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Abstract  

Solving applied social, economic, psychological, health care and 
public health problems can require an understanding of facts or 
phenomena related to populations of interest.  Therefore, it can be 
useful to test whether an explanation of a phenomenon holds in a 
population.  However, different definitions for the phrase “explain 
in a population” lead to different interpretations and methods of 
testing.  In this paper, I present two definitions:  The first is based 
on the number of members in the population that conform to the 
explanation’s implications; the second is based on the total 
magnitude of explanation-consistent effects in the population.  I 
show that claims based on either definition can be tested using 
random coefficient models, but claims based on the second 
definition can also be tested using the more common, and simpler, 
population-level regression models.   Consequently, this paper 
provides an understanding of the type of explanatory claims these 
common methods can test. 
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1. Introduction 
Science provides explanations for facts, phenomena, and other 

explanations.  In applied research that draws on theories from disciplines such 
as Economics, Psychology, Sociology, and Organizational Science, among 
others, this can require testing whether a proposed explanation explains a 
given fact, phenomenon, and other explanation in a specified population.  For 
example, one might wish to test whether a proposed explanation based on 
Psychology’s Regulatory Focus Theory [1, 2] explains physician risk tolerance 
in treatment choice (the phenomenon) among primary care physicians in the 
United States (the population).  However, what is meant by the phrase explains 
in a population?  Is it that the proposed explanation accounts for the behavior 
of every member of the population?  This is a high bar: one member of the 
population for whom the explanation does not hold falsifies the claim.  Is it 
that the proposed explanation accounts for the behavior of at least one 
member?  This is equally extreme: only one member of a population for whom 
the explanation holds warrants the claim.  The claim is ambiguous.  Specific 
definitions are required if such claims are to be understood and tested.   

This paper provides definitions and identifies methods for testing 
corresponding explanatory claims.  These definitions and the identification of 
corresponding methods are new contributions that provide conceptual and 
methodological guidance for researchers who seek to test explanations in 
populations.  The methods themselves, however, are in common use: random 
coefficient models and population-level regression models.  Therefore, 
whereas a goal of this paper is to show which methods can be used to test 
specific explanatory claims, I do not present the implementation of the 
methods: there are many textbooks and articles that provide this information 
[e.g. 3, 4].  For simplicity of presentation, I only reference phenomena as the 
target of explanation rather than also facts and other explanations; however, 
any of these are applicable throughout. 

2. Defining explain 
Before providing the required definitions, I will clarify what I mean by to 

explain and by an explanation.  For this paper, to explain something is to 
provide a way of understanding it through a conceptual structure that accounts, 
at least in part, for that which is being explained [5, Ch. 9].  The conceptual 
structure is the explanation.  One might imagine there is a single explanation 
for any given phenomenon.  However, for macro-level phenomena, such as 
organization and human behaviors, there may be multiple ways of 
understanding them.  For example, a human behavioral phenomenon may have 
sociological explanations, psychological explanations, physiological 
explanations, and more.  Any one of the explanations could be referred to as 
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an explanation, and no one of them referred to as exclusively the explanation.  
Moreover, an explanation need not be complete.  There may be many causal 
factors or mechanisms that contribute to the phenomenon; however, an 
explanation might focus only on a subset. 

An explanation can be intended to provide an understanding of a 
phenomenon as it is [6, Ch. 4], a de re explanation; or, it can be intended to 
provide an understanding that, nonetheless, contains explicitly presumed 
falsehoods [7, 8], a de ficta explanation.   All terms of a de re explanation refer 
to presumed real objects, qualities, characteristics, and relationships.  
Designation as a de re explanation does not guarantee truth, nor does it imply 
the researcher believes it is true; indeed, if the researcher believed the 
explanation was in fact true, there is no need for further inquiry [9].  
Moreover, it is common to expect even a well-established theory-based 
explanation to be incorrect in some unknown way.  It is the ontological 
commitments (the presumption that explanatory terms intend to have real 
referents) of the explanation’s terms that qualify it as a de re explanation.  
However, a de ficta explanation contains at least one identified term that is 
presumed to be false.  These are often explanations that contain idealizations 
(e.g. the discrete energy levels in the Bohr model of the atom [10-12], and the 
rationality of the rational choice model in classic microeconomics [13, 14]) or 
analogies (e.g. the computer analogy or corporate analogy of information 
processing in cognitive science [15]).  Given there need only be a single 
presumed false term to warrant designation as a de ficta explanation, the 
remaining terms have substantive ontological commitments.  Such de ficta 
explanations are presumed to be partially true [7].  Although these definitions 
do not restrict explanations to those that are amenable to empirical 
investigation, this paper is written to provide guidance for empirical 
researchers.  Consequently, the focus of the discussion herein is on scientific 
explanations that have empirical implications. 

In the applied sciences, the goal of both de re and de ficta explanations is to 
guide interventions, actions, or policy.  The pursuit and use of a de re 
explanation are based on the belief that understanding the world as it is 
provides assurance that consequent interventions, actions, and policies are 
more likely to work and generalize, and the causes for their failure are more 
likely to be identified.  The de ficta explanation does not carry as great an 
assurance in these regards as it includes identified false claims.  However, the 
de ficta explanation can be simpler, easier to develop and understand, and 
easier to apply.  Both types of explanation are usefully employed. 

Explanations are often assessed in terms of explanatory power.   
Explanatory power characterizes explanations in terms of explanatory virtues 
such as generality, coherence, accuracy, and predictive ability, among others 
[8, 16].  It has been qualitatively defined in terms of the scope of questions it 
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may seek to explain physician risk tolerance in treatment choice among 
primary care physicians in the United States, the proposed explanation is 
regarding its members’ relevant behaviors (the behaviors of individual 
physicians).  So, regardless of the number of members in the population, 
which can be as few as one, our definition of the phrase a potential 
explanation explains a given phenomenon in a population represents an 
aggregation of an individual-level explanation across the members of the 
population.   

As stated in the introduction, definitions that require explanation of either 
every member or only one member of a population are extreme.  Appropriate 
definitions are likely somewhere in between.  This paper focuses on two: 

Definition 1.  An explanation explains a phenomenon in a population if, and 
only if, it has positive effective power for most members of the population. 

Definition 2.  An explanation explains a phenomenon in a population if, and 
only if, its cumulative magnitudes of effective power among the members of 
the population for whom the explanation holds exceeds its cumulative 
magnitudes of effective power among the members of the population for 
whom the explanation does not hold. 

These definitions are based on minimal criteria.  In the first case, it would 
be difficult to support an explanatory claim regarding scope if the possible 
explanation only applied to a minority of population members.  In the second 
case, it would be difficult to support an explanatory claim regarding 
cumulative power if the possible explanation was associated with less 
cumulative power than the counter-explanation in a population.  However, this 
is arbitrary, and we need not take the minimal stance.  We can generalize the 
definitions to vary with a definitional parameter q: 

General Definition 1.  An explanation explains a phenomenon in a 
population if, and only if, it has effective power for at least q percent of the 
members of the population. 

General Definition 2.  An explanation explains a phenomenon in a 
population if, and only if, its cumulative magnitudes of effective power among 
the members of the population for whom the explanation holds exceeds q 
times its cumulative magnitudes of effective power among the members of the 
population for whom the explanation does not hold. 

The remaining sections focus on the minimal definitions, however the 
general testing method in Section 4.1 can be used to test these general 
definitions as well. 
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3. Defining Testable Implications 
To test claims based on the preceding definitions, we required 

corresponding operational definitions in terms of testable implications:   
Operational Definition 1.  If an explanation explains a phenomenon in a 

population, then the implications of the explanation hold for most of the 
members of the population.  And, under reasonable presumption (i.e. credible 
alternative explanations are accounted for), if the implications of the 
explanation hold for most of the members of the population, then an 
explanation explains a phenomenon in a population. 

Operational Definition 2.  If an explanation explains a phenomenon in a 
population, then the cumulative strength of the explanation’s implications 
among the members of the population for whom the explanation holds exceeds 
the cumulative strength of the counter-implications among the members of the 
population for whom the explanation does not hold. And, under reasonable 
presumption (i.e. credible alternative explanations are accounted for), if the 
cumulative strength of the explanation’s implications among the members of 
the population for whom the explanation holds exceeds the cumulative 
strength of the counter-implications among the members of the population for 
whom the explanation does not hold, then an explanation explains a 
phenomenon in a population. 

The first conditional in each operational definition allows evidence against 
each consequent (the testable implications) to provide evidence against the 
explanatory claim.  The second conditional allows evidence for each 
antecedent (the testable implications) to provide evidence for the explanatory 
claim.  The first conditionals are typically derived from the explanation.  The 
second conditionals draw more upon the weaker condition of presumption-
based reasoning [21], which is grounded in current background knowledge and 
is thereby defeasible: future changes in scientific understanding can negate the 
conditional.  A strong reasonable presumption for the second conditionals is 
achieved if there are no credible alternative explanations for the testable 
implications.   

Regarding operational definition 1, we might say, for example, that a 
Regulatory-Focus-Theory-based explanation explains physician risk tolerance 
in treatment choice among primary care physicians in the United States if a 
higher promotion focus (a term in Regulatory Focus Theory [1, 22]) leads 
physicians to have higher risk tolerance (the explanation’s implication) for 
more than half of the physicians, accounting for alternative explanations.  
Regarding operational definition 2, we might say that a Regulatory-Focus-
Theory-based explanation explains physician risk tolerance in treatment choice 
among primary care physicians in the United States if the cumulative 
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implications are accounted for or ruled out, typically by statistical or 
experimental control.  The extent of evidence provided by the test depends on 
the confidence we have that alternative explanations for empirical findings are 
indeed ruled out: the less confident we are, the less evidence is provided by the 
test.  This concern is addressed by calibrating our interpretation accordingly. 

This paper addressed defining and testing explanations in populations.  
However, it should be noted that the general definition can be the basis for 
addressing estimation goals as well as testing goals.  Using the random 
coefficients method the proportion of a population that conforms to the 
explanation’s implications or the effective power can be estimated along with 
corresponding bootstrapped confidence intervals.  
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1.  Premise 

Usually, when we talk about the therapeutic treatment of serious pathologies 

it is difficult to consider the contribution of mathematics and statistics to the 

success of the interventions. Most often it is thought that positive results 

correspond to the abilities and knowledge of the luminaries of surgery and 

medicine. This article aims to provide additional information: to demonstrate 

that applied mathematics (in particular statistics) offers indispensable tools for 

a rational approach to these therapies. The method we used in the development 

of this therapeutic process is essentially deterministic, although some passages 

implicitly provide a probabilistic reference; in particular, when the least squares 

principle is applied for the research of the theoretical model of interpolation. 

The basic hypothesis is that the deviations of the experimental values from the 

theoretical values of the model have a Normal distribution. 

 

2.  Mathematics as a measure of the world 

The field in which Mathematics moves has become vast. Usually, it is 

divided into two major sectors: the pure and that applied mathematics. The first 

sector has a purely speculative nature and is concerned with a rigorous 

arrangement of the basic principles of the discipline; the second, instead, relates 

to the applications of mathematical methods to Natural Sciences, Medicine, 

Engineering and Economics. It is in this second sector that interesting 

applications can be found that can help man solve several technical-scientific 

problems. It is necessary, however, to warn this is only an exemplifying 

division. Actually, mathematics is a unitary whole and it is difficult to know 

where its theoretical part ends and its experimental soul begins and vice versa. 

Often, problems arise in an application environment that requires in-depth 

theoretical analysis. So, it is necessary to refer to an experience, to a useful 

operational path. 

A wider approach, not only descriptive, to natural phenomena requires a 

considerable knowledge of the mathematics that allows: 

- Their measurement (Analysis, Probability Calculus, Statistics); 

- The study of their possible forms (Analysis, Geometry, Statistics); 

- The coherent arrangement of the rules followed (Logic, Algebra). 

All scientific methodologies require compliance with these three points. 

 

3.  Problem analysis 

Biology is one of the sciences that is proving to be very ductile to use 

mathematical techniques for a rational response to problems. It enables, with 



Mathematics and radiotherapy of tumors 

55 

 

genetics good practices and good procedures to improve the lives of human 

beings. The mathematical fields that can be applied to Biology range from 

Combinatorial Calculus to Probability Calculus, to Geometry, to Statistics and 

they offer a vast set of procedures. 

The problem I am presenting is, certainly, of undoubted effect. It is an 

efficient and effective treatment to counteract, and eventually block, the 

progress of a particular type of tumor: the glioblastoma. It is a nodular tumor 

that lurks in the brain tissues and soon leads to the death of the host (the patient). 

We start from an experimental model of the tumor nodule, which, growing in 

the laboratory, gives us a lot of biological and kinetic measures of its growth 

(Figure 1). In particular, we can determine the growth time, the number of the 

cells for each instant of time and the critical limit of their growth beyond which 

there is nothing left to do (for example, for the compression of the tissues or for 

metastasis). In the dynamics of the tumor, we also consider the necrosis of many 

of its cells for the lack of food and of oxygen. It is also necessary to know the 

clinical picture of the patient and his immune response. 

After that, we analyze the mathematical models able to guarantee a rigorous 

control of the behavior of this type of tumor. 

 

4.  The choice of mathematical models 

On the basis of what we previously analyzed, the process requires the 

selection of mathematical models, as the first approach, in order to 

quantitatively describe the natural growth of the tumor mass over time and to 

find a mathematical model that allows to give to the patient a therapy that 

increases his life expectancy compared to the natural one, starting from the 

observation of the neoplasm. 

The mathematical models able to control the growth of biological 

populations are studied by that part of mathematics that is known as population 

dynamics [8]. When dealing with a problem of growth of biological populations, 

we take on known and tested standard models. Usually, any changes to be made 

to the models are arranged during the work, keeping the standard model used as 

fixed as possible. One of the most well-known growth models is that of Verhulst 

[8]. In our case, however, the Verhulst equation does not adapt well to describe 

the growth dynamics of the glioblastoma tumor cells. It has been observed, from 

previous studies, that the most suitable model to describe this growth is given 

by the differential equation of B. Gompertz. 
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11.  Assumptions for the radiotherapy 

When we face the problem of finding the relationship between a dynamic 

model of natural growth of a tumor and its radio-therapeutic treatment, collateral 

effects inevitably arise that create states other than those we would have liked 

to encounter. The complete modeling of a radiotherapy treatment requires the 

consideration of numerous variables that influence the interaction between 

tumor cells and radiant doses. For this reason, as a first approximation, we put 

some valid hypotheses to simplify the method. The choice of the hypotheses 

useful for the simplification of an effective model for the treatment of a tumor 

is in any case indispensable every time the control of the final results is desired. 

If we consider the analysis of the problem from a mathematical point of view, it 

is necessary to think about the implication of having to replace differential 

equations, defined in the continuous, with equivalent equations defined in the 

discrete. At this point we present the list of the necessary hypotheses to get on 

with the analysis of the process. 

Assumption 1: The Gompertz model is a good representation of the growth 

dynamic of a tumor mass, starting from a first degenerated cell up to 

asymptotically reaching a volume of 25 cm3. Thus, it is possible to simulate 

tumor growth using the equations (1), (2) and (3). 

Assumption 2: A solid tumor, in general, consists of proliferating cells P, 

quiescent cells Q and dead cells U. The number of total cells N at time t is 

therefore given by 

 

N(t) = P(t) + Q(t) + U(t).                  (16) 

 

Table 3 and Figure 5 refer only to proliferating cells since ionizing radiations 

are much less effective if directed against quiescent cells. 

Assumption 3: In a solid tumor, on an experimental basis, it is possible to 

state that the number of quiescent and dead cells becomes significant with 

respect to the total of cells at the inflection point of the Gompertz curve (3) and 

(12). 

Assumption 4: Radiation therapy has instantaneous effects, causing the 

immediate death of the cancer cells. These effects should at least be faster than 

the growth of tumor cells. This avoids a detailed kinetic analysis of the toxicity 

of radiation. 

Assumption 5: After undergoing radiotherapy treatment, the tumor grows 

with the same dynamic modalities that preceded the treatment. It is a common 

convention in scientific treatises; however, there are also different points of view 

on this matter [6]. 

Assumption 6: The maximum dose in a single treatment is 3 Gy. You can 

also perform multiple treatments if and only if they are repeated at 24-hour 

intervals. It is not possible, however, to exceed 65 Gy. This assumption is 
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Figure 5. The graph 

describes the effect of 12 

radiotherapy treatments on 

a glioblastoma. The doses, 

in Gray, is (1, 2, 3, 1, 2, 0, 

0, 1, 2, 3, 1, 2). Note that 

the treatment did not give 

the desired result. The 

mass of the tumor has not 

been reduced below the 

critical threshold set by the 

protocol. 
 

 
 

 
 

 

Figure 6. The graph 

describes the effect of 12 

radiotherapy treatments 

on a glioblastoma. The 

doses, in Gray, is (2, 2, 3, 

3, 3, 0, 0, 2, 2, 3, 3, 3). In 

this case, it should be 

noted that the treatment 

has reached the desired 

result. The tumor mass 

was reduced under the 

critical threshold 

established by the 

protocol. 

 
 

Each cusp corresponds to the flex point of the various curves that sequentially 

describe the progression of tumor growth after each treatment. 
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Abstract

The distinguishing number (index) D(G) (D0(G)) of a graph G is
the least integer d such that G has an vertex labeling (edge labeling)
with d labels that is preserved only by a trivial automorphism. The
co-normal product G ? H of two graphs G and H is the graph with
vertex set V (G) � V (H) and edge set ff(x1; x2); (y1; y2)gjx1y1 2
E(G) or x2y2 2 E(H)g. In this paper we study the distinguishing
number and the distinguishing index of the co-normal product of two
graphs. We prove that for every k � 3, the k-th co-normal power
of a connected graph G with no false twin vertex and no dominating
vertex, has the distinguishing number and the distinguishing index
equal two.
Keywords: distinguishing number; distinguishing index; co-normal
product.
2010 AMS subject classifications: 05C15, 05C60. 1

�Department of Mathematics, Yazd University, Yazd, Iran; alikhani@yazd.ac.ir
yDepartment of Mathematics, Yazd University, Yazd, Iran; s.soltani1979@gmail.com
1Received on February 12th, 2019. Accepted on May 3rd, 2019. Published on June 30th, 2019.

doi: 10.23755/rm.v36i1.452. ISSN: 1592-7415. eISSN: 2282-8214. c
Alikhani and Soltani.
This paper is published under the CC-BY licence agreement.

79



Saeid Alikhani, Samaneh Soltani

1 Introduction and definitions
Let G = (V;E) be a simple graph of order n � 2. We use the the following

notations: The set of vertices adjacent in G to a vertex of a vertex subset W � V
is the open neighborhood N(W ) of W . Also N(W ) [ W is called a closed
neighborhood of W and denoted by N [W ]. A subgraph of a graph G is a graph
H such that V (H) � V (G) and E(H) � E(G). If V (H) = V (G), we call
H a spanning subgraph of G. Any spanning subgraph of G can be obtained by
deleting some of the edges from G. Two distinct vertices u and v are called true
twins if N [v] = N [u] and false twins if N(v) = N(u). Two vertices are called
twins if they are true or false twins. The number jN(v)j is called the degree of v
in G, denoted as degG(v) or deg(v). A vertex having degree jV (G)j � 1 is called
a dominating vertex of G. Also, Aut(G) denotes the automorphism group of G,
and graphs with jAut(G)j = 1 are called rigid graphs.

A labeling of G, � : V ! f1; 2; : : : ; rg, is said to be r-distinguishing, if no
non-trivial automorphism of G preserves all of the vertex labels. The point of the
labels on the vertices is to destroy the symmetries of the graph, that is, to make the
automorphism group of the labeled graph trivial. Formally, � is r-distinguishing
if for every non-trivial � 2 Aut(G), there exists x in V such that �(x) 6= �(�(x)).
The distinguishing number of a graph G is defined by

D(G) = minfrj G has a labeling that is r-distinguishingg:

This number has defined in [1]. Similar to this definition, the distinguishing
index D0(G) of G has defined in [8] which is the least integer d such that G has
an edge colouring with d colours that is preserved only by a trivial automorphism.
If a graph has no nontrivial automorphisms, its distinguishing number is 1. In
other words, D(G) = 1 for the asymmetric graphs. The other extreme, D(G) =
jV (G)j, occurs if and only if G is a complete graph. The distinguishing index of
some examples of graphs was exhibited in [8]. For instance,D(Pn) = D0(Pn) = 2
for every n � 3, and D(Cn) = D0(Cn) = 3 for n = 3; 4; 5, D(Cn) = D0(Cn) =
2 for n � 6, where Pn denotes a path graph on n vertices and Cn denotes a
cycle graph on n vertices. A graph and its complement, always have the same
automorphism group while their graph structure usually differs, hence D(G) =
D(G) for every simple graph G.

Product graph of two graphs G and H is a new graph having the vertex set
V (G) � V (H) and the adjacency of vertices is defined under some rule using
the adjacency and the nonadjacency relations of G and H . The distinguishing
number and the distinguishing index of some graph products has been studied in
literature (see [2, 6, 7]). The Cartesian product of graphs G and H is a graph,
denoted by G2H , whose vertex set is V (G) � V (H). Two vertices (g; h) and
(g0; h0) are adjacent if either g = g0 and hh0 2 E(H), or gg0 2 E(G) and h = h0.
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In 1962, Ore [10] introduced a product graph, with the name Cartesian sum of
graphs. Hammack et al. [4], named it co-normal product graph. The co-normal
product of G and H is the graph denoted by G ? H , and is defined as follows:

V (G ? H) = f(g; h)jg 2 V (G) and h 2 V (H)g;
E(G ? H) = ff(x1; x2); (y1; y2)gjx1y1 2 E(G) or x2y2 2 E(H)g:

We need knowledge of the structure of the automorphism group of the Carte-
sian product, which was determined by Imrich [5], and independently by Miller
[9].

Theorem 1.1. [5, 9] Suppose  is an automorphism of a connected graph G with
prime factor decomposition G = G12G22 : : :2Gr. Then there is a permutation
� of the set f1; 2; : : : ; rg and there are isomorphisms  i : G�(i) ! Gi, i =
1; : : : ; r, such that

 (x1; x2; : : : ; xr) = ( 1(x�(1));  2(x�(2)); : : : ;  r(x�(r))):

Imrich and Klavžar in [7], and Gorzkowska et.al. in [3] showed that the dis-
tinguishing number and the distinguishing index of the square and higher powers
of a connected graph G 6= K2; K3 with respect to the Cartesian product is 2.

The relationship between the automorphism group of co-normal product of
two non isomorphic, non rigid connected graphs with no false twin and no domi-
nating vertex is the same as that in the case of the Cartesian product.

Theorem 1.2. [12] For any two non isomorphic, non rigid graphs G and H ,
Aut(G?H) = Aut(G)�Aut(H) if and only if both G and H have no false twins
and dominating vertices.

Theorem 1.3. [12] For any two rigid isomorphic graphsG andH , Aut(G?H) �=
S2.

Theorem 1.4. [12]The graph G?H is rigid if and only if G � H and both G and
H are rigid graphs.

In the next section, we study the distinguishing number of the co-normal prod-
uct of two graphs. In section 3, we show that the distinguishing index of the co-
normal product of two simple connected non isomorphic, non rigid graphs with
no false twin and no dominating vertex cannot be more than the distinguishing
index of their Cartesian product. As a consequence, we prove that all powers of a
connected graph G with no false twin and no dominating vertex distinguished by
exactly two edge labels with respect to the co-normal product.
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2 Distinguishing number of co-normal product of
two graphs

We begin this section with a general upper bound for the co-normal product
of two simple connected graphs. We need the following theorem.

Theorem 2.1. [12] Let G and H be two graphs and � : V (G ? H)! V (G ? H)
be a mapping.

(i) If � = (�; �) defined as �(g; h) = (�(g); �(h)), where � 2 Aut(G) and
� 2 Aut(H), then � is an automorphism on G ? H .

(ii) If G is isomorphic to H and � = (�; �) defined as �(g; h) = (�(h); �(g)),
where � is an isomorphism on G to H and � is an isomorphism on H to G,
then � is an automorphism on G ? H .

Theorem 2.2. If G and H are two simple connected graphs, then

max
�
D(G2H); D(G); D(H)

	
� D(G?H) � min

�
D(G)jV (H)j; jV (G)jD(H)

	
:

Proof. We first show that maxfD(G); D(H)g � D(G?H). By contradiction,
we assume that D(G ? H) < maxfD(G); D(H)g. Without loss of generality we
suppose that maxfD(G); D(H)g = D(G). LetC be a (D(G?H))-distinguishing
labeling of G ? H . Then the set of vertices f(g; h�) : g 2 V (G)g, where
h� 2 V (H) have been labeled with less than D(G) labels. Hence we can define
the labeling C 0 with C 0(g) := C(g; h�) for all g 2 V (G). Since D(G ? H) <
D(G), so C 0 is not a distinguishing labeling ofG, and so there exists a nonidentity
automorphism � of G preserving the labeling C 0. Thus there exists a nonidentity
automorphism � ofG?H with �(g; h) := (�(g); h) for g 2 V (G) and h 2 V (H),
such that � preserves the distinguishing labeling C, which is a contradiction. Now
we show that D(G2H) � D(G ? H), and so we prove the left inequality. By
Theorems 1.1 and 2.1, we can obtain that Aut(G2H) � Aut(G ? H), and since
V (G2H) = V (G ? H), we have D(G2H) � D(G ? H).

Now we show that D(G ? H) � min fD(G)jV (H)j; jV (G)jD(H)g. For
this purpose, we define two distinguishing labelings of G ? H with D(G)jV (H)j
and jV (G)jD(H) labels, respectively. Let C be a D(G)-distinguishing label-
ing of G and C 0 be a D(H)-distinguishing labeling of H . We suppose that
V (G) = fg1; : : : ; gng and V (H) = fh1; : : : ; hmg, and define the two following
distinguishing labelings L1 and L2 of G?H with D(G)jV (H)j and jV (G)jD(H)
labels.

L1(gj; hi) := (i� 1)D(G) + C(gj);

L2(gj; hi) := (j � 1)D(H) + C 0(hi):
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We only prove that the labelingL1 is a distinguishing labeling, and by a similar
argument, it can be concluded that L2 is a distinguishing labeling of G ? H . If f
is an automorphism of G ? H preserving the labeling L1, then f maps the set
Hi := f(gj; hi) : gj 2 V (G)g to itself, setwise, for all i = 1; : : : ;m. Since the
restriction of f to Hi can be considered as an automorphism of G preserving the
distinguishing labeling C, so for every 1 � i � m, the restriction of f to Hi is the
identity automorphism. Hence f is the identity automorphism of G ? H . 2

The bounds of Theorem 2.2 are sharp. For the right inequality it is sufficient to
consider the complete graphs as the graphs G and H . In fact, if G = Kn and H =
Km, then G ? H = Knm. For the left inequality we consider the non isomorphic
rigid graphs as the graphs G and H . Then by Theorem 1.4, we conclude that
G ? H and G2H are a rigid graph and hence max

�
D(G2H); D(G); D(H)

	
=

D(G ? H).

With respect to Theorems 1.1 and 1.2, we have that the automorphism group
of a co-normal product of connected non isomorphic, non rigid graphs with no
false twin and no dominating vertex, is the same as automorphism group of the
Cartesian product of them, so the following theorem follows immediately:

Theorem 2.3. If G and H are two simple connected, non isomorphic, non rigid
graphs with no false twin and no dominating vertex, then D(G?H) = D(G2H).

Since the path graph Pn (n � 4), and the cycle graph Cm (m � 5) are con-
nected, graphs with no false twin and no dominating vertex, then by Theorem 2.3
we have D(Pn ? Pq) = D(Pn ? Cm) = D(Cm ? Cp) = 2 for any q; n � 3, where
q 6= n and m; p � 5, where m 6= p. (see [7] for the distinguishing number of
Cartesian product of these graphs).

To prove the next result, we need the following lemmas.

Lemma 2.1. [13] For any two distinct vertices (vi; uj) and (vr; us) in G ? H ,
N((vi; uj)) = N((vr; us)) if and only if

(i) vi = vr in G and N(uj) = N(us) in H , or

(ii) uj = us in H and N(vi) = N(vr) in G, or

(iii) N(vi) = N(vr) in G and N(uj) = N(us).

Lemma 2.2. [13] A vertex (vi; uj) is a dominating vertex in G ? H if and only if
vi and uj are dominating vertices in G and H , respectively.

Theorem 2.4. [12] For a rigid graphG and a non rigid graphH , jAut(G?H)j =
jAut(H)j if and only if G has no dominating vertex and H has no false twin.
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Now we are ready to state and prove the main result of this section.

Theorem 2.5. Let G be a connected graph with no false twin and no dominating
vertex, and ?Gk the k-th power of G with respect to the co-normal product. Then
D(?Gk) = 2 for k � 3. In particular, if G is a rigid graph, then for k � 2,
D(?Gk) = 2.

Proof. By Lemmas 2.1 and 2.2, we can conclude that G ?G has no false twin
and no dominating vertex. We consider the two following cases:

Case 1) Let G be a non rigid graph. If H := G ? G, then D(?G3) = 2 by
Theorem 2.3. Now by induction on k, we have the result.

Case 2) Let G be a rigid graph. In this case, jAut(G ? G)j = 2, by Theorem
1.3, and so D(G ? G) = 2. If H := G ? G, then jAut(G ? H)j = jAut(H)j, by
Theorem 2.4. Hence jAut(?G3)j = 2. By induction on k and using Theorem 2.4,
we obtain D(?Gk) = 2 for k � 2, where G is a rigid graph. 2

3 Distinguishing index of co-normal product of two
graphs

In this section we investigate the distinguishing index of co-normal product of
graphs. Pilśniak in [11] showed that the distinguishing index of traceable graphs,
graphs with a Hamiltonian path, of order equal or greater than seven is at most
two.

Theorem 3.1. [11] If G is a traceable graph of order n � 7, then D0(G) � 2.

We say that a graph G is almost spanned by a subgraph H if G� v, the graph
obtained from G by removal of a vertex v and all edges incident to v, is spanned
by H for some v 2 V (G). The following two observations will play a crucial role
in this section.

Lemma 3.1. [11] If a graph G is spanned or almost spanned by a subgraph H ,
then D0(G) � D0(H) + 1.

Lemma 3.2. Let G be a graph and H be a spanning subgraph of G. If Aut(G) is
a subgroup of Aut(H), then D0(G) � D0(H).

Proof. Let to call the edges of G which are the edges of H , H-edges, and the
others non-H-edges, then since Aut(G) � Aut(H), we can conclude that each
automorphism ofGmapsH-edges toH-edges and non-H-edges to non-H-edges.
So assigning each distinguishing edge labeling of H to G and assigning non-H-
edges a repeated label we make a distinguishing edge labeling of G.
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Since for two distinct simple non isomorphic, non rigid connected graphs,
with no false twin and no dominating vertex we have Aut(G?H) = Aut(G2H),
so a direct consequence of Lemmas 3.1 and 3.2 is as follows:

Theorem 3.2. (i) If G and H are two simple connected graphs, then D0(G ?
H) � D0(G2H) + 1.

(ii) IfG andH are two simple connected non isomorphic, non rigid graphs with
no false twin and no dominating vertex, then D0(G ? H) � D0(G2H).

Theorem 3.3. Let G be a connected graph with no false twin and no dominating
vertex, and ?Gk the k-th power of G with respect to the co-normal product. Then
for k � 3, D0(?Gk) = 2. In particular, if G is a rigid graph, then for k � 2,
D0(?Gk) = 2.

Proof. By Lemmas 2.1 and 2.2, we can conclude that G ?G has no false twin
and no dominating vertex. We consider the two following cases:

Case 1) Let G be a non rigid graph. If H = G ? G, then D(?G3) = 2 by
Theorem 3.2(ii). Now by an induction on k, we have the result.

Case 2) Let G be a rigid graph. In this case, jAut(G ? G)j = 2, by Theorem
1.3, and so D(G ? G) = 2. If H := G ? G, then jAut(G ? H)j = jAut(H)j, by
Theorem 2.4. Hence jAut(?G3)j = 2. By an induction on k and using Theorem
2.4, we obtain D(?Gk) = 2 for k � 2, where G is a rigid graph.

Theorem 3.4. Let G be a connected graph of order n � 2. Then D0(G?Km) = 2
for every m � 2, except D0(K2 ? K2) = 3.

Proof. Since jAut(G ? Km)j � 2, so D0(G � Km) = 2. With respect to
the degree of vertices G ? Km we conclude that G ? Km is a traceable graph. We
consider the two following cases:

Case 1) Suppose that n � 2. If m � 3, or m = 2, and n � 4, then the order of
G?Km is at least 7, and so the result follows from Theorem 3.1. If m = 2, n = 3,
then G = P3 or K3. In each case, it is easy to see that D0(G ? Km) = 2.

Case 2) Suppose that n = 2. Then G = K2, and so G ? Km = K2m. Thus
D0(G ? Km) = 2 for m � 3, and D0(K2 ? K2) = D0(K4) = 3. 2

By the value of the distinguishing index of Cartesian product of paths and
cycles graphs in [3] and Theorem 3.2, we can obtain this value for the co-normal
product of them as the two following corollaries.

Corolary 3.1. (i) The co-normal product Pm?Pn of two paths of ordersm � 2
and n � 2 has the distinguishing index equal to two, exceptD0(P2?P2) = 3.

(ii) The co-normal product Cm ? Cn of two cycles of orders m � 3 and n � 3
has the distinguishing index equal to two.
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(iii) The co-normal product Pm ? Cn of orders m � 2 and n � 3 has the distin-
guishing index equal to two.

Proof.

(i) If n;m � 4, then the result follows from Theorem 3.2 (ii). If n = 2 or
m = 2, then we have the result by Theorem 3.4. For the remaining cases,
with respect to the degree of vertices in Pm ? Pn, we obtain easily the dis-
tinguishing index.

(ii) If n;m � 5, then the result follows from Theorem 3.2 (ii). If n = 3 or
m = 3, then we have the result by Theorem 3.4. For the remaining cases
we use of Hamiltonicity of Cm ? Cn and Theorem 3.1.

(iii) If n � 5 and m � 4, then the result follows from Theorem 3.2 (ii). If n = 3
or m = 2, then we have the result by Theorem 3.4. The remaining cases
are Cn ? P3 and C4 ? Pm. In the first case and with respect to the degree of
vertices in Cn ? P3, we obtain easily the distinguishing index. In the latter
case, we use of Hamiltonicity of C4 ? Pm and Theorem 3.1. 2
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Let us remind now that it is: 

 

1=     and    i=  

 

Replacing (12) in (11), we obtain: 

 

 
 

Finally, replacing the second member of (7) with the second member of (13), 

we obtain: 

 

 
 

And the theorem is thus proven. 

 

 

Conclusions 

 We have shown a theorem born from the motivation to investigate and solve 

a problem: to link a geometric result of III century B.C., although it reworked 

by the trigonometric functions of XVI century, to the last theories of complex 

numbers of XVIII century, apparently irreconcilables with the Euclidean 

geometry. We think to have got two relevant teachings: on the one hand we have 

bound the elements of a right triangle (legs and angles) to a constant  of complex 

analysis, given by the combination of three most important constants of 

mathematics; on the other hand we have notably pointed out a precise 

methodological procedure of the proof, based strictly on the deductive method, 

where, starting from a general axiom alleging geometric structure of the right 

triangles, we reached, through a series of rigorous logical concatenations, a 

particular result alleging  new structure of complex analysis. 

We finally think that from this article we also can draw another useful 

teaching: to discover this theorem allowed us to investigate on three completely 

different (among their) branches of mathematics (Euclidean geometry, 

trigonometric functions, complex analysis), born and developed in different  

(11) 

(12) 

(13) 





.
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impossible to be a successful solver of mathematical problems. The 
information-receptive didactic method with a combination of the reproductive 
method is mainly used in this stage. It is very important that the student 
acquires the necessary skill of how to use them by repeated use of basic 
calculating algorithms. The teacher, by the right choice of tasks, ensures that 
pupils acquire these calculating algorithms at least at the level of 
understanding, not only at the level of memorization. The second, application 
stage is the application of the acquired algorithms in different areas of 
mathematics and other disciplines or in practical everyday life. At this stage, 
the mathematical "drill" is replaced by mathematical thinking. Based on the 
assignment a student considers what math knowledge and skills he can use to 
solve the task. Unlike the first stage, he must learn that the first step of task 
solution is not to count but to think. Based on a detailed consideration and 
possible task mathematization the student chooses a suitable calculating 
algorithm. At this stage, the teacher becomes a moderator of solution and 
uses a heuristic didactic method. At this stage, in terms of the taxonomy of 
educational objectives, the level of acquirement of calculating algorithms will 
be increased for the minimum to the application level. If the teaching is 
correct, we can say, that at this stage, the students do not learn new 
calculating algorithms. At this stage, students gain new, mainly theoretical 
knowledge of mathematics, and also learn how to apply already gained 
calculating algorithms in a new context. The above-described stages are 
illustrated on the example of the method of zero points. 

   

3  Method of zero points 

Solving of the most mathematical problems includes solving of various 
equations and inequalities, or their systems. The tasks, where it is necessary 
to solve equations, inequalities and their systems belong to the declaratory 
mathematical tasks [4].  

 Declaratory mathematical tasks are historically the oldest mathematical 
tasks. When solving these tasks the mathematical concepts and methods.  
Those are the tasks that require finding, calculating, constructing etc. of all 
mathematical objects of a particular type, having the desired properties. In 
each declaratory task, we can define as the frame of considerations some non-
empty set M of mathematical objects, which is a carrier of a particular 
structure. Using the terms belonging to this structure, it is then possible to 
express the desired properties of those objects of the set M that we are 
looking for. To characterize the elements of the set M we use propositional 
form V (x) which verity domains then create subsets of the set M.  In each 
determinative task there is a subset K of set M, which elements have the 
characteristics required by task assignment. The task and the objective of the 
investigator are to determine the set P by naming of its elements or to operate 
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dealing with the tasks. It is not enough just to learn the calculating algorithm,  
it is necessary, after its acquisition, also think about its individual elements. 
This is the way when the basic ideas, used in the algorithm, occur. The 
discovering these main ideas of calculating algorithm lead to understanding, 
as well as acquiring the algorithm at a higher level. The understanding causes 
the method to be is a powerful tool in students dealing with tasks. It affects 
his mathematical thinking. The method of zero points is a method that should 
be understood and not only learned. If a student enters its secrets, it becomes 
flexible and he will be able to use it in different types of tasks and, as 
appropriate, be adapted. By understanding the method will become effective 
tool in the hands of the investigator. The students know that the method of 
zero points is mainly used to solve inequalities. If the students know the 
method, it heads their initial ideas, when solving inequality, to adjust the 
inequality to a productive or quotient form. This fact can be used in teaching 
solutions to quadratic inequalities. Using the method of zero points the 
student does not learn new calculating algorithm, but he learns how to apply 
already acquired knowledge and skills. We think that one of the possible 
ways to increase the efficiency in mathematical learning is the emphasis on 
understanding the calculating algorithms and their subsequent application in 
various areas of mathematics. While we make sure that we choose those 
tasks, where the main ideas can be applied. This way helps us to create the 
thought linking of mathematics as a whole and mathematics with other 
disciplines, e.g. those involving computers into the pedagogical process [8], 
in the mind of the students. Basically, there is no need to reduce the amount 
of subject matter, just to organize the mathematical knowledge better in the 
mind of the students. 
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