confined to 2 distinct sets of b consecutive
digits, the first component of each set is non-zero and the number of its

starting positions is among the first n — 2b + 1 components.

During the process of transmission some disturbances cause occur-
rence of burst errors in such a way that over a given length, some digits are
received correctly while others get corrupted i.e. not all the digits inside

a burst are in error. Such bursts are termed as low-density bursts [Wyner

(1963)].

A low-density burst of length b(fixed) with weight w or less has been

defined as follows:
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Definition 6. A low-density burst of length b(fixed) with weight w or
less is an n-tuple whose only non-zero components are confined to some b
consecutive positions, the first of which is non-zero with at most w (w < b)
non-zero components within such b consecutive digits and the number of

starting positions of the burst is among the first n — b+ 1 components.

Dass and Garg [2009(b)] studied codes which are capable to detect
and/or correct m-repeated low-density bursts of length b(fixed) with

weight w or less. They defined such codes as follows:

Definition 7. An m-repeated low-density burst of length b(fixed) with
weight w or less is an n-tuple whose only non-zero components are confined
to m distinct sets of b consecutive positions, the first component of each
set is non-zero where each set can have at most w non-zero components
(w < b), and the number of its starting positions in an n-tuple is among

the first n —mb + 1 positions.

In particular, a 2-repeated low-density burst of length b(fixed) with

weight w or less has been defined as follows:

Definition 8. A 2-repeated low-density burst of length b(fixed) with
weight w or less is an n-tuple whose only non-zero components are confined
to two distinct sets of b consecutive positions, the first component of each
set is non-zero where each set can have at most w non-zero components
(w < b), and the number of its starting positions in an n-tuple is among

the first n — 2b + 1 positions.
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As an illustration, (21010000102000) is a 2-repeated low-density
burst of length up to 6(fixed) with weight 3 or less over GF(3) whereas
(001000011110) is a 2-repeated low-density burst of length at most 5(fixed)
with weight 4 or less over GF(2).

In this paper we have presented a study of codes dealing with the
location of such kind of errors occurring within a sub-block. The concept
of error-locating codes, lying midway between error detection and error
correction, was introduced by Wolf and Elspas [1963]. In this technique
the block of received digits is to be regarded as subdivided into mutually
exclusive sub-blocks and while decoding it is possible to detect the error
and in addition the receiver is able to identify which particular sub-block
contains error. Such codes are referred to as Error-Locating codes (EL-
codes). Wolf and Elspas [1963] studied binary codes which are capable
of detecting and locating a single sub-block containing random errors. A
study of codes locating burst errors of length b(fixed) has been made by
Dass and Kishanchand [1986]. Dass and Arora [2010] obtained bounds for
codes capable of locating repeated burst errors of length b(fixed) occurring

within a sub-block.

In this paper we have obtained bounds on the number of check digits
required to locate 2-repeated low-density bursts of length b(fixed), and
m-repeated low-density bursts of length b(fixed). An illustration of such
a code has also been given. Development of such codes will economize in
the number of parity-check digits required in comparison to the usual low-
density burst error locating codes while considering such repeated bursts

as single bursts.
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The paper has been organized as follows. In section 2 the necessary
condition for the detection and location of 2-repeated low-density burst of
length b(fixed) with weight w or less has been derived. This is followed
by a sufficient condition for the existence of such a code. An illustration
of 2-repeated low-density burst of length b(fixed) with weight w or less
over GF(2) has also been given. In section 3 a necessary condition for the
detection and location of m-repeated low-density burst of length b(fixed)
with weight w or less has been given followed by a sufficient condition for

the existence of such a code.

In what follows we shall consider a linear code to be a subspace of n-
tuples over GF(q). The block of n digits, consisting of r check digits and
k = n — r information digits, is considered to be divided into s mutually

exclusive sub-blocks. Each sub-block contains ¢t = n/s digits.

2 2-Repeated Low-density Burst Error
Locating Codes

In this section, we consider (n, k) linear codes over GF(q) that are capable
of detecting and locating all 2-repeated low-density burst of length b(fixed)

with weight w or less within a single sub-block.

It may be noted that an EL-code capable of detecting and locating
a single sub-block containing an error which is in the form of a 2-repeated
low-density bursts of length b(fixed) with weight w or less must satisfy the

following conditions:

(a) The syndrome resulting from the occurrence of a 2-repeated low-

density burst of length b(fixed) with weight w or less within any one

72



Ratio Mathematica, 20, 2010

sub-block must be distinct from the all zero syndrome.

(b) The syndrome resulting from the occurrence of any 2-repeated low-
density burst of length b(fixed) with weight w or less within a single
sub-block must be distinct from the syndrome resulting likewise from
any 2-repeated low-density burst of length b(fixed) with weight w or

less within any other sub-block.

In this section we shall derive two results. The first result derives a
lower bound on the number of check digits required for the existence of a
linear code over GF(q) capable of detecting and locating a single sub-block
containing errors that are 2-repeated low-density burst of length b(fixed)
with weight w or less. In the second result, an upper bound on the number

of check digits which ensures the existence of such a code has been derived.

As the code is divided into several blocks of length ¢ each and we wish
to detect a 2-repeated low-density burst of length b(fixed) with weight w
or less, we may come across with a situation when the difference between 2b
and t (b+w and t) becomes narrow. We note that if t —b+1 < b+w and
if we consider any two 2-repeated low-density bursts x; and x, of length
b(fixed) with weight w or less such that their non-zero components are
confined to first ¢ — b+ 1 positions with w components confining to some
fixed w positions out of first b consecutive positions then their difference
xr1 - X9 is again a 2-repeated low-density burst of length b(fixed) with
weight w or less. However if we do not restrict ourselves to first t — b+ 1
positions then we may not get a 2-repeated burst of length b(fixed) with
weight w or less. This may be better understood with the help of the

following examples:
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Example 1. Let t =9, b=4, w=3 and ¢g=2. Sothat t —b+1=6 <
b+w(=T7).
Let z; = (101101001) and x5 = (100101011).

Then z; and xy are 2-repeated low-density burst of length 4(fixed) with
weight 3 or less whereas x; — xo = (001000010) is not a 2-repeated burst
of length 4(fixed).

Example 2. Let t =11, b =5, w =3 and ¢ = 2.
Let z; = (10101010010) and x2 = (10101010001)

Then z; and x9 are 2-repeated low-density burst of length 5(fixed) with
weight 3 or less whereas x; — x5 = (00000000011) which is not even a
2-repeated burst of length 4(fixed) what to talk of its weight.

So, accordingly we discuss the following cases:

Case 1: When t —b+1 > 2b.

Let X be the collection of all those vectors in which all the non-
zero components are confined to some fixed w positions out of two sets of
b consecutive positions each i.e. [-th to (I 4 b)-th position and j-th to
(j + b)-th position where j > [+ b.

We observe that the syndromes of all the elements of X should be
different; else for any x1,zs belonging to X having the same syndrome
would imply that the syndrome of x; — x5 which is also an element of X
and hence a 2-repeated low density burst of length b(fixed) with weight w
or less within the same sub-block becomes zero; in violation of condition
(a). Also, since the error locates a single sub-block containing errors that

are 2-repeated low-density bursts of length b(fixed) of weight w or less,
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the syndromes produced by similar vectors in different sub-blocks must be
distinct by condition (b).

Thus the syndromes of vectors which are 2-repeated low-density burst
of length b(fixed) with weight w or less in fixed positions, whether in the
same sub-block or in different sub-blocks, must be distinct. (It may be
noted that the choice of different fixed components in different sub-blocks

will also yield the same result).

As there are (¢** — 1) distinct non-zero syndromes corresponding to
the vectors in any one sub-block and there are s sub-blocks in all, so we
must have atleast (1+s(¢** —1)) distinct syndromes counting the all zero

syndrome.

As maximum number of distinct syndromes available using r check

bits is ¢", so there are ¢ distinct syndromes in all, therefore we must have

¢ > {1+s(¢™ 1)} (1)
where t — b+ 1 > 2b.

Case 2: When b+w <t—>b+1<2b.

Let X be the collection of all those vectors in which all the non-
zero components are confined to some w fixed positions out of first b
components i.e first and b-th position and another set of w fixed positions

out of (b+ 1)-th to (¢ — b+ 1)-th positions.

As discussed in case 1 the syndromes of all the elements of X is

different.

In this case also, there are (¢** — 1) distinct non-zero syndromes

corresponding to the vectors in any one sub-block and there are s sub-
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blocks in all, so we must have atleast (1+ s(¢** — 1)) distinct syndromes

counting the all zero syndrome.

So, in this case also, we must have

¢ > {1+s(¢* - 1)} (2)
where b+w <t—b+1 < 2b.

Case 3: When t —b+1<b+w.

In this case consider X to be collection of all those vectors in which
all the non-zero components are confined to some w fixed positions out of
first b positions and ¢ — 2b+ 1 components from (b+ 1)-th to (t —b+1)-
th positions. In this case there are (¢T(¢~2*1) — 1) distinct non-zero
syndromes corresponding to the vectors in any one sub-block. As and
there are s sub-blocks in all, so we must have atleast (1+s(g®+=2+1) 1))

distinct syndromes counting the all zero syndrome.

Therefore in this case, we must have
qr > {1 + S(qw+(t72b+1) o 1)} (3)

where t —b+1 < b+ w.

From (1), (2), and (3) we have

log {1+ s(¢® —1)} where t —b+ 1> 2b
r> and b+w<t—b+1<2b
log {1+ s(¢”t=#t) — 1)}  where ¢t —b+1<b+w.

Thus we have proved:

Theorem 1. The number of parity check digits r in an (n,k) linear code

subdivided into s sub-blocks of length t each, that locates a single corrupted
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sub-block containing errors that are 2-repeated low density burst of length

b (fired) with weight w or less is at least

log {1+ s(¢** — 1)} where t—b+12>2b
and b+w <t—->b+1<2b.
log, {1+ s(q“ =2+ — 1)} where t—b+1<b+w
Remark 1. For w = b, the weight consideration over the burst becomes

redundant and the result coincides with Theorem 1[Dass and Arora [2010]],

when the bursts considered are 2-repeated bursts of length b(fixed).

In the following result we derive another bound on the number of
check digits required for the existence of such a code. The proof is based
on the technique used to establish Varshomov-Gilbert Sacks bound by
constructing a parity check matrix for such a code [refer Sacks[1958], also
Theorem 4.7 Peterson and Weldon[1972]]. This technique not only ensures
the existence of such a code but also gives a method for the construction

of such a code.

Theorem 2. An (n,k) linear EL-code over GF(q) capable of detecting
a 2-repeated low density burst of length b (fived) with weight w or less
(w < b) within a single sub-block and of locating that sub-block can always

be constructed provided that
¢ > [+ (g = DI+ (g = D =20+ DL+ (¢ — D]

- {1 t-1DY (t o ) (a— DL+ (a - 1)1“’-171”-”}@} (4)

; i
=1
where [1 + )™ denotes the incomplete binomial expansion of (1 4+ x)™

up to the term " in ascending power of x, viz.

[1+z)m) =1+ <m)x+ (m)x2+...+ (m>x’“.
1 2 T
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Proof. The existence of such a code will be shown by constructing an
appropriate (n — k x n) parity check matrix H by a synthesis procedure.
For that we first construct a matrix H; from which the requisite parity
check matrix H shall be obtained by reversing the order of the columns of

each sub-block.

After adding (s—1)t columns appropriately corresponding to the first
(s — 1) sub-blocks, suppose that we have added the first j — 1 columns
hi,ho, ... hj_1 of the s-th sub-block also, out of which the first b — 1
columns hq, ha, ..., hy—; may be chosen arbitrarily (non-zero). We now lay

down the condition to add the j-th column h; to H; as follows:

According to condition (a), for the detection of 2-repeated low-
density burst of length b(fixed) with weight w or less in the s-th sub-block
h; should not be a linear combination of any w—1 or fewer columns among
the immediately preceding b — 1 columns h;_py1,hj—pi2, ... hj—1 together
with any w or fewer columns from amongst some b consecutive columns

from the first 7 — b columns of the s-th sub-block.
i.e.
hy # (o hy +aghg+ - Fag, by, ) +(Bn b+ Bl =+ -+ 6, a,) (5)

where hj,, hj,, ..., h;, , are any w—1 columns among hj_p41, hj_pio, ... hj—q
and h;’s are any w columns from a set of b consecutive columns among the
first j —b columns of the s-th sub-block such that either all the coefficients
B,’s are zero or if the p-th coefficient 3, is the last non-zero coefficients

then b < p < j—0b;

aj’s, 4,’s € GF(q).
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The number of ways in which the coefficients «a;’s can be selected is
[1+4 (¢ — )] 5»=D . To enumerate the coefficients f3;’s is equivalent to
enumerate the number of bursts of length b(fixed) with weight w or less

in a vector of length j —b.

This number including the vector of all zeros [refer Theorem 1, Dass

[1983]] is
L+ (G =20+ 1)(g = DL+ (g - D)7V
So, the number of linear combinations on the right hand side of (5) is
L+ (=D I+ (G - 20+ D(g— DL+ (g = DI (6)

According to condition (b), for the location of 2-repeated low-density
bursts of length b(fixed) with weight w or less, h; should not be a
linear combination of any w — 1 or fewer columns among the immediately
preceding the b—1 columns and any w columns from a set of b consecutive
columns from the remaining j — b columns of the s-th sub-block along
with any w or less columns each from any of the two sets of b consecutive
columns out of any one of the previously chosen s — 1 sub-blocks, the
coefficient of the last column of either both or one of the sets being non-

Zero.

The number of 2-repeated low-density bursts of length b(fixed) with
weight w or less in a sub-block of length ¢ [refer Dass and Garg [2009(b)]]
is

2L (t— zb +1
S (70T - v - ey ")
i=1

Since there are (s—1) previous sub-blocks, therefore number of such linear

79



Ratio Mathematica, 20, 2010

combinations becomes
2 . :
t—1b +2 i —1,w— %
-0 (T e v - pee ey
i=1
So, for the location of 2-repeated low-density burst of length b(fixed) with
weight w or less the number of linear combinations to which h; can not

be equal to is the product of expr.(6) and expr.(8)
i.e. expr.(6) x expr.(8) (9)

Thus the total number of linear combinations to which h; can not be equal
to is the sum of exp.(6) and exp.(9) At worst all these combinations might

yield distinct sum.

Therefore h; can be added to the s-th sub-block provided that

¢ > (L4 (= DI (= D = 2+ D[+ - D)

- {1 +(s—=1)) (t - ib i Z) (=11 + (¢~ 1)](“’“’”}"}

i=1
To obtain the length of the block as t we replace j by t in the above

expression.

The required parity-check matrix H can be obtained from H; by

reversing the order of the columns in each sub-block.

Remark 2. For w = b, the weight consideration over the burst becomes

redundant and the inequality in Theorem 2 reduces to

s I+ (g -1t —-20+ 1))

x {1 e (T - 1>iqi<“>}

i=1
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which coincides with the condition for the location of 2-repeated burst of

length b(fixed) [refer Theorem 2, Dass and Arora [2010]].

We conclude this section with the following example:

Example 3. For an (27,15) linear code over GF(2) consider the following

12 x 27 matrix H which has been constructed by the synthesis procedure

given in the proof of theorem 2 by taking s =3, t =9, b=3, w = 2.

(000000001
000000010
000000100
000001000
000010000
000100000
001000000
010000000
100000000
000000000
000000000
000000000

111111000
110111000
111000000
100000000
111100000
110100000
011000000
000000000
011100000
010100001
011010010
000010100

101000111 ]
100010110
100011110
100010000
101001100
100000100
100000100
101101100
111110000
001111110
011110110
001100111

The null space of this matrix can be used as a code to locate a sub-
block of length ¢ = 9 containing 2-repeated burst of length 3(fixed). From

the error pattern syndrome Table 1 we observe that:

The syndromes of 2-repeated burst of length 3(fixed) within any sub-
block are all non-zero showing thereby that the code detects all 2-repeated
low-density bursts of length 3(fixed) with weight 2 or less occurring within
a sub-block.
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It has been verified through MS-Excel program that the syndromes
of the 2-repeated bursts of length 3(fixed) with weight 2 or less in any
sub-block is different from the syndrome of a 2-repeated burst of length

3(fixed) with weight 2 or less within any other sub-block.

Table 1
Low density 2-repeated bursts of length 3(fixed) Syndromes
Sub-block - 1
1 100100000 000000000 000000000 0000 0100 1000
2 100101000 000000000 000000000 0001 0100 1000
3 100110000 000000000 000000000 0000 1100 1000
4 101100000 000000000 000000000 0000 0110 1000
5 101101000 000000000 000000000 0001 0110 1000
6 101110000 000000000 000000000 0000 1110 1000
7 110100000 000000000 000000000 0000 0101 1000
8 110101000 000000000 000000000 0001 0101 1000
9 110110000 000000000 000000000 0000 1101 1000
10 100010000 000000000 000000000 0000 1000 1000
11 100010100 000000000 000000000 0010 1000 1000
12 100011000 000000000 000000000 0001 1000 1000
13 101010000 000000000 000000000 0000 1010 1000
14 101010100 000000000 000000000 0010 1010 1000
15 101011000 000000000 000000000 0001 1010 1000
16 110010000 000000000 000000000 0000 1001 1000
17 110010100 000000000 000000000 0010 1001 1000
18 110011000 000000000 000000000 0001 1001 1000
19 100001000 000000000 000000000 0001 0000 1000
20 100001010 000000000 000000000 0101 0000 1000
21 100001100 000000000 000000000 0011 0000 1000
22 101001000 000000000 000000000 0001 0010 1000
23 101001010 000000000 000000000 0101 0010 1000
24 101001100 000000000 000000000 0011 0010 1000
25 110001000 000000000 000000000 0001 0001 1000
26 110001010 000000000 000000000 0101 0001 1000
27 110001100 000000000 000000000 0011 0001 1000
28 100000100 000000000 000000000 0010 0000 1000
29 100000101 000000000 000000000 1010 0000 1000
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30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
a0
o1
52
93
o4
%)
56
o7
98
59
60
61
62
63
64
65
66

100000110
101000100
101000101
101000110
110000100
110000101
110000110
010010000
010010100
010011000
010110000
010110100
010111000
011010000
011010100
011011000
010001000
010001010
010001100
010101000
010101010
010101100
011001000
011001010
011001100
010000100
010000101
010000110
010100100
010100101
010100110
011000100
011000101
011000110
001001000
001001010
001001100

Ratio Mathematica, 20, 2010

Sub-block - 1
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 0