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How to define and test explanations 

in populations 
 
 

Peter J. Veazie* 
 
 
 

Abstract  

Solving applied social, economic, psychological, health care and 
public health problems can require an understanding of facts or 
phenomena related to populations of interest.  Therefore, it can be 
useful to test whether an explanation of a phenomenon holds in a 
population.  However, different definitions for the phrase “explain 
in a population” lead to different interpretations and methods of 
testing.  In this paper, I present two definitions:  The first is based 
on the number of members in the population that conform to the 
explanation’s implications; the second is based on the total 
magnitude of explanation-consistent effects in the population.  I 
show that claims based on either definition can be tested using 
random coefficient models, but claims based on the second 
definition can also be tested using the more common, and simpler, 
population-level regression models.   Consequently, this paper 
provides an understanding of the type of explanatory claims these 
common methods can test. 
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1. Introduction 
Science provides explanations for facts, phenomena, and other 

explanations.  In applied research that draws on theories from disciplines such 
as Economics, Psychology, Sociology, and Organizational Science, among 
others, this can require testing whether a proposed explanation explains a 
given fact, phenomenon, and other explanation in a specified population.  For 
example, one might wish to test whether a proposed explanation based on 
Psychology’s Regulatory Focus Theory [1, 2] explains physician risk tolerance 
in treatment choice (the phenomenon) among primary care physicians in the 
United States (the population).  However, what is meant by the phrase explains 
in a population?  Is it that the proposed explanation accounts for the behavior 
of every member of the population?  This is a high bar: one member of the 
population for whom the explanation does not hold falsifies the claim.  Is it 
that the proposed explanation accounts for the behavior of at least one 
member?  This is equally extreme: only one member of a population for whom 
the explanation holds warrants the claim.  The claim is ambiguous.  Specific 
definitions are required if such claims are to be understood and tested.   

This paper provides definitions and identifies methods for testing 
corresponding explanatory claims.  These definitions and the identification of 
corresponding methods are new contributions that provide conceptual and 
methodological guidance for researchers who seek to test explanations in 
populations.  The methods themselves, however, are in common use: random 
coefficient models and population-level regression models.  Therefore, 
whereas a goal of this paper is to show which methods can be used to test 
specific explanatory claims, I do not present the implementation of the 
methods: there are many textbooks and articles that provide this information 
[e.g. 3, 4].  For simplicity of presentation, I only reference phenomena as the 
target of explanation rather than also facts and other explanations; however, 
any of these are applicable throughout. 

2. Defining explain 
Before providing the required definitions, I will clarify what I mean by to 

explain and by an explanation.  For this paper, to explain something is to 
provide a way of understanding it through a conceptual structure that accounts, 
at least in part, for that which is being explained [5, Ch. 9].  The conceptual 
structure is the explanation.  One might imagine there is a single explanation 
for any given phenomenon.  However, for macro-level phenomena, such as 
organization and human behaviors, there may be multiple ways of 
understanding them.  For example, a human behavioral phenomenon may have 
sociological explanations, psychological explanations, physiological 
explanations, and more.  Any one of the explanations could be referred to as 
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an explanation, and no one of them referred to as exclusively the explanation.  
Moreover, an explanation need not be complete.  There may be many causal 
factors or mechanisms that contribute to the phenomenon; however, an 
explanation might focus only on a subset. 

An explanation can be intended to provide an understanding of a 
phenomenon as it is [6, Ch. 4], a de re explanation; or, it can be intended to 
provide an understanding that, nonetheless, contains explicitly presumed 
falsehoods [7, 8], a de ficta explanation.   All terms of a de re explanation refer 
to presumed real objects, qualities, characteristics, and relationships.  
Designation as a de re explanation does not guarantee truth, nor does it imply 
the researcher believes it is true; indeed, if the researcher believed the 
explanation was in fact true, there is no need for further inquiry [9].  
Moreover, it is common to expect even a well-established theory-based 
explanation to be incorrect in some unknown way.  It is the ontological 
commitments (the presumption that explanatory terms intend to have real 
referents) of the explanation’s terms that qualify it as a de re explanation.  
However, a de ficta explanation contains at least one identified term that is 
presumed to be false.  These are often explanations that contain idealizations 
(e.g. the discrete energy levels in the Bohr model of the atom [10-12], and the 
rationality of the rational choice model in classic microeconomics [13, 14]) or 
analogies (e.g. the computer analogy or corporate analogy of information 
processing in cognitive science [15]).  Given there need only be a single 
presumed false term to warrant designation as a de ficta explanation, the 
remaining terms have substantive ontological commitments.  Such de ficta 
explanations are presumed to be partially true [7].  Although these definitions 
do not restrict explanations to those that are amenable to empirical 
investigation, this paper is written to provide guidance for empirical 
researchers.  Consequently, the focus of the discussion herein is on scientific 
explanations that have empirical implications. 

In the applied sciences, the goal of both de re and de ficta explanations is to 
guide interventions, actions, or policy.  The pursuit and use of a de re 
explanation are based on the belief that understanding the world as it is 
provides assurance that consequent interventions, actions, and policies are 
more likely to work and generalize, and the causes for their failure are more 
likely to be identified.  The de ficta explanation does not carry as great an 
assurance in these regards as it includes identified false claims.  However, the 
de ficta explanation can be simpler, easier to develop and understand, and 
easier to apply.  Both types of explanation are usefully employed. 

Explanations are often assessed in terms of explanatory power.   
Explanatory power characterizes explanations in terms of explanatory virtues 
such as generality, coherence, accuracy, and predictive ability, among others 
[8, 16].  It has been qualitatively defined in terms of the scope of questions it 
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can address [16], and it has been the basis for formal probability-based 
measures [17-20].   However, for the purposes of applied science another 
aspect of power can be useful: effective power.   

Applied researchers often focus on the ability to influence specific 
outcomes and therefore seek explanations to inform actions that can produce 
specific effects.  For example, researchers may seek to reduce systolic blood 
pressure, decrease expected expenditures, or expand social networks rather 
than seek to account for variation.  To achieve such goals, it can be important 
to assess a phenomenon’s responsiveness to an explanation, its effective 
power.  Effective power is different from accuracy and predictive power (the 
abilities to account for and predict phenomena and behavior).  Consider an 
explanation of the relationship between behavior Y and explanatory factor X 
for two individuals w and v.  Suppose the effect of the explanation on Y can be 
modeled as a simple linear function of X with a positive coefficient, in which 
variable X completely determines Y for individual w and only partially 
determines Y for individual v: 

 Yw = βw⋅Xw 
and 

 Yv = βv⋅Xv + Εv. 
The predictive power for w is greater than that for v; indeed, the predictive 
power for w is perfect, whereas it is only partial for v, due to the additional 
term Ev.  However, if βw = βv, then variable X has the same relationship with 
behavior Y for both and thereby having the same effective power: a difference 
in X corresponds to the same difference in Y for both w and v.  If βv > βw, then 
the explanation has greater effective power for v, even though it has greater 
predictive power for w.  Effective power represents the responsiveness to the 
explanation whereas accuracy and predictive power represents the extent of Y 
accounted for by the explanation.  As an analogy, consider a regression 
analysis, in the above example effective power is analogous to β and 
predictive power is analogous to the coefficient of determination (commonly 
termed R-square) or an out-of-sample prediction metric.   Like Schupbach and 
Sprenger’s [18] definition of explanatory power, effective power can be 
negative for a proposed explanation, if the response is counter to that implied 
by the explanation: for example, the case in which the β’s in the preceding 
example were in fact negative, contrary to the explanatory implication of 
positive β’s. 

We can understand a population-level de re or de ficta explanatory claim as 
a reductive explanation: an explanation that applies to a population in virtue of 
an aggregation of the explanation’s application to its members.  This is kin to 
what Strevens terms an aggregative explanation [8].  For example, where I 
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may seek to explain physician risk tolerance in treatment choice among 
primary care physicians in the United States, the proposed explanation is 
regarding its members’ relevant behaviors (the behaviors of individual 
physicians).  So, regardless of the number of members in the population, 
which can be as few as one, our definition of the phrase a potential 
explanation explains a given phenomenon in a population represents an 
aggregation of an individual-level explanation across the members of the 
population.   

As stated in the introduction, definitions that require explanation of either 
every member or only one member of a population are extreme.  Appropriate 
definitions are likely somewhere in between.  This paper focuses on two: 

Definition 1.  An explanation explains a phenomenon in a population if, and 
only if, it has positive effective power for most members of the population. 

Definition 2.  An explanation explains a phenomenon in a population if, and 
only if, its cumulative magnitudes of effective power among the members of 
the population for whom the explanation holds exceeds its cumulative 
magnitudes of effective power among the members of the population for 
whom the explanation does not hold. 

These definitions are based on minimal criteria.  In the first case, it would 
be difficult to support an explanatory claim regarding scope if the possible 
explanation only applied to a minority of population members.  In the second 
case, it would be difficult to support an explanatory claim regarding 
cumulative power if the possible explanation was associated with less 
cumulative power than the counter-explanation in a population.  However, this 
is arbitrary, and we need not take the minimal stance.  We can generalize the 
definitions to vary with a definitional parameter q: 

General Definition 1.  An explanation explains a phenomenon in a 
population if, and only if, it has effective power for at least q percent of the 
members of the population. 

General Definition 2.  An explanation explains a phenomenon in a 
population if, and only if, its cumulative magnitudes of effective power among 
the members of the population for whom the explanation holds exceeds q 
times its cumulative magnitudes of effective power among the members of the 
population for whom the explanation does not hold. 

The remaining sections focus on the minimal definitions, however the 
general testing method in Section 4.1 can be used to test these general 
definitions as well. 
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3. Defining Testable Implications 
To test claims based on the preceding definitions, we required 

corresponding operational definitions in terms of testable implications:   
Operational Definition 1.  If an explanation explains a phenomenon in a 

population, then the implications of the explanation hold for most of the 
members of the population.  And, under reasonable presumption (i.e. credible 
alternative explanations are accounted for), if the implications of the 
explanation hold for most of the members of the population, then an 
explanation explains a phenomenon in a population. 

Operational Definition 2.  If an explanation explains a phenomenon in a 
population, then the cumulative strength of the explanation’s implications 
among the members of the population for whom the explanation holds exceeds 
the cumulative strength of the counter-implications among the members of the 
population for whom the explanation does not hold. And, under reasonable 
presumption (i.e. credible alternative explanations are accounted for), if the 
cumulative strength of the explanation’s implications among the members of 
the population for whom the explanation holds exceeds the cumulative 
strength of the counter-implications among the members of the population for 
whom the explanation does not hold, then an explanation explains a 
phenomenon in a population. 

The first conditional in each operational definition allows evidence against 
each consequent (the testable implications) to provide evidence against the 
explanatory claim.  The second conditional allows evidence for each 
antecedent (the testable implications) to provide evidence for the explanatory 
claim.  The first conditionals are typically derived from the explanation.  The 
second conditionals draw more upon the weaker condition of presumption-
based reasoning [21], which is grounded in current background knowledge and 
is thereby defeasible: future changes in scientific understanding can negate the 
conditional.  A strong reasonable presumption for the second conditionals is 
achieved if there are no credible alternative explanations for the testable 
implications.   

Regarding operational definition 1, we might say, for example, that a 
Regulatory-Focus-Theory-based explanation explains physician risk tolerance 
in treatment choice among primary care physicians in the United States if a 
higher promotion focus (a term in Regulatory Focus Theory [1, 22]) leads 
physicians to have higher risk tolerance (the explanation’s implication) for 
more than half of the physicians, accounting for alternative explanations.  
Regarding operational definition 2, we might say that a Regulatory-Focus-
Theory-based explanation explains physician risk tolerance in treatment choice 
among primary care physicians in the United States if the cumulative 
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magnitudes of effect of promotion focus on risk tolerance among physicians 
for whom a higher promotion focus leads the physician to have higher risk 
tolerance exceeds the cumulative magnitudes of effect of promotion focus on 
risk tolerance among physicians for whom a higher promotion focus leads the 
physician to have lower risk tolerance (or no relationship).   

We can generalize the operational definitions, as we did with the original 
definitions, to vary with a definitional parameter q: 

General Operational Definition 1.  If an explanation explains a phenomenon 
in a population, then the implications of the explanation hold for q percent of 
the members of the population.  And, under reasonable presumption (i.e. 
credible alternative explanations are accounted for), if the implications of the 
explanation hold for q percent of the members of the population, then an 
explanation explains a phenomenon in a population 

General Operational Definition 2.  If an explanation explains a phenomenon 
in a population, then the cumulative strength of the explanation’s implications 
among the members of the population for whom the explanation holds exceeds 
q times the cumulative strength of the counter-implications among the 
members of the population for whom the explanation does not hold. And, 
under reasonable presumption (i.e. credible alternative explanations are 
accounted for), if the cumulative strength of the explanation’s implications 
among the members of the population for whom the explanation holds exceeds 
q times the cumulative strength of the counter-implications among the 
members of the population for whom the explanation does not hold, then an 
explanation explains a phenomenon in a population. 

To test claims based on the preceding definitions, we start by identifying 
the proposed explanation’s implications.  Specifically, we presume an 
explanation-implied relationships g between variables Y and X (as defined in 
the context of the phenomenon and explanation), with parameter θ : 

 ( ; )y g x θ=  , such that 
( ; )

e
g x

x
θ∂

∈
∂

  , Xx∀ ∈ . (1) 

This is to say that we have a proposed explanation e of a phenomenon that 
implies variables X and Y are related by some, perhaps unknown, function g 
such that for all values x in range X the derivative of g with respect to x (or 
the difference quotient if X is a discrete set) is in the set e .  Note that the 

implications can be more general:  The  ( ; )g x
x
θ∂

∂
 term can be a vector of 

derivatives across multiple X variables.  And, the implications for any given 
derivative can be multi-part, having different ranges for the derivative across 
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different x-values.  However, for ease of presentation this paper focuses on 
single-part implications. 

A simple example is g specified as a linear relationship, y = α + β⋅x, such 
that the proposed explanation e implies dy/dx > 0, i.e. e = (0,∞), for all 
positive values of X, i.e. X = (0,∞).  Applying this equation to all members of 
Ω, we can say that if β is positive for most members of a population Ω, then e 
explains by definition 1.  If the sum of the magnitude of β’s across all 
members of Ω for whom β>0 exceeds the sum of the magnitudes of β’s across 
all members for whom β≤0, then e explains by definition 2. 

To formalize the concept of explain, consider the following variable ∆ 
defined for w ∈ Ω and x ∈ X : 

 ( ; ( ))( , ) g x ww x h
x

∂ Θ ∆ =  ∂ 
. (2) 

The function h provides the relevant interpretation for explain.  The two 
functions considered in this paper for h provide interpretations for explain as 
the scope of the explanation (definition 1 above) and as the power of the 
explanation (definition 2 above).  These are detailed below.   

 We can use two functions to separate the ∆’s into groups.  The first picks 
out ∆ for the explanation-implied range of values for ∂g/∂x, and the second 
picks out ∆ for the range of values outside of the explanation-implied range—
the counter-explanation range:  

 
( ; ( ))( , )  if  

( , )
0       Otherwise     

e
g x ww x

w x x+
∂ Θ∆ ∈∆ = ∂



  (3) 

and  

 
( ; ( ))( , )  if  

( , )
0       Otherwise     

e
g x ww x

w x x−
∂ Θ∆ ∉∆ = ∂



 . (4) 

The sum of the magnitudes of ∆+ across population Ω at value x reflects the 
extent of the proposed explanation’s implications in the population at x (the 
interpretation depending on h).  The sum of the magnitudes of ∆- across 
population Ω at value x reflects the extent of counter-explanation implications 
in the population at x.   

For both specifications of h discussed below, a useful formalization of 
explain is to say that the proposed explanation explains a phenomenon in a 
population if the accumulated magnitudes of ∆ is larger in the explanation-
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implied region than in the counter-explanation region for all points in a 
specified set B of x-values.  For arbitrary value x in B, this implies for both 
definitions 1 and 2 that 

 ( ) ( )
{ : ( ) } { : ( ) }

( , )  ( , )
w w X w x w w X w x

w x w x+ −

∈ = ∈ =

∆ > ∆∑ ∑ . (5) 

For the generalized definitions this is 

 ( ) ( )
{ : ( ) } { : ( ) }

( , )  ( , )
w w X w x w w X w x

w x q w x+ −

∈ = ∈ =

∆ > ⋅ ∆∑ ∑ , (6) 

where q° = q/(100 − q) for generalized definition 1, and q°= q for generalized 
definition 2.     

Denoting the statement e explains p in Ω on set B as ( , , , )E e p BΩ , the 
corresponding claims are ( , , , )E e p B TrueΩ =  and ( , , , )E e p B FalseΩ = .  The 
claim that the proposed explanation holds (i.e. ( , , , )E e p B TrueΩ = ) is 
asserted if for all points x in the set B the proposed explanation’s implication 
exceeds that for the counter-explanation implication.  The claim that the 
proposed explanation does not hold (i.e. ( , , , )E e p B FalseΩ = ) is asserted if 
there exists at least one point in B for which the counter-explanation 
implication exceeds the proposed explanation’s implication.   

It is useful to take B to be one of two sets: either a singleton {x} or the 
phenomenologically-relevant range X .  Claims ( , , , )XE e p Ω   are what we 
may consider when testing whether a proposed explanation explains, whereas 
point-wise claims ( , , ,{ })E e p xΩ are useful in understanding where in the range 
of x-values the claims ( , , , )XE e p Ω   fail, if indeed they fail, or at which points 
of X is the underlying proposed explanation is either least or most powerful.  
There are occasions, however, when ( , , , )XE e p Ω   is too strict: do we really 
want to say a proposed explanation does not explain in a population because it 
doesn’t hold at a single point x?  For example, suppose economic demand 
follows the predicted relationship with price at all prices except at $1, do we 
say the price-demand theory does not hold in the population because of this 
singular exception?  Perhaps we should account for how important it is that the 
explanation hold at $1, or account for how many people face a price of $1 for 
the good being considered.  We can address these concerns by taking a 
weighted average of x-specific effects across the range of x-values in X  
using a probability distribution for X conditional on x ∈ X .  Denoting this 
general explanatory claim as ( , , )E e p Ω , it requires the weighted sum across 
all x-values being considered and thereby can balance non-explanatory points 
of X  with other strongly explanatory points.  Its interpretation depends on 
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the definition of the probability for X [23]. For example, it can be helpful to 
consider claims regarding ( , , )E e p Ω in terms of random variables defined on 
population Ω, with equal probabilities assigned to each member of Ω.  Using 
Ω as its domain, the variable X provides the value x that each member is 
facing.  The probability distribution of X therefore represents the actual 
normalized frequency of X in the population, and consequently ( , , )E e p Ω is 
based on the corresponding weighted average across this distribution.  

Figure 1 presents an example in which the explanation implies negative 
derivatives of g with respect to x, i.e. ( ,0)e = −∞  for all values of x in X , 
but for which the actual g is as shown.  It is clear, regarding the point-wise 
explanations, that the claim ( , , ,{ })E e p x TrueΩ =  holds true only for x less 
than x*, but ( , , ,{ })E e p x FalseΩ =  for all x greater than x*.  Consequently, 
due to the existing values of X for which the explanatory implications do not 
hold (i.e. for x > x*), the overall claim is therefore ( , , , )XE e p FalseΩ = .   
On the other hand, for f(x) denoting the density of X based on ( | )XP x x∈ , 
the general claim weighted by this probability is ( , , )E e p TrueΩ =  as there is 
little  probability associated with x-values in the contra-explanatory range of 
derivatives.   
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As mentioned above, two specifications for h are considered here.  The 

first, for definition 1, specifies h as a constant function with value 1:  

 ( , ) 1w x∆ = , for all w and x. (7) 

This leads to  

 
( ; ( ))1  if  

( , )
0       Otherwise     

e
g x w

w x x+
∂ Θ ∈∆ = ∂



  (8) 

and 

 
( ; ( ))1  if  

( , )
0       Otherwise     

e
g x w

w x x−
∂ Θ ∉∆ = ∂



 . (9) 

By this definition, the sum of the absolute values of ∆+ is the number of people 
whose X and Y relationship follows the proposed explanation’s prediction at 
specified x-values.  The sum of absolute value of ∆- is the number of people 
whose X and Y relationship do not follow the proposed explanation’s 
prediction.  A proposed explanation explains at x, by equation 5, if more 
people in the population follow the prediction than do not when X = x. 

The second specification, which is used for definition 2, is to define h as the 
identity function, and therefore ∆ is 

 ( ; ( ))( , ) g x ww x
x

∂ Θ
∆ =

∂
. (10) 

This leads to 

 
( ; ( )) ( ; ( ))  if  

( , )
0       Otherwise     

e
g x w g x w D

w x x x+
∂ Θ ∂ Θ ∈∆ = ∂ ∂



 (11) 

and 

 
( ; ( )) ( ; ( ))  if  

( , )
0       Otherwise     

e
g x w g x w D

w x x x−
∂ Θ ∂ Θ ∉∆ = ∂ ∂



. (12)  

The corresponding definition for explain compares the accumulated 
magnitudes of ∆ between the explanation-implied region and the counter-
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explanation region, which reflects the cumulative effective power of the 
explanation in the population. 

The difference between these two corresponding specifications for h is that 
the first claim, E1, focuses on the scope (the number or proportion of the 
population consistent with the explanation), whereas the second claim, E2, 
focuses on the cumulative power of the explanation.  It is possible for an 
explanation to apply to a minority of people in the population, but it does so 
with greater strength in the magnitude of ∆ among this minority than is the 
magnitude of ∆ for the majority, who are not in the implied region.  In this 
case the explanation would be considered as explaining in terms of E2, which 
uses the identity function for h, but not in terms of E1, which uses the constant 
function for h.  On the other hand, in the case where a majority has only a tiny 
magnitude of ∆ in the implied region but a minority has a large magnitude of ∆ 
in the non-implied region, the explanation would be considered as explaining 
in terms of E1 but not in terms of E2.  This is analogous to considering the 
importance of whether a treatment has a larger total positive effect among 
those that benefit relative to the total negative affect among those who do not 
benefit (E2), or whether the treatment simply positively affects a greater 
proportion of people regardless of how small the effect (E1). Which definition 
is appropriate depends on the research goal.  

These definitions are population-specific.  Consequently, it is possible for a 
proposed explanation to explain in one population but not another.  Moreover, 
it is possible to not explain in a population but to explain in one of its 
subpopulations, and vice versa.  Consider a population Ω made up of two 
subpopulations Ω1 and Ω2: it is possible for ( , , , )XE e p FalseΩ = , and 
yet ( , , , )X1E e p TrueΩ = .  This is often the advantage of doing subgroup 
analysis, to determine if a proposed explanation holds better in one group than 
another.  Indeed, the primary scientific aim of a study may be to identify for 
which population the proposed explanation holds. 

 

4. Testing explanations 
4.1 General tests using random coefficient models 
How do we empirically test a hypothesis of the form ( , , , )XE e p TrueΩ =  

or ( , , , )XE e p FalseΩ = ?  A general approach is conceptually 
straightforward, albeit empirically challenging.  This approach is based on the 
idea that if we can estimate the distribution of ∆, we can estimate the 
conditions for ( , , , )XE e p TrueΩ = and ( , , , )XE e p FalseΩ = .  To estimate 
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the distribution of ∆, assuming our data generating process can support it, we 
can use a random coefficient model [3]. 

Suppose we define random variables (or random vectors) Y, X, Θ, and  on 
the population Ω, representing a population model such that 

 ( ) ( ( ); ( )) ( )Y w g X w w w= Θ + , for w ∈ Ω. (13) 

If we have a data generating process with N observations, i ∈ {1, …N}, we 
can consider the mixture model for the regression of Y on X: 

 ( | ) ( | , ) ( | )i i i i i i iE Y x E Y x dF xθ θ= ⋅∫ . (14) 

Substituting equation 13 for Yi on the right-hand side of equation 14, yields  

 ( | ) ( , ) ( | ) ( | , ) ( | )i i i i i i i i i i iE Y x g x dF x E x dF xθ θ θ θ= ⋅ + ⋅∫ ∫  , (15) 

which is the expected value of g plus the expected value of  , each 
conditioned on X = x: 

 ( | ) ( , ) ( | ) ( | )i i i i i i i iE Y x g x dF x E xθ θ= ⋅ +∫  . (16) 

Under the assumption that the expected value of the error terms is 0 for all 
values of X, the regression is 

 ( | ) ( , ) ( | )i i i i i iE Y x g x dF xθ θ= ⋅∫ . (17) 

The derivative of g and the estimated distribution for F can be used to obtain a 
distribution for ∆ and thereby estimate the conditions for the explanation to 
hold.  Notice, however, from equation 17 the function g must be the expected 
value of Y conditional on values of X and Θ, i.e. equation 14.  Consequently, if 
a statistically adequate model [24] for ( | , )i i iE Y x θ  can be empirically 
determined, an explicit a priori specification for g is not required, only 
hypotheses regarding implications (e.g. derivatives or difference quotients) are 
required a priori. 

Estimation can be achieved using a mixture model, or random parameters 
model, if the study design and context allow for estimation of such a model.  It 
is best to use a non-parametric estimator for F(θ | x) since results in this case 
are likely to be very sensitive to the distribution (we are integrating under 
different regions of the distribution, rather than merely estimating parameters 
of the distribution).   For example, we may consider using Fox et al’s non-
parametric estimator for the distribution of random effects [25, 26].   

Suppose we can assume the error term is independent of X and that we have 
a relationship such that 
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 ( , ) i ix
i ig x e θθ ⋅= , (18) 

which has the derivative 

 ( , )
i ixi i

i
dg x e

dx
θθ θ ⋅= ⋅ . (19) 

The expected value of Y conditional on X is 

 ( )( | ) ( | )i ix
i i i iE Y x e dF xθ θ⋅= ⋅∫ . (20) 

With an estimator for F, denoted as F̂ , we can estimate, using numeric 
integration, the population proportion of those whose derivative falls in the 
explanation-implied range for any x, 

 ˆˆ ( ) ( 0) ( | )xp x I e dF xθθ θ⋅= ⋅ > ⋅∫ , (21) 

in which ( )I ⋅  is an indicator function returning 1 if its argument is true, 0 
otherwise.  Equation 21 can be used to test E1. 

For the general E1, based on the population distribution for X and 
representative sampling, we would average estimates from equation 21 for 
each observation in the data to obtain  

 
1

1ˆ ˆ ( )
n

i
i

p p x
n =

= ∑ . (22) 

In this case, because xe θ⋅ is always positive, the sign of the derivative is 
determined by the sign of θ.  Therefore, we can estimate p̂  based solely on an 
indicator of θ  > 0: 

 ˆˆ ( ) ( 0) ( | )p x I dF xθ θ= > ⋅∫ . (23) 

If we can assume the distribution F is independent of x, i.e. ( | ) ( )F x Fθ θ=  
for all x, then p̂  is not a function of x, and ˆ ( )p x  is the same for all x; 
therefore 

 ˆ ˆˆ ( 0) ( ) 1 (0)p I dF Fθ θ= > ⋅ = −∫ . (24) 

In this case we can base our test on ˆ1 (0)F− .  Using a bootstrap distribution 
for p̂  (for either equation 23 or equation 24), if a legitimate bootstrap method 
applies [27], we can test whether E1 is the case using the p-
value ˆ( | 0.5)P p p p≥ =  if p̂ ≥ 0.5, and p-value ˆ( | 0.5)P p p p≤ =  if p̂ ≤ 0.5 
[28]. 

For testing E2 at specific x-values we calculate 
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 ( ) ( ) ˆ( ) ( 0) ( 0) ( )x xc x I e I e dFθ θθ θ θ θ θ⋅ ⋅ = > ⋅ ⋅ − ≤ ⋅ ⋅ ⋅ ∫ . (25) 

For testing the general E2 we average c(x) across the data.  Again, we can use 
the bootstrap distribution for F to obtain p-values ˆ( | 0)P c c c≥ = or 

ˆ( | 0)P c c c≤ = . 

4.2 Testing E2 using population-level regression models 

The preceding method, which uses random coefficient models and numeric 
integration, is complicated—particularly for E2, which represents definition 2.  
We can greatly simplify our method for testing E2, if the explanation’s 
implications are regarding positive vs non-positive (or negative vs non-
negative) derivatives.  In this case, with an additional statistical assumption, 
we can use population-level regression models to test the explanation.  The 
argument is as follows:  As above, we say that e explains phenomenon p at x if 
inequality 5 holds.  Under the definition for E2, in the case of e being either 
positive, negative, non-positive or non-negative, the absolute values can be 
moved outside of the summations, 

 ( ) ( )
( : ( ) } ( : ( ) }

( , ) ( , )
w w X w x w w X w x

w x w x+ −

∈ = ∈ =

∆ > ∆∑ ∑ . (26) 

Consider e = (0,∞), i.e. the explanation implies positive derivatives.  In 
this case, for the left-hand side of inequality 26 the summation of the ∆+ across 
the population with X = x is the same as the summation of the product of each 
∆-value and its frequency for ∆-values greater than 0:  

 ( )
( : ( ) }

( , ) ( | )
w w X w x 0

w x Freq x+

∈ = ∆>

∆ = ∆ ⋅ ∆∑ ∑ . (27) 

Similarly, regarding ∆−, 

 ( )
( : ( ) }

( , ) ( | )
w w X w x 0

w x Freq x−

∈ = ∆≤

∆ = ∆ ⋅ ∆∑ ∑ . (28) 

Therefore, to determine E2 we can consider whether 

 ( | ) ( | )
0 0

Freq x Freq x
∆> ∆≤

∆ ⋅ ∆ > ∆ ⋅ ∆∑ ∑ . (29) 

However, the inequality remains true if both sides are multiplied by the 
same positive constant.  So, if we multiply by 1/Nx, denoting the inverse of the 
population size with value X = x, then 
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 ( | ) ( | )
0 0x x

Freq x Freq x
N N∆> ∆≤

∆ ∆
∆ ⋅ > ∆ ⋅∑ ∑ , (30) 

which is 

 ( | ) ( | )
0 0

f x f x
∆> ∆≤

∆ ⋅ ∆ > ∆ ⋅ ∆∑ ∑  (31) 

for f denoting a probability mass function (however, the above logic and 
derivation also applies to ∆ as a continuous variable in which f is a density, 
and the summation is replaced with an integral). 

Multiplying the left side of inequality 31 by 1 written as  

 ( 0 | )
( 0 | )

P x
P x
∆ >
∆ >

 , 

and multiplying the right side by 1 written as 

 ( 0 | )
( 0 | )

P x
P x
∆ ≤
∆ ≤

, 

yields  

 
( | ) ( | )( | ) ( | )
( | ) ( | )0 0

P 0 x P 0 xf x f x
P 0 x P 0 x∆> ∆≤

∆ > ∆ ≤
∆ ⋅ ∆ ⋅ > ∆ ⋅ ∆ ⋅

∆ > ∆ ≤∑ ∑ . (32) 

Because on the left side of this inequality 

 
( | ) ( | , )

( | )
f x f 0 x

P 0 x
∆

= ∆ ∆ >
∆ >

, (33) 

and on the right side of the inequality 

 
( | ) ( | , )

( | )
f x f 0 x

P 0 x
∆

= ∆ ∆ ≤
∆ ≤

, (34) 

the inequality can be rewritten as 

      ( | , ) ( | ) ( | , ) ( | )
0 0

f 0 x P 0 x f 0 x P 0 x
∆> ∆≤

∆ ⋅ ∆ ∆ > ⋅ ∆ > > ∆ ⋅ ∆ ∆ ≤ ⋅ ∆ ≤∑ ∑ .

 (35) 
Note that on the left side of inequality 35 

 ( | , ) ( | , )
0

f 0 x E 0 x
∆>

∆ ⋅ ∆ ∆ > = ∆ ∆ >∑ , (36) 

and on the right side of the inequality 
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 ( | , ) ( | , )
0

f 0 x E 0 x
∆≤

∆ ⋅ ∆ ∆ ≤ = ∆ ∆ ≤∑ . (37) 

By substitution into equation 35, this yields 

 ( | , ) ( | ) ( | , ) ( | )E 0 x P 0 x E 0 x P 0 x∆ ∆ > ⋅ ∆ > > ∆ ∆ ≤ ⋅ ∆ ≤ . (38) 

Subtracting the right side of inequality 38 from both sides yields 

 
Part A Part B

( | , ) ( | ) ( | , ) ( | )E 0 x P 0 x E 0 x P 0 x 0∆ ∆ > ⋅ ∆ > − ∆ ∆ ≤ ⋅ ∆ ≤ > . (39) 

Since Part A of inequality 39 is the absolute value of a positive number 
(note we are conditioning on ∆ > 0), the absolute value function can be 
dropped.  Similarly, since Part B is the absolute value of a non-positive 
number (note we are conditioning on ∆ ≤ 0), its subtraction from A is just the 
addition of the non-positive number.  The absolute value operation can be 
dropped as well, if we add the components rather than subtract them.  This 
yields  

 ( | , ) ( | ) ( | , ) ( | )E 0 x P 0 x E 0 x P 0 x 0∆ ∆ > ⋅ ∆ > + ∆ ∆ ≤ ⋅ ∆ ≤ > . (40) 

However, the left-hand side of this inequality is the expected value of ∆ 
conditional on x.  Therefore, explanation E2 implies that 

 ( | )    XE x 0 x∆ > ∀ ∈ . (41) 

Since /g x∆ = ∂ ∂  and derivatives are linear operators (and assuming we can 
interchange the derivative and integral operations), we have  

 
( ) ( ( ) | )( | ) g x dE g x xE x E x
x dx

 ∂ 
∆ = = ∂ 

, (42) 

and therefore, the implication of the explanation we seek to test is the direction 
of the derivative of the expected value of g: 

 ( ( ) | )   X
dE g x x 0 x

dx
> ∀ ∈ . (43) 

Unfortunately, whereas we are likely able to empirically evaluate E(Y | x) in 
a regression analysis, we are not likely able to directly evaluate E(g | x).  This 
is okay, if we can we use E(Y | x) to evaluate E(g | x).  When can we do this?  
The requirements are identified by taking the derivative of equation 16 with 
respect to x:  

    
Part A Part B

( | ) ( ; ) ( | ) ( | )( | ) ( ; )dE Y x g x f x E xf x d g x d
dx x x x

θ θθ θ θ θ∂ ∂ ∂
= ⋅ ⋅ + ⋅ ⋅ +

∂ ∂ ∂∫ ∫
 .(44) 
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If the distribution of parameter Θ is independent of X (which, in 
econometrics, is often considered as there is no selection on the gains [29]), 
then df/dx = 0 and consequently Part A of equation 44 is zero.  If the error is 
mean independent of X, then Part B is zero (which in econometrics, is often 
considered as there is no selection on the outcome [29]).  Under these 
conditions we have 

 
( | ) ( ; ) ( )dE Y x g x f d
dx x

θ θ θ∂
= ⋅ ⋅

∂∫ . (45) 

But, the right-hand side of equation 45 is the E(∆ | x), which is what we seek to 
evaluate for our test.  Consequently, our empirical claim regarding 

( , , , )XE e p TrueΩ =  for E2 is 

 
( | ) ,   e X

dE Y x x
dx

∈ ∀ ∈ . (46) 

Given the independence assumptions required for parts A and B to equal 0 
in equation 44, we can test our proposed explanation E2 by evaluating the 
derivative of a population-level regression function (the left-hand side of 
equation 45).   If an empirically identified statistically adequate regression 
function can be used, an explicit functional form for g need not be specified a 
priori. 

5. Conclusion 
Knowing how to test a proposed explanation in a population requires 

having a definition for what is meant by explaining in a population. In this 
paper I gave definitions in terms of the scope of an explanation and in terms of 
the power of an explanation.  I provided a general method for testing proposed 
explanations using random parameters models, and I showed when population-
level regression models can be used to test proposed explanations in terms of 
effective power.  

Although the tests were presented in terms of the minimal definitions, the 
tests can be extended to generalized definitions as described above.  Using the 
random parameters method, we can define our explanations in terms of the 
explanation-implied region being a multiple of that for the non-implied region.  
For example, the proposed explanation explains if it applies to at least 90 
percent of the population (rather than at least 50 percent as used in the minimal 
definitions). 

I focused on defining and testing proposed explanations; however, in 
practice the requirements for such a test to provide evidence must be kept in 
mind.  Specifically, a proposed explanation’s testable empirical implications 
need to be specified such that alternative potential explanations for empirical 
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implications are accounted for or ruled out, typically by statistical or 
experimental control.  The extent of evidence provided by the test depends on 
the confidence we have that alternative explanations for empirical findings are 
indeed ruled out: the less confident we are, the less evidence is provided by the 
test.  This concern is addressed by calibrating our interpretation accordingly. 

This paper addressed defining and testing explanations in populations.  
However, it should be noted that the general definition can be the basis for 
addressing estimation goals as well as testing goals.  Using the random 
coefficients method the proportion of a population that conforms to the 
explanation’s implications or the effective power can be estimated along with 
corresponding bootstrapped confidence intervals.  
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Abstract 

In this work, we have introduced a modified method for solving second-order 

fuzzy differential equations. This method based on the fully fuzzy neural 

network to find the numerical solution of the two-point fuzzy boundary value 

problems for the ordinary differential equations. The fuzzy trial solution of the 

two-point fuzzy boundary value problems is written based on the concepts of 

the fully fuzzy feed-forward neural networks which containing fuzzy 

adjustable parameters. In comparison with other numerical methods, the 

proposed method provides numerical solutions with high accuracy. 

Keywords: Two-point fuzzy boundary value problem; fully fuzzy neural 

network; fuzzy trial solution; minimized error function; hyperbolic tangent 

activation function. 
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1. Introduction 

     Many methods have been developed so far for solving fuzzy differential 

equations (FDEs) since it is utilized widely for the purpose of modelling 

problems in science and engineering. Most of the practical problems require 

the solution of the FDE which satisfies fuzzy initial conditions or fuzzy 

boundary conditions, therefore, the FDE must be solved. Many FDE could not 

be solved exactly, thus considering their approximate solutions is becoming 

more important. 

     The theory of FDE was "first formulated by Kaleva and Seikkala..Kaleva 

was formulated FDE in terms of the "Hukuhara derivative" (H-derivative). 

Buckley and Feuring have given a very general formulation of a first order" 

fuzzy "initial value problem. They first find the crisp solution, make it fuzzy 

and then check if it satisfies the FDE. 

     In 1990 researchers began using the artificial neural network (ANN) for 

solving ordinary differential equation (ODE) and partial differential equation 

(PDE) such as: Lee and Kang in [1]; Meade and Fernandez in [2,3]; Lagaris 

and Likas in [4]; Liu and Jammes in [5]; Tawfiq in [6]; Malek and Shekari in 

[7]; Pattanaik and Mishra in [8]; Baymani and Kerayechian in [9]; and other 

researchers. 

     In 2010 researchers began using ANN for solving a fuzzy differential 

equation such as: Effati and Pakdaman in [10]; Mosleh and Otadi in [11]; 

Ezadi and Parandin in [12]. 

     In 2012 researchers began using partially (non-fully) fuzzy artificial neural 

network(FANN) for solving a fuzzy differential equation such as Mosleh and 

Otadi in [13,14,15]. In (2016) Suhhiem [16] developed and used partially 

FANN for solving fuzzy and non-fuzzy differential equations. 

     In this work, we have used fully feed forward fuzzy neural network to find 

the numerical solution of the two-point fuzzy boundary value problems for the 

ordinary differential equations. The fuzzy trial solution of the fuzzy boundary 

value problem is written as a sum of two parts. The first part satisfies the fuzzy 

boundary condition, it contains no fuzzy adjustable parameters. The second 

part involves fully fuzzy feed-forward neural networks which containing fuzzy 

adjustable parameters. 
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2 Basic definitions   

     In this section, the basic notations which are used in fuzzy calculus are 

introduced 

Definition(𝟏),[𝟏𝟔]: The r - level ( or r - cut ) set of a fuzzy set Ã  labeled by 

Ar is the crisp set of all x in X (universal set) such that :  µÃ(x) ≥ r  ; i. e. 

  Ar = {x ∈ X ∶ µÃ(x)  ≥ r , r ∈ [0,1] } .                    (1) 

Definition(𝟐), 𝐅𝐮𝐳𝐳𝐲 𝐍𝐮𝐦𝐛𝐞𝐫[𝟏𝟔]: A fuzzy number ũ is completely 

determined by an ordered pair of functions (u (r) , u (r)), 0 ≤ r ≤ 1, which 

satisfy the following requirements:    

 𝟏) u (r) is a bounded left continuous and non-decreasing function on [0,1]. 

 𝟐) u (r) is a bounded left continuous and non-increasing function on [0,1].  

 𝟑) u (r) ≤ u (r) , 0 ≤ r ≤ 1.                                                                            (2) 

     The crisp number (a) is simply represented by:  

u (r) = u (r) = a , 0 ≤ r ≤ 1 .  

     The set of all the fuzzy numbers is denoted by  E1. 

Remark(𝟏),[𝟏𝟎]: For arbitrary ũ = (u , u) , ṽ = (v , v) and K ∈ R, the addition 

and multiplication by K  For all r ∈ [0,1]  can be defined as:  

 𝟏) (u + v)  (r) = u (r) + v (r).                                                                                                                       

 𝟐) (u + v)  (r) = u (r) + v (r).                                                                   

 𝟑) (Ku) (r) = K u (r), (Ku) (r) = K u (r) , if  K ≥ 0.                             

 𝟒) (Ku) (r) = K u (r), (Ku) (r) = K u (r), if  K < 0.                                     (3)        

Remark(𝟐),[𝟏𝟔]: The distance between two arbitrary fuzzy numbers ũ = 

(u , u) and  ṽ = (v , v) is given as:                                                                                                                                                       

    D (ũ , ṽ) = [∫ ( u (r) - v (r)
1

0
)
2dr + ∫ ( u (r) - v (r)

1

0
)
2dr]

1

2
                         (4) 

Remark(𝟑),[𝟏𝟔]: (E1,D) is a complete metric space.                                                                                                                                                                                                                                  
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Definition (𝟑) , 𝐅𝐮𝐳𝐳𝐲 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 [𝟏𝟔] : The function F: R  ⟶ E1 is called a 

fuzzy function.   

We call every function defined in set Ã ⊆ E1  to B̃ ⊆ E1  a fuzzy function. 

Definition(𝟒),[𝟏𝟎]: The fuzzy function F: R ⟶ E1 is said to be continuous if:    

For an arbitrary t1 ∈ R  and ϵ > 0 there exists a  δ > 0 such that: 

 |t - t1| < δ ⇒ D (F (t), F(t1)) < ϵ, where D is the distance between two fuzzy 

numbers. 

Definition (5),[16]: Let  I  be a real interval. The  r-level set of the fuzzy 

function y: I → E1  can be denoted by: 

  [y(x)]r = [y1
r(x), y2

r(x)], x ∈ I , r ∈ [0,1]                                                             (5) 

The Seikkala derivative  yˊ(x) of the fuzzy function y(x) is defined by: 

 [yˊ(x)]r = [(y1
r)ˊ(x), (y2

r)ˊ(x)], x ∈ I, r ∈ [0,1]                                                   (6) 

Definition (6),[𝟏𝟎]: let u and v ∈ E1. If there exist w ∈ E1 such that: 

 u = v+w then w is called the H-difference (Hukuhara-difference) of u and v 

and it is denoted by w =  u ⊝ v.  

In this work, the ⊝ sign stands always for H-difference, and let us remark that 

u ⊝ v ≠ u + (-1) v . 

Definition (7), 𝐅𝐮𝐳𝐳𝐲 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞[𝟏𝟐]: Let F : (a,b) →  E1   and  t0  ∈  

(a,b).We  say  that  F is H-differential (Hukuhara-differential) at x0, if there 

exists an element  Fˊ(x0) ∈ E1 such that for all  h> 0  (sufficiently small), ∃ F 

(x0 +h)⊝F(x0), F(x0) ⊝ F (x0 - h) and the limits (in the metric D) 

lim
h→0

F(x0 + h) ⊝F(x0)

h
= lim

h→0

F(x0) ⊝ F(x0 − h) 

h
=  Fˊ(x0)                           (7) 

Then  Fˊ(x0)  is called fuzzy derivative (H-derivative) of  F at  x0. 

where D is the distance between two fuzzy numbers.    
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3 Fully fuzzy neural network [6,16] 

     Artificial neural networks are learning machines that can learn any arbitrary 

functional mapping between input and output. They are fast machines and can 

be implemented in parallel, either in software or in hardware. In fact, the 

computational complexity of ANN is polynomial in the number of neurons 

used in the network. Parallelism also brings with it the advantages of 

robustness and fault tolerance. (i.e.) ANN is a simplified mathematical model 

of the human brain. It can be implemented by both electric elements and 

computer software. It is a parallel distributed processor with large numbers of 

connections It is an information processing system that has certain 

performance characters in common with biological neural networks. 

     A fuzzy neural network or neuro-fuzzy system is a learning machine that 

finds the parameters of a fuzzy system (i.e., fuzzy set, fuzzy rules) by 

exploiting approximation techniques from neural networks. Combining fuzzy 

systems with neural networks. Both neural networks and fuzzy systems have 

some things in common. They can be used for solving problems (e. g. fuzzy 

differential equations, fuzzy integral equations, etc ).  

     If all the adjustable parameters (weights and biases) are fuzzy numbers, 

then the fuzzy neural network is called fully fuzzy neural network; otherwise it 

is called partially fuzzy neural network. 

 

4 Solution of FDEs by fully fuzzy neural network   

     To solve any fuzzy ordinary differential equation, we consider a three-

layered fully fuzzy neural network with one unit entry x, one hidden layer 

consisting of m activation functions and one unit output N(x). The activation 

function for the hidden units of our fully fuzzy neural network is the 

hyperbolic tangent function (s(∝) = tanh (∝)). Here the dimension of a fully 

fuzzy neural network is (1 × m × 1) (figure1). 
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Figure1: (1 × m × 1)  Fully fuzzy feed-forward neural network. 

     For every entry x (where x ≥ 0) the mathematical operations in the fully 

fuzzy neural network can be described as:  

Input unit: x = x,                                                                                        (8)     

Hidden units :                                              

    [zj]r = [[zj]r

L
 , [zj]r

U
] = [s ([netj]r

L
) , s ([netj]r

U
)]                                      (9)      

where 

    [netj]r

L
 = x [wj]r

L
 + [bj]r

L
                                                                            (10) 

    [netj]r

U
 = x [wj]r

U
 + [bj]r

U
                                                                           (11) 
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Output unit:   

    [N(x)]r = [[N(x)]r
L , [N(x)]r

U]                                                                   (12) 

 Where   

   [N(x)]r
L=∑ min {m

j=1  [vj]r

L
 [zj]r

L
 , [vj]r

L
 [zj]r

U
 , [vj]r

U
 [zj]r

L
 , [vj]r

U
 [zj]r

U
 }        (13)        

   [N(x)]r
U=∑ max {m

j=1  [vj]r

L
 [zj]r

L
 , [vj]r

L
 [zj]r

U
 , [vj]r

U
 [zj]r

L
 , [vj]r

U
 [zj]r

U
 }       (14) 

Where 

[zj]r

L
= s (x [wj]r

L
 +  [bj]r

L
)                                                                           (15) 

[zj]r

U
= s (x [wj]r

U
 +  [bj]r

U
)                                                                          (16) 

 

5 Description of the proposed method  

     For illustration the proposed method, we will consider the two points fuzzy 

boundary value problems:    

    y´´(x) = f (x, y(x) , y´(x) )  ,   x ∈ [a , b]                                                 (17) 

with the fuzzy boundary conditions: 

 y(a) = A  and  y(b) = B, where A and B are fuzzy numbers in E1 with r-level 

sets: 

 [A]r = [A , A] and [B]r = [B , B] .   

The fuzzy trial solution for this problem is: 

    [yt(x)]r = 
b − x

b − a
  [A]r + 

x − a

b − a
[B]r  +(x −  a) (x −  b) [N(x)]r                   (18)                                                        

This fuzzy trial solution by intention satisfies the fuzzy boundary conditions in 

(17).  

The error function that must be minimized for problem (17) is in the form: 

    E= ∑ (Eir
L +  Eir

U)
g
i=1                                                                                     (19) 

where   
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    Eir
L  = [ [

d2yt (xi)

dx2 ]
r

L

− [f (xi , yt (xi),
d yt (xi)

dx
)]

r

L

 ]
2

                                        (20)                                                       

    Eir
U = [ [

d2yt (xi)

dx2 ]
r

U

− [f (xi , yt (xi),
d yt (xi)

dx
)]

r

U

 ]
2

                                       (21)                                                                     

where {xi}i=1
g

 are discrete points belonging to the interval [a , b] (training set) 

and in the cost function (19), Er
L and Er

U can be viewed as the squared errors 

for the lower limits and the upper limits of the r – level sets, respectively.  

Now, to drive the minimized error function for problem (17): 

From (18) we can find: 

[yt(x)]r
L =

b − x

b − a
  [A]r

L + 
x − a

b − a
 [B]r

L  +( x2 − (a + b)x + ab)[N(x)]r
L             (22)  

[yt(x)]r
U =

b − x

b − a
  [A]r

U + 
x − a

b − a
 [B]r

U +( x2 − (a + b)x + ab)[N(x)]r
U            (23) 

Then we get: 

d[yt(x)]r
L

dx
=

−1

b − a
  [A]r

L + 
1

b − a
 [B]r

L +( x2 − (a + b)x + ab) 
d[N(x)]r

L

dx
+(2x−a −

b)[N(x)]r
L                                                                                                       (24) 

d[yt(x)]r
U

dx
=

−1

b − a
  [A]r

U + 
1

b − a
 [B]r

U +( x2 − (a + b)x + ab) 
d[N(x)]r

U

dx
+(2x−a −

b)[N(x)]r
U                                                                                                       (25) 

Therefore, we have: 

[
d2yt (x)

dx2 ]
r

L

= ( x2 − (a + b)x + ab) 
d2[N(x)]r

L

dx2  +2(2x − a − b ) 
d[N(x)]r

L

dx
 + 

2[N(x)]r
L                                                                                                         (26) 

[
d2yt (x)

dx2 ]
r

U

= ( x2 − (a + b)x + ab) 
d2[N(x)]r

U

dx2  +2(2x − a − b ) 
d[N(x)]r

U

dx
 + 

2[N(x)]r
U                                                                                                        (27) 

Then (20) and (21) can be rewritten as:   
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Eir
L = [( xi

2 − (a + b)xi + ab) 
d2[N(xi)]r

L

dx2  + 2(2xi − a − b ) 
d[N(xi)]r

L

dx
 +

 2[N(xi)]r
L – f(xi ,

b − xi

b − a
  [A]r

L  +  
xi − a

b − a
 [B]r

L   + ( xi
2 − (a + b)xi +

ab)[N(xi)]r
L  ,

−1

b − a
  [A]r

L+
1

b − a
 [B]r

L+( xi
2 − (a + b)xi + ab) 

d[N(xi)]r
L 

dx
+  (2xi −

a − b)[N(xi)]r
L) ]2                                                                      (28) 

Eir
U = [( xi

2 − (a + b)xi + ab) 
d2[N(xi)]r

U

dx2  + 2(2xi − a − b ) 
d[N(xi)]r

U

dx
 +

 2[N(xi)]r
U – f(xi ,

b − xi

b − a
  [A]r

U  +  
xi − a

b − a
 [B]r

U   + ( xi
2 − (a + b)xi +

ab)[N(xi)]r
U  ,

−1

b − a
  [A]r

U+
1

b − a
 [B]r

U+( xi
2 − (a + b)xi + ab) 

d[N(xi)]r
U 

dx
+  

(2xi − a − b)[N(xi)]r
U) ]2                                                                     (29)   

Where 

[N(xi)]r
L = ∑ min {m

j=1 [vj]r

L
 s (xi [wj]r

L
 +  [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 +  [bj]r

U
) }      (30) 

[N(xi)]r
L = ∑ max {m

j=1 [vj]r

L
 s (xi [wj]r

L
 +  [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 +  [bj]r

U
) }      (31) 

d[N(xi)]r
L

dx
= ∑ min {m

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 +  [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }                                                                                                   

(32) 

d[N(xi)]r
U

dx
= ∑ max {m

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 +  [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }                                                                                                 

(33) 

d2[N(xi)]r
L

dx2 =

∑ min{m
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

   [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }                                                                                                  (34)                                                              
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d2[N(xi)]r
U

dx2
=

∑ max{m
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

   [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }                                                                                                          (35)                                                                                           

where s´ and s ́ ́ are the first and second derivative of the hyperbolic tangent 

function. Then we substitute (28) and (29) in (19) to find the error function 

that must be minimized for problem (17). 

6. Numerical example 

     In this section, we will solve two problems about two-point fuzzy boundary 

value problem. We have used (1 × 10 × 1) fully fuzzy feed-forward neural 

network. The activation function of each hidden unit is the hyperbolic tangent 

activation function. The analytical solutions [ya(x)]r
L and [ya(x)]r

U  has been 

known in advance. Therefore, we test the accuracy of the obtained solutions by 

computing the deviation: 

e (x , r) = |[ya(x)]r
U − [yt (x)]r

U| , e (x , r)= |[ya(x)]r
L − [yt(x)]r

L|  

      To minimize the error function, we have used BFGS quasi-Newton method 

(For more details, see [16]). The computer programs which we have used in 

this work are coded in MATLAB 2015. 

Example (1): Consider the linear  fuzzy boundary value problem: 

    y´´ (x) − y´(x) = 1  .  with x ∈ [0, 0.5] 

    y(0) = [ 2 + r  , 4 − r ] , 

    y(0.5)= [5 + r  , 7 − r]    .    where     r ∈ [0, 1]. 

The analytical solutions for this problem are: 

    [ya(x)]r
L = ( 2 + r −

3

e0.5−1
 ) + ( 

3

e0.5−1
 )ex 

    [ya(x)]r
U= ( 4 − r −

3

e0.5−1
 ) + ( 

3

e0.5−1
 )ex 

The trial solutions for this problem are: 

 [yt(x)]r
L=  (1 − 2x) (2 + r)  +  2x (4 − r)+(x2 − 0.5 x ) [N(x)]r

L                                                                                                           
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 [yt(x)]r
U= (1 − 2x) (5 + r)   +   2x (7 − r) + (x2 − 0.5 x ) [N(x)]r

U                                                                                                            

The fully fuzzy feed forward neural network has been trained by using a grid 

of ten equidistant points in [0, 0.5].  

The error function that must be minimized for this problem will be: 

    E= ∑ (Eir
L +  Eir

U)11
i=1                                                                                     (36) 

where   

  Eir
L =[( xi

2 − 0.5xi)
d2[N(xi)]r

L

dx2
 + (4xi − 1)

d[N(xi)]r
L

dx
 +  2[N(xi)]r

L −

( xi
2 − 0.5xi)

d[N(xi)]r
L

dx
− (2xi − 0.5)[N(xi)]r

L + 4r − 5 ]2                            (37)                                                                                                                           

  Eir
U=[( xi

2 − 0.5xi)
d2[N(xi)]r

U

dx2  + (4xi − 1)
d[N(xi)]r

U

dx
 +  2[N(xi)]r

U −

( xi
2 − 0.5xi)

d[N(xi)]r
U

dx
− (2xi − 0.5)[N(xi)]r

U + 4r − 5 ]2                              (38) 

numerical solutions for this problem can be found in table (1). 

Table (1): Numerical result for example (1), x=1. 

r [yt(x)]r
L e (x , r) [yt(x)]r

U e (x , r) 

 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 9.946164141 

10.04616401 

10.14616481 

10.24616458 

10.34616447 

10.44616422 

10.54616396 

10.64616391 

10.74616385 

10.84616389 

10.94616389 

 3.29137e-7 

 1.96846e-7 

 9.95565e-7 

 7.63284e-7 

 6.60993e-7 

 4.09513e-7 

 1.47232e-7 

 9.75941e-8 

 3.39072e-8 

 7.52383e-8 

 7.39070e-8 

11.94616425 

11.84616411 

11.74616478 

11.64616385 

11.54616387 

11.44616389 

11.34616391 

11.24616382 

11.14616384 

11.04616386 

10.94616386 

4.33916e-7 

2.93475e-7 

9.70548e-7 

3.95104e-8 

5.67802e-8 

7.56011e-8 

9.53493e-8 

1.15291e-8 

2.63433e-8 

5.26859e-8 

4.56782e-8 
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Example (2): Consider the non-linear fuzzy boundary value problem: 

    y´´ (x) = - (y´(x))
2
 . with x ∈ [0 , 2] 

    y(0) = [ r , 2 − r ] , y(2) = [1 + r , 3 − r] and r ∈ [0 , 1]. 

The analytical solutions for this problem are: 

    [ya(x)]r
L = ln (x +  

2 

e−1
)  +  r −  ln  

2 

e−1
                                                                                          

    [ya(x)]r
U= ln (x + 

2 

e−1
) + 2 − r  − ln  

2 

e−1
  

The trial solutions for this problem are: 

   [yt(x)]r
L =  r 

2−x 

2
  + (1 + r)  

x

2
 + x (x − 2 ) [N(x)]r

L                                                                                                             

   [yt(x)]r
U=  (2 −  r) 

2−x 

2
 + (3 − r )  

x

2
 + x (x − 2 ) [N(x)]r

U                                                                                                             

The fully fuzzy feed forward neural network has been trained by using a grid 

of ten equidistant points in [0, 2].  

The error function that must be minimized for this problem will be: 

    E= ∑ (Eir
L +  Eir

U)11
i=1                                                                             (39) 

where   

  Eir
L =[( xi

2 − 2xi)
d2[N(xi)]r

L

dx2  + (4xi − 4 )
d[N(xi)]r

L

dx
 +  2[N(xi)]r

L +

(( xi
2 − 2xi)

d[N(xi)]r
L

dx
+ (2xi − 2 )[N(xi)]r

L + 0.5)2 ]2                         (40) 

  Eir
L =[( xi

2 − 2xi)
d2[N(xi)]r

U

dx2
 + (4xi − 4 )

d[N(xi)]r
U

dx
 +  2[N(xi)]r

U +

(( xi
2 − 2xi)

d[N(xi)]r
U

dx
+ (2xi − 2 )[N(xi)]r

U + 0.5)2 ]2                        (41) 

Then we use (39) to update the weights and biases. 

Numerical solution for this problem can be found in table (2). 
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Table (2): Numerical result for example (2), x=1. 

r [yt(x)]r
L e (x , r) [yt(x)]r

U e (x , r) 

 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 0.620114507 

0.720114507 

0.820114507 

0.920114507 

1.020114507 

1.120114507 

1.220114507 

1.320114516 

1.420114512 

1.520114507 

1.620114514 

 3.24734e-10 

 4.66221-10 

 2.03208e-10 

 3.80684e-10 

 4.09557e-10 

 3.50405e-10 

 4.59008e-10 

 9.46681e-9 

 5.06564e-9 

 8.21899e-10 

 7.88763e-9 

2.620114507 

2.520114507 

2.420114507 

2.320114513 

2.220114514 

2.120114508 

2.020114507 

1.920114507 

1.820114507 

1.720114514 

1.620114508 

8.46634e-10 

9.79602e-10 

6.85555e-10 

6.62032e-9 

7.59010e-9 

1.74006e-9 

9.00817e-10 

9.21604e-10 

4.99811e-10 

7.15955e-9 

1.02988e-9 

 

For the above two problems we have  

[N(xi)]r
L = ∑ min {10

j=1 [vj]r

L
 s (xi [wj]r

L
 +  [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 +  [bj]r

U
) }      

[N(xi)]r
L = ∑ max {10

j=1 [vj]r

L
 s (xi [wj]r

L
 +  [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 +  [bj]r

U
) }     

d[N(xi)]r
L

dx
= ∑ min {10

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 +  [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }                                                                                                 
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d[N(xi)]r
U

dx
= ∑ max {10

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 +  [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }                                                                                                  

d2[N(xi)]r
L

dx2
=

∑ min{10
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

   [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }                                                                                                                                                               

d2[N(xi)]r
U

dx2 =

∑ max{10
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

   [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }                   

                                                                                                                                                                       

7 Conclusion  

     In this work, we have introduced a modified method to find the numerical 

solution of the two-point fuzzy boundary value problems for the ordinary 

differential equations. This method based on the fully fuzzy neural network to 

approximate the solution of the second-order fuzzy differential equations. For 

future studies, one can extend this method to find a numerical solution of the 

higher order fuzzy differential equations. Also, one may use this method for 

solving a fuzzy partial differential equation. 
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The inclusion and exclusion (connection and disconnection) principle is 

mainly known from combinatorics in solving the combinatorial problem 

of calculating all permutations of a finite set or other combinatorial 

problems. Finite sets and Venn diagrams are the standard methods of 

teaching this principle. The paper presents an alternative approach to 

teaching the inclusion and exclusion principle from the number theory 

point of view, while presenting several selected application tasks and 

possible principle implementation into the Matlab computing 

environment. 
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1 Introduction 

 
In traditional secondary school mathematics (in combinatorics, number theory 

or even in probability theory), the notion of factorial and combinatorial numbers 

is introduced [1]. If n and k are two natural numbers with 𝑛 ≥ 𝑘, then we call a 

combinatorial number the following notation 

 

(
𝑛

𝑘
) =

𝑛!

(𝑛 − 𝑘)! 𝑘!
=

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

1 ∙ 2 ∙ … ∙ 𝑘
 

 

while (factorial of the number n) 𝑛! = 1 ∙ 2 ∙ ⋯ ∙ 𝑛, where 𝑛 > 1, 0! = 1,  

1! = 1. 

 

For combinatorial numbers, the basic properties apply: 

 

(
𝑛
1

) = 𝑛 (
𝑛
0

) = 1 (
0
0

) = 1 (
𝑛
𝑘

) = (
𝑛

𝑛 − 𝑘
) (

𝑛
𝑘

) + (
𝑛

𝑘 + 1
) = (

𝑛 + 1
𝑘 + 1

) 

 

The relation (
𝑛
𝑘

) + (
𝑛

𝑘 + 1
) = (

𝑛 + 1
𝑘 + 1

) is the basis for placing combinatorial 

numbers in the plane in the shape of a triangle (a so-called Pascal’s triangle) 

[2], in which combinatorial numbers can be gradually calculated using the fact 

that (
𝑛
0

) = (
𝑛
𝑛

) = 1 for each n. 

 

(
0
0

) 

(
1
0

) (
1
1

) 

(
2
0

) (
2
1

) (
2
2

) 

(
3
0

) (
3
1

) (
3
2

) (
3
3

) 

⋯ 

 

If n is a natural number, and if a, b are arbitrary complex numbers, then the 

binomial theorem can be applied by using the form: 

 

(𝑎 + 𝑏)𝑛 = (
𝑛

0
) 𝑎𝑛 + (

𝑛

1
) 𝑎𝑛−1𝑏 + ⋯ + (

𝑛

𝑛 − 1
) 𝑎𝑏𝑛−1 + (

𝑛

𝑛
) 𝑏𝑛 

 

The special cases of the binomial theorem are as follows: 
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a) if 𝑎 = 1, 𝑏 = −1: 

 

1 − (
𝑛

1
) + ⋯ + (−1)𝑛−1 (

𝑛

𝑛 − 1
) + (−1)𝑛 = 0 

 

b) if 𝑎 = 1, 𝑏 = 1: 

 

(1 + 1)𝑛 = (
𝑛

0
) + (

𝑛

1
) + ⋯ + (

𝑛

𝑛 − 1
) + (

𝑛

𝑛
) = 2𝑛 

 

Let us consider now N given objects and K properties 𝑎1, … , 𝑎𝐾. Let us denote 

𝑁(0) as the number of objects that do not have either of these properties, 𝑁(𝑎𝑖) 

as the number of those that have the property 𝑎𝑖,  𝑁(𝑎𝑖𝑎𝑗) as the number of those 

that have the property 𝑎𝑖 as well as 𝑎𝑗 etc. Then 

 

𝑁(0) = 𝑁 − ∑ 𝑁(𝑎𝑖) + ∑ 𝑁(𝑎𝑖𝑎𝑗) − ∑ 𝑁(𝑎𝑖𝑎𝑗𝑎𝑠) + ⋯ +

(−1)𝐾𝑁(𝑎1𝑎2 … 𝑎𝐾), 

 

where, in the first addition, we sum up using numbers 𝑖 = 1, 2, … , 𝐾, in the 

second addition, using all pairs of these numbers, in the third addition, using all 

threesomes of these numbers, etc. We call this relationship the inclusion and 

exclusion principle [3]. 

The validity of the inclusion and exclusion principle can be shown from the 

number theory point of view the way that if an object has no property from the 

properties 𝑎𝑖, 𝑖 = 1, ⋯ , 𝐾, so it contributes by the unit value to the left equality, 

though contributing at the same time to the right side, that is, to the number N 

(in the following additions it does not reappear). Let an object now have t 

properties (𝑡 ≥ 1). Then, it does not contribute to the left side as there is a 

number of objects on the left side that do not have any of the properties. Let us 

calculate the contribution of this object to the right side. In the first addition, it 

appears t-times. In the second addition, it appears (𝑡
2
)–times because from t 

properties it is possible to choose pairs of the properties in (𝑡
2
) ways. In the third 

addition, it appears (𝑡
3
)–times, etc., so the total contribution to the right side is 

as follows: 

 

1 − 𝑡 + (𝑡
2
)-(𝑡

3
)+...+(−1)𝑡−1( 𝑡

𝑡−1
) + (−1)𝑡 = 0, 

 

which is a special case of the binomial theorem. Thus, the total contribution of 

such an object to both sides is zero and the right side is actually equal to the 

number of objects that do not have any of the given properties. 
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2  Selected examples of the inclusion and exclusion 

principle 

The first example requires some mathematical concepts to be recalled. By the 

Cartesian product of sets A, B we mean set 𝐴 × 𝐵 = {[𝑥, 𝑦]: 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}, 

with the symbol |𝐴| we denote the number of elements (so-called cardinality) 

of the finite set A. If |𝐴| = 𝑎, |𝐵| = 𝑏, the Cartesian product then contains 𝑎 ∙ 𝑏 

of ordered pairs. Since the Cartesian product contains ordered pairs, 𝐴 × 𝐵 is 

not the same set as 𝐵 × 𝐴. [4] 

The relation f of set A to set B is called a function of set A to set B if ∀𝑥 ∈ 𝐴∃𝑦 ∈
𝐵: [𝑥, 𝑦] ∈ 𝑓 and simultaneously if [𝑥, 𝑦] ∈ 𝑓 ∧ [𝑥, 𝑧] ∈ 𝑓, so 𝑦 = 𝑧. The 

symbol 𝐵𝐴 denotes a set of all functions 𝐴 → 𝐵. 

If f is a function of set A into set B and ∀𝑥1, 𝑥2 ∈ 𝐴: 𝑥1 ≠ 𝑥2 ⇒ 𝑓(𝑥1) ≠ 𝑓(𝑥2), 

the function f is called an injective function of set A into set B (or simply an 

injection; we also say that the function f is ordinary). 

Let us now consider two finite sets A, B, where |𝐴| = 𝑛 and |𝐵| = 𝑚. Then the 

number of all injective functions from A into B is 𝑚 ∙ (𝑚 − 1) ∙ ⋯ ∙
(𝑚 − 𝑛 + 1) = ∏ (𝑚 − 𝑖)𝑛−1

𝑖=0 . Injections from set 𝐴 = {1,2, ⋯ , 𝑛} into set B, 

where |𝐵| = 𝑚, are called variations without repetition (or simply variations) 

of the n-th class from m elements (of the set B). For these functions, the term 

𝑉𝑛(𝑚) is used in practice. It is easier to write the expression 𝑚 ∙ (𝑚 − 1) ∙ ⋯ ∙

(𝑚 − 𝑛 + 1) with the following factorial notation 𝑉𝑛(𝑚) =
𝑚!

(𝑚−𝑛)!
. 

Variations of the n-th class from n elements of the set B are bijective functions 

𝐴 → 𝐵 and their number is 𝑛 ∙ (𝑛 − 1) ∙ ⋯ ∙ 2 ∙ 1 = 𝑛!. They are called 

permutations (of set B) and denote 𝑃(𝑛) = 𝑛!. 
Let us now consider basic set A with the cardinality |𝐴| = 𝑛. Combinations 

(without repetition) of the k-th class (or k-combinations) from n elements are k-

element subsets of set A. We denote them as 𝐶𝑘(𝑛). If A is a finite set, with 
|𝐴| = 𝑛, then, the number of k-combinations of elements of set A is 𝐶𝑘(𝑛) =

(
𝑛
𝑘

) =
𝑛!

(𝑛−𝑘)!𝑘!
=

𝑛(𝑛−1)⋯(𝑛−𝑘+1)

𝑘(𝑘−1)⋯1
. [5] 

 

Example 2.1. A group of N men is to take part in a chess tournament. Before 

entering the room, they place their coats in the locker room. However, when 

they are about to leave, they are unable to recognize their coats. What is the 

probability that none of them will take their own coat? 

 

Solution. Let us denote the coats 1,2, ⋯ , 𝑁. Then the distribution of the coats on 

the chess players can be made 𝑁!, since these are the permutations of the set 
{1,2, ⋯ , 𝑁}. First, we determine the number 𝑁(0) of permutations, for which 

there is no coat on the right player. The number of permutations that do not leave 
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in place the k-element set of coats is (𝑁 − 𝑘)! The number of k-sets can be 

chosen in (
𝑁
𝑘

) ways. 

 

Then, based on the inclusion and exclusion principle, there applies 

 

𝑁(0) = 𝑁 − (
𝑁
1

) (𝑁 − 1)! + (
𝑁
2

) (𝑁 − 2)! − ⋯ + (−1)𝑁 (
𝑁
𝑁

) (𝑁 − 𝑁)! 

𝑁(0) = ∑(−1)𝑘 (
𝑁
𝑘

) (𝑁 − 𝑘)!

𝑁

𝑘=0

 

Next, we get 

𝑁(0) = ∑(−1)𝑘
𝑁!

𝑘! (𝑁 − 𝑘)!
(𝑁 − 𝑘)! =

𝑁

𝑘=0

𝑁! ∑
(−1)𝑘

𝑘!

𝑁

𝑘=0

 

 

All permutations of N elements is N!, hence the likelihood that no chess player 

is wearing his coat when leaving the tournament is  

 

𝑁! ∑
(−1)𝑘

𝑘!
𝑁
𝑘=0

𝑁!
= ∑

(−1)𝑘

𝑘!

𝑁

𝑘=0

 

 

Example 2.2. A tennis centre has a certain number of players and 4 groups A, 

B, C, D. Each player trains in at least one group, while some players train in 

multiple groups at once according to the table. 

 

A.............26 AC...........18 ABC...........5 

B.............17 AD...........3 ABD...........0 

C.............58 BC...........9 ACD...........2 

D.............19 BD...........0 BCD...........0 

AB...........7 CD...........5 ABCD........0 

 

We will show how many players have a tennis centre. 

  

Solution. Let us denote 𝑀1 as the set of all players in group A, 𝑀2 as the set of 

all players in group B, 𝑀3 as the set of all players in group C and 𝑀4 as the set 

of all players in group D. Then, set 𝑁 = 𝑀1 ∪ 𝑀2 ∪ 𝑀3 ∪ 𝑀4 is a set of all 

players in the centre. 
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Based on the inclusion and exclusion principle, there applies: 

 

0 = |𝑀1 ∪ 𝑀2 ∪ 𝑀3 ∪ 𝑀4| − (26 + 17 + 59 + 19) + (7 + 18 + 3 + 9 + 5)
− (5 + 2) + 0 

 

From which |𝑀1 ∪ 𝑀2 ∪ 𝑀3 ∪ 𝑀4| = 26 + 17 + 59 + 19 − 7 − 18 − 3 −
9 − 5 + 5 + 2 = 85. As a result, the tennis centre has 85 players. 

 

Example 2.3. Let 𝑛 > 1 be a natural number. In number theory, the symbol 

𝜑(𝑛) denotes the number of natural numbers smaller than n and relatively prime 

s n, where 𝜑(𝑛) is called Euler’s function [3]. Let 𝑛 = 𝑝1
𝛼1 … 𝑝𝑘

𝛼𝑘 be a canonical 

decomposition of the number n. We will show that the following relation 

applies: 

 

𝜑(𝑛) =  𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) … (1 −

1

𝑝𝑘
) 

 

Solution. Once more, we will use the inclusion and exclusion principle. Let 𝑛 =
𝑝1

𝛼1𝑝2
𝛼2 … 𝑝𝑘

𝛼𝑘  is a canonical decomposition of the number n. The natural 

numbers that are relatively prime with the number n are those that are not 

divisible by either of the prime numbers 𝑝1, 𝑝2, … , 𝑝𝑘. So, let 𝑎𝑖 mean the 

property that “the number m is divisible by the prime number 𝑝𝑖, 𝑖 = 1, … , 𝑘“. 

The number of numbers that are smaller or equal to the number n and 

are divisible by the number 𝑝𝑖 is 𝑁(𝑎𝑖) =
𝑛

𝑝𝑖
. It is an integer since 𝑝𝑖⃓𝑛. Next, 

we get 𝑁(𝑎𝑖𝑎𝑗) =
𝑛

𝑝𝑖𝑝𝑗
 and other members of the notation. 

 

Then: 

 

𝜑(𝑛) = 𝑛 − ∑
𝑛

𝑝𝑖
+ ∑

𝑛

𝑝𝑖𝑝𝑗
− ∑

𝑛

𝑝𝑖𝑝𝑗𝑝𝑠
+ ⋯ + (−1)𝑘

𝑛

𝑝1𝑝2 … 𝑝𝑘
 

 

This expression can be simplified to the form: 

 

𝜑(𝑛) = 𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) … (1 −

1

𝑝𝑘
) 

 

Several other interesting tasks and applications of the inclusion and exclusion 

principle can be found e.g. in the resources [6], [7]. 
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3  Implementation of the inclusion and exclusion 

principle in the Matlab computing environment 

When solving various practical tasks with pupils, it is possible and appropriate 

to use some computing environment, e.g. Matlab. We will now solve a simple 

task of divisibility. 

 

Example 3.1. We will show how many numbers there are up to 1000 that are 

not divisible by three, five, or seven. 

 

Solution. Before proceeding to the solution of the task, we will use divisibility 

relations to determine the number of all natural numbers smaller than 1000, each 

of which can be divided simultaneously by three, five, and seven. 

 

First, we will generally show that if 3|𝑎, 5|𝑎, then 3 ∙ 5 = 15|𝑎, being valid if 

3|𝑎, so 𝑎 = 3𝑏, if 5|𝑎, so 𝑎 = 5𝑐. The left sides are equal, so the right sides 

must be equal, too. Then 

 

3𝑏 = 5𝑐 

 

Since (3,5) = 1 ⇒ 3|c ⇒ 𝑐 = 3𝑑. Then 𝑎 = 5𝑐 = 15𝑑 ⇒ 15|𝑎. 

 

Now, we will show that if 15|𝑎, 7|𝑎, then 15 ∙ 7 = 105|𝑎 is valid if 15|𝑎, so 

𝑎 = 15𝑒, if 7|𝑎, so 𝑎 = 7𝑓. Since 𝑎 = 𝑎, it holds true that 

 

15𝑒 = 7𝑓 

 

From the relation (15,7) = 1 ⇒ 15|f ⇒ 𝑓 = 15𝑔. Then 𝑎 = 7𝑓 = 105𝑔 ⇒
105|𝑎. 

 

We will do the division 
1000

105
= 9 +

55

105
 and we see that there exist 9 numbers 

with the required property. 

 

Let us get back to our basic task. There, we have 𝑁 = 1000. Let 𝑎1 be the 

property that “the number n is divisible by three“, property 𝑎2 stand for “the 

number n is divisible by five“, property 𝑎3 stand for “the number n is divisible 

by seven“. At the same time, 𝑁(0) is the number of searched numbers not 

divisible by any of the numbers 3, 5, 7. 

Every third natural number is divisible by three since 1000 = 3 ∙ 333 + 1. We 

have the number 𝑁(𝑎1) = 333, that is 333 numbers up to 1000 are divisible by 

three. By similar consideration, we determine 𝑁(𝑎2) = 200, 𝑁(𝑎3) = 142. 
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Based on the previous considerations, we determine the number 𝑁(𝑎1𝑎2). It 

holds true that if a number is divisible by three and five, it is also divisible by 

its product, i.e. by the number 15 (inasmuch as the numbers 3 and 5 are relatively 

prime). Hence, 𝑁(𝑎1𝑎2) equals the number of numbers up to 1000 divisible by 

15 and 𝑁(𝑎1𝑎2) = 66. Similarly, we determine 𝑁(𝑎2𝑎3) = 28 and 𝑁(𝑎1𝑎3) =
47. For the number 𝑁(𝑎1𝑎2𝑎3) it is valid that it will be equal to the number of 

numbers up to 1000 that are divisible by the product 3 ∙ 5 ∙ 7 = 105, hence 

𝑁(𝑎1𝑎2𝑎3) = 9.  

 

Then, based on the inclusion and exclusion principle, we have in total 

 

𝑁(0) = 1000 − (333 + 200 + 142) + (66 + 28 + 47) − 9 = 457 

 

Now we implement the given task into the Matlab computing environment to 

verify the result. First we create the function “count_the_divisors”, 

which is the application of the inclusion and exclusion principle: 

 
function cnt = count_the_divisors(N, a, b, c) 

cnt_3 = floor(N / a); %counts of numbers 

divisible by a 

cnt_5 = floor(N / b); %counts of numbers 

divisible by b 

cnt_7 = floor(N / c); %counts of numbers 

divisible by c 

  

cnt_3_5 = floor(N / (a * b)); %counts of numbers 

divisible by a and b 

cnt_5_7 = floor(N / (b * c)); %counts of numbers 

divisible by b and c 

cnt_3_7 = floor(N / (a * c)); %counts of numbers 

divisible by a and c 

  

cnt_3_5_7 = floor(N / (a * b * c)); %counts of 

numbers divisible by a, b and c 

  

%and now inclusion-exclusion principle applied 

cnt = N - (cnt_3 + cnt_5 + cnt_7) + (cnt_3_5 + 

cnt_5_7 + cnt_3_7) - cnt_3_5_7; 

 

We will call the function from the command line: 

 
>> N = 1000; 

>> count_the_divisors(N, 3, 5, 7) 
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ans = 

 

   457 

 

When creating functions or scripts solving various problems based on the 

inclusion and exclusion principle, it is possible to use various set operations 

(functions) built directly in Matlab without the need to create one’s own 

structures. [8] 

 

4  Conclusion 

The principle of inclusion and exclusion is a “set problem“ that falls within the 

field of discrete mathematics with different applications in combinatorics. 

However, this principle also plays a significant role in number theory when 

defining the so-called Euler’s function or Fermat’s theorem, or in clarifying and 

exploring the fundamental problems of number theory, such as expressing the 

distribution of prime numbers among natural numbers on the numerical axis and 

many other questions still open today. 

The paper offered something different than just a set view of the inclusion and 

exclusion principle and its definition using number theory knowledge and the 

properties of combinatorial numbers. Our work is a guideline for solving 

selected practical tasks in which the involvement of the principle might not be 

expected at first sight. We also showed the possible application of ICT and the 

Matlab computing environment in solving computational problems in the field 

of number theory, which can be concurrently involved in mathematics teaching. 

In conclusion, the inclusion and exclusion principle has much more application 

than we allege in our short contribution and can be used to solve more difficult 

tasks, e.g. in algebra to solve specific systems of equations or to solve various 

problems in combination with the Dirichlet principle. Some research shows that 

the ability to solve problems also depends on the substitution thinking, which 

makes possible to use mathematical knowledge effectively in various areas of 

number theory [9]. 
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The present work takes inspiration from the scientific degree plan of 

the Italian Ministry of Education and has a didactic and cultural 

character. It pursues three objectives: the first is to make young people 

understand the importance of mathematics in medicine; the second is 

to stimulate students to use mathematical tools to give rational 

answers in the therapeutic field, in particular in the treatment of some 

types of nodular tumors; the third is to inform people on the 

effectiveness of mathematical methods and their indispensability in 

the rigorous treatment of some human pathologies. 

Using the experimental data about the development of a tumor, we 

move on to the analysis of the mathematical models able to allow a 

rational control of its behavior. The method we used in the 

development of this therapeutic process is essentially deterministic, 

even if some passages implicitly have a probabilistic nature. 
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1.  Premise 

Usually, when we talk about the therapeutic treatment of serious pathologies 

it is difficult to consider the contribution of mathematics and statistics to the 

success of the interventions. Most often it is thought that positive results 

correspond to the abilities and knowledge of the luminaries of surgery and 

medicine. This article aims to provide additional information: to demonstrate 

that applied mathematics (in particular statistics) offers indispensable tools for 

a rational approach to these therapies. The method we used in the development 

of this therapeutic process is essentially deterministic, although some passages 

implicitly provide a probabilistic reference; in particular, when the least squares 

principle is applied for the research of the theoretical model of interpolation. 

The basic hypothesis is that the deviations of the experimental values from the 

theoretical values of the model have a Normal distribution. 

 

2.  Mathematics as a measure of the world 

The field in which Mathematics moves has become vast. Usually, it is 

divided into two major sectors: the pure and that applied mathematics. The first 

sector has a purely speculative nature and is concerned with a rigorous 

arrangement of the basic principles of the discipline; the second, instead, relates 

to the applications of mathematical methods to Natural Sciences, Medicine, 

Engineering and Economics. It is in this second sector that interesting 

applications can be found that can help man solve several technical-scientific 

problems. It is necessary, however, to warn this is only an exemplifying 

division. Actually, mathematics is a unitary whole and it is difficult to know 

where its theoretical part ends and its experimental soul begins and vice versa. 

Often, problems arise in an application environment that requires in-depth 

theoretical analysis. So, it is necessary to refer to an experience, to a useful 

operational path. 

A wider approach, not only descriptive, to natural phenomena requires a 

considerable knowledge of the mathematics that allows: 

- Their measurement (Analysis, Probability Calculus, Statistics); 

- The study of their possible forms (Analysis, Geometry, Statistics); 

- The coherent arrangement of the rules followed (Logic, Algebra). 

All scientific methodologies require compliance with these three points. 

 

3.  Problem analysis 

Biology is one of the sciences that is proving to be very ductile to use 

mathematical techniques for a rational response to problems. It enables, with 
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genetics good practices and good procedures to improve the lives of human 

beings. The mathematical fields that can be applied to Biology range from 

Combinatorial Calculus to Probability Calculus, to Geometry, to Statistics and 

they offer a vast set of procedures. 

The problem I am presenting is, certainly, of undoubted effect. It is an 

efficient and effective treatment to counteract, and eventually block, the 

progress of a particular type of tumor: the glioblastoma. It is a nodular tumor 

that lurks in the brain tissues and soon leads to the death of the host (the patient). 

We start from an experimental model of the tumor nodule, which, growing in 

the laboratory, gives us a lot of biological and kinetic measures of its growth 

(Figure 1). In particular, we can determine the growth time, the number of the 

cells for each instant of time and the critical limit of their growth beyond which 

there is nothing left to do (for example, for the compression of the tissues or for 

metastasis). In the dynamics of the tumor, we also consider the necrosis of many 

of its cells for the lack of food and of oxygen. It is also necessary to know the 

clinical picture of the patient and his immune response. 

After that, we analyze the mathematical models able to guarantee a rigorous 

control of the behavior of this type of tumor. 

 

4.  The choice of mathematical models 

On the basis of what we previously analyzed, the process requires the 

selection of mathematical models, as the first approach, in order to 

quantitatively describe the natural growth of the tumor mass over time and to 

find a mathematical model that allows to give to the patient a therapy that 

increases his life expectancy compared to the natural one, starting from the 

observation of the neoplasm. 

The mathematical models able to control the growth of biological 

populations are studied by that part of mathematics that is known as population 

dynamics [8]. When dealing with a problem of growth of biological populations, 

we take on known and tested standard models. Usually, any changes to be made 

to the models are arranged during the work, keeping the standard model used as 

fixed as possible. One of the most well-known growth models is that of Verhulst 

[8]. In our case, however, the Verhulst equation does not adapt well to describe 

the growth dynamics of the glioblastoma tumor cells. It has been observed, from 

previous studies, that the most suitable model to describe this growth is given 

by the differential equation of B. Gompertz. 
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Figure 1. Photomicrograph of an experimental tumor nodule (tumor spheroid). 

The reference bar is 400 µm long. The central area of the nodule, darker and 

denser, is mainly formed by dead cells because of the poor availability of oxygen 

and the accumulation of toxic substances produced by the cells themselves with 

their metabolism, due to problems related to the diffusion of these molecules in 

the tissue. This area is generally referred to as the necrotic heart. Photo courtesy 

of Dr Roberto Chignola, Department of Biotechnology, University of Verona. 

 

5.  Gompertz model and tumor growth 

This model can be expressed as a system of differential equations 
 

{
 
 

 
   
𝑑𝑋(𝑡)

𝑑𝑡
= 𝑘𝑝(𝑡) ∙ 𝑋(𝑡)
    

𝑑𝑘𝑝(𝑡)

𝑑𝑡
= −𝛽 ∙ 𝑘𝑝(𝑡)  

                                                                                                         (1) 

 

or as a differential equation that includes both equations (2). 
 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝛽 ∙ 𝑋(𝑡) ∙ 𝐿𝑜𝑔 [(

𝑋(𝑡)

𝐾
)

−1

]                                                                                   (2) 

 

Model (2) derives from (1), as can be demonstrated. 

We now present the parameters and variables of models (1) and (2). X (t) is 

the number of tumor cells at time t; K is the carrying capacity of the environment 

in which the tumor cells live and is equal to K = Max (X (t)): it represents the 

critical limit beyond which a tumor mass cannot go (otherwise would kill the 

host); X (t) / K is the occupancy rate of the environment; kp (t) is the time-

dependent growth rate of the tumor cell population;  𝛽 is a parameter that 

dampens the genetic growth of the population of individuals considered. 
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The differential equation (2) admits an integral curve in a closed form. It is 

given by: 
 

𝑋(𝑡) = 𝐾 ∙ 𝑒−𝐶∙𝑒
−𝛽∙𝑡

 .                                                                                                               (3) 
 

As shown, (3) depends on the parameters K, 𝛽, C. 

The tumor has a mass whose volume is estimated on an experimental basis 

as follows: 
 

𝑉𝑜𝑙(𝑡) =
4

3
∙ 𝜋 ∙ 𝑟0

3           ,         𝑟0 =
1

2
∙ √𝑑𝑚𝑖𝑛 ∙ 𝑑𝑚𝑎𝑥   ,                                           (4) 

 

where Vol (t) is the volume of the tumor mass at time t, 𝑟0 is the geometric mean 

of the two rays dmin / 2 and dmax / 2, where dmin and dmax are the minimum and the 

maximum of the diameters of the spheroid. Once the volume is known, taking 

into account that a tumor cell has a known size (usually estimated in  10−9𝑐𝑚3), 

one can determine the number of cells in the nodule in the following way: 
 

𝑋(𝑡) = 𝑉𝑜𝑙(𝑡) 𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑢𝑙𝑎⁄ .                                                                                      (4bis) 
 

X (t) of (4bis) is a very large value and therefore not very useful for 

calculations. Since the volume of a cell is known and is constant, the size of the 

population of tumor cells is conveniently replaced by the volume of the tumor 

mass Vol (t). Starting from this substitution, X (t) becomes Vol (t) and, 

considering the multiplicative constant (1 / Volcellula), is also the population 

numerousness. 

It is now necessary to estimate the parameters of the model (3). 

 

6.  Discretization and parameter estimation 

The inevitable step to estimate the parameters of the model (2) or (3) with 

the least squares method is the discretization of the model. In practice, it consists 

to replacing the derivative with the incremental ratio and with the application of 

the finite difference operator first. Let ∆𝑋𝑡 = 𝑋𝑡+1 − 𝑋𝑡, from (2) we obtain: 
 

∆𝑋𝑡
∆𝑡

= 𝛽 ∙ 𝑋𝑡 ∙ 𝐿𝑜𝑔 [(
𝑋𝑡
𝐾
)
−1

] ,                                                                                   (5) 

 

where ∆𝑡 = 1. With easy algebraic steps, we get to: 
 

𝑋𝑡+1
𝑋𝑡

= 1 + 𝛽 ∙ 𝐿𝑜𝑔 (
𝐾

𝑋𝑡
) .                                                                                         (6) 

 

Equation (6) can be set in the following way: 
 

�̂�𝑡 = 𝐴 + 𝐵 ∙ 𝐿𝑜𝑔(𝑋𝑡) ,                     (7) 
     

where �̂�𝑡 = 𝑋𝑡+1 𝑋𝑡⁄   ,   𝐴 = 1 + 𝛽 ∙ 𝐿𝑜𝑔(𝐾)   ,   𝐵 = −𝛽 . 
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Equation (7) is a linear model in the parameters. Thus we can apply the least 

squares method to estimate parameters A and B based on the experimental data 

in our possession. We obtain: 

 

𝑆(𝐴, 𝐵) =∑ (𝑌𝑗 − �̂�𝑗)
2𝑛

𝑗=1
= ∑ (𝑌𝑗 − 𝐴 − 𝐵 ∙ 𝐿𝑜𝑔(𝑋𝑡))

2𝑛

𝑗=1
.                     (8) 

 

Passing to the partial derivatives with respect to A and to B, setting them 

equal to zero and solving the system, we have: 

 

(

 
 

𝑛 ∑ 𝐿𝑜𝑔(𝑋𝑗)
𝑛

𝑗=1

∑ 𝐿𝑜𝑔(𝑋𝑗)
𝑛

𝑗=1
∑ [𝐿𝑜𝑔(𝑋𝑗)]

2𝑛

𝑗=1 )

 
 
∙ (

𝐴

𝐵

) =

(

 
 

∑ 𝑌𝑗
𝑛

𝑗=1

∑ 𝑌𝑗 ∙ 𝐿𝑜𝑔(𝑋𝑗)
𝑛

𝑗=1 )

 
 
.            (9) 

 

In this case, it is not necessary to proceed to the calculation of the second 

derivatives since the Hessian is a positive semidefinite matrix and therefore the 

solutions of the system (9) give precisely the minimum of S(A, B) [9]. 

Once we have found the values for A and B, β and K are easily obtained. It is 

then calculated 𝑋𝑡. For the calculation of the constant C in (3), the initial 

condition is taken into account: at time 𝑡 = 0 we have 𝑋(0) = 𝐾 ∙ 𝑒−𝐶, and 

hence we get 𝐶 = 𝐿𝑜𝑔𝐾 − 𝐿𝑜𝑔𝑋(0). 

 

7.  Processing 

To verify the validity of the method presented above, one uses the experi-

mental measurements daily obtained with glioblastoma tumor nodules grown in 

laboratory (spheroids). The measures are relative to the variations of nodular 

size, taken for 77 days. We start, therefore, from the set W of the experimental 

data, where the first term of each pair represents the discrete time expressed in 

days of each observation and the second the volume of the tumor mass expres-

sed in mm3: 

 

W= {{0, 3.57}, {1, 7.37}, {2, 10.9025},{3, 14.435},{4, 21.5},{5, 28.6}, 

{6, 37.14}, {7, 41.98}, {8, 52.89}, {9, 57.805},{10, 62.72},{11, 72.55}, 

{12, 88}, {13, 105.6}, {14, 96.5}, {15, 105.6},{16, 116.05},{17, 126.5}, 

{18, 147.4}, {19, 147.4}, {20, 185.2},{21, 172},{22, 199},{23, 199}, 

{24, 199}, {25, 199}, {26, 213.6}, {27, 199},{28, 199},{29, 199},{30, 199}, 

{31, 199}, {32, 199}, {33, 213.6}, {34, 199},{35, 213.6}, {36, 206.5}, 

{37, 199.4}, {38, 193}, {39, 185.2}, {40, 199}, {41, 199}, {42, 213.6}, 
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{43, 213.6}, {44, 213.6}, {45, 213.6}, {46, 213.6}, {47, 185.2}, {48, 213.6}, 

{49, 199}, {50, 213.6}, {51, 209.95}, {52, 206.3}, {53, 199}, {54, 199},  

{55, 213.6}, {56, 199}, {57, 199}, {58, 199}, {59, 199}, {60, 199}, 

{61, 213.6}, {62, 185.2}, {63, 185.2}, {64, 185.2}, {65, 185.2}, {66, 185.2}, 

{67, 213.6}, {68, 213.6}, {69, 199}, {70, 213.6}, {71, 203.2}, {72, 192.8}, {73, 

172}, {74, 199}, {75, 185.2},{76, 199}, {77, 199}}. 
 

From (9) we get: A = 1.93967, 𝛽  0.18076, K  180.991 mm3, X0 ≅ 3.57 

mm3, C ≅ 3.92588. 

It, therefore, turns out to be 
 

�̂�(𝑡) = 180.991 ∙ 𝑒−3.92588∙𝑒
−0.18076∙𝑡

 .                                                                            (10) 
 

It is not linear and therefore the goodness of fit is measured by the following 

fit index (which is a particular coefficient of variation): 
 

𝐼2 =
1

𝑀(�̂�)
∙ √
∑ (𝑋𝑗 − �̂�𝑗)

2𝑛
𝑗=1

𝑛
 ,                                                                                        (11) 

 

where Xj are the second terms of the data pairs W, �̂�𝑗 are the theoretical results 

of the application of (10), M is the average of the theoretical values �̂�𝑗 and n is 

the sample size. 

In our case the value is 𝐼2 ≅ 0.147582. 
The value of I2 seems acceptable; moreover, given the difficulty of data 

collection, we can be satisfied with this approach even if, according to the 

international standard, a value lower than 0.1 should be recommended [10]. 

We now present the graph of the theoretical model and the distribution of 

experimental data around it (Figure 2). 

 
Figure 2. On the t-axis there is time in days, on the ordinates there is the volume 

of tumor. 

 

Calculating the second derivative of (10) and placing it equal to zero, we 

obtain the inflection point [7]. It is equal to (7.56578 days, 66.5829 mm3). We 

have thus finished studying the Gompertz model applied to our experimental 
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data. Let us now turn to the study of the optimal therapy to be applied to the 

nodule to control its growth. 

 

8.  The radiobiological treatment of tumor 

The goal of radiological treatment of the cancer is to reduce its mass by 

killing its cells, without simultaneously damaging healthy cells. Radiotherapies 

aim to achieve this goal. This treatment, however, is rather dangerous since, in 

the irradiation of the tumor mass, healthy tissue cells are unfortunately also 

affected. In short, the following problem must be addressed: how much mini-

mum radiant dose should be given to the patient to maximize the number of 

cancer cells killed with minimal damage to healthy cells? To answer this 

question, we need to address some preliminary aspects on the subject. 

We have shown that the Gompertz model is valid in the interpretation of the 

dynamics of the tumor mass of an experimental nodule of glioblastoma. At this 

point we apply the model also to evaluate the dynamic behavior of the same 

tumor in a patient. 

Before tackling the preliminaries, we consider that 𝑋0 = 𝐾 ∙ 𝑒
−𝑐 and we put 

it in (3), obtaining the following formula (algebraic steps are simple and are 

omitted): 
 

𝑋(𝑡) = 𝑋0 ∙ 𝑒
𝛼0
𝛽
∙(1−𝑒−𝛽∙𝑡)

  ,                                                                                       (12) 
 

where 𝛼0 𝛽 = 𝐶⁄ , the parameter 𝛼0 assumes the meaning of instantaneous 

spheroid growth rate at time t = 0 and 𝛽 is a generic factor that deaden the 

tumour growth. From (12) it is confirmed that 
 

𝑀𝑎𝑥[𝑋(𝑡)] = lim
𝑡→+∞

𝑋0 ∙ 𝑒
𝛼0
𝛽
∙(1−𝑒−𝛽∙𝑡)

= 𝑋0 ∙ 𝑒
𝛼0
𝛽 = 𝐾.                                     (13) 

 

Equation (13) represents a constraint on the growth of the spheroid. On the 

basis of a consolidated case series, it is believed that the maximum volume of 

the tumour borne by a patient can reach 25 cm3, after which the effects are 

devastating and lead to the death of the guest in a short time. Then from (13) we 

have: 
 

𝐿𝑜𝑔(𝐾) = 𝐿𝑜𝑔(𝑋0) +
𝛼0
𝛽
  , 

 

𝛼0
𝛽
= 𝐿𝑜𝑔 (

𝐾

𝑋0
) ≅ 𝐿𝑜𝑔(

25 𝑐𝑚3

10−9𝑐𝑚3) ≅ 23.94,                                                               (14) 

 

where 𝑋0 in this case corresponds to the volume in cm3 of a tumor cell at the 

beginning of the process; that is 𝑋0 = 𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑢𝑙𝑎. 
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9.  Some notions of radiobiology 

Often only possible therapy in the treatment of tumors is the radiotherapy, 

especially when the tumor involves important tissues of the human body or is 

located in places of difficult surgical access. From a clinical point of view, 

radiotherapy is an indispensable treatment even when it is considered necessary 

to intervene with more invasive therapies such as surgery and chemotherapy. 

Currently, biomedical research is further progressing with promising studies on 

the interaction between tumor cells and subatomic particles obtained with 

appropriate accelerators. At the moment encouraging results have been 

achieved, but the journey is still long. The treatment of tumor masses with 

radiation has the purpose of inducing massive molecular damage to the diseased 

cells so as to lead them to death. The decisive problem is to avoid as far as 

possible damage to healthy cells when one intervenes on sick cells. The damage 

induced by radiotherapy treatment depends on the intensity of the radiant dose. 

There are international indications that establish the effects of any radiation 

therapy. The radiant dose is expressed in Gray (Gy), which corresponds to the 

energy of 1 joule absorbed by 1 kg of biological tissue. Moreover, this basic unit 

must be multiplied by a suitable parameter that allows to take into account the 

effect on biological tissues of different nature of this radiant dose (RBE = 

Relative Biological Effectiveness). Finally, the product between Gy and RBE 

gives the equivalent biological dose to be administered, which is measured in 

Sievert (Sv). It should be considered that for radiations of clinical interest, 

radiation 𝛾 [4], we consider RBE = 1 and Gy = Sv. Table 1 highlights from a 

descriptive point of view the effects on human beings of exposure to radiant 

doses of different degrees of intensity [5]. 

 
Dose (Sv) Effects 

(0.05 - 0.2] No symptoms, but risk of DNA mutations 

(0.2 - 0.5] Temporary drop in red blood cells 

(0.5 - 1] Drop in immune system cells and risk of infection 

(1 - 2] Immunodepression, nausea and vomiting. Mortality of 10% at 30 

days from exposure 

(2 - 3] Severe immunodepression, nausea and vomiting 1-6 hours after 

exposure. Latency phase of 7-14 days after which symptoms appear 

such as hair loss. Mortality of 35% at 30 days from exposure 

(3 – 4] Bleeding of the mouth and urinary tract. Mortality of 50% at 30 

days from exposure 

(4 – 6] Mortality of 60% at 30 days from exposure. Female infertility. The 

convalescence lasts from a few months to a year 

(6 – 10] Complete injury of the bone marrow (the organ that produces red 

blood cells and all cells of the immune system). Symptoms appear 

between 15 and 30 minutes after exposure and mortality is 100% at 

14 days after exposure 
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(10 – 50] Immediate nausea, bleeding from the gastrointestinal tract and 

diarrhea, coma and death within 7 days. No medical intervention is 

possible 

(50 – 80] Immediate coma. Death occurs in a few hours due to the collapse 

of the nervous system 

> 80 Exposure to these doses occurred in two circumstances. 

Both subjects died within 49 hours of the accident 

Table 1: Effects of radiation on human beings 

 

10.  The modeling of therapy 

At this point, we must find a therapeutic process that allows us to stop the 

growth of the tumor or, even better, to reduce its mass to extinction. The model 

should take into account the disposition of the cells within the tumor mass, their 

microenvironment and the toxic effects induced on the healthy tissues of the 

surrounding cells and any other factor that may inform about the dynamics of 

the tumor. Studies conducted so far in various research institutes around the 

world have led to confirm, as an acceptable model to be considered in the 

treatment of tumors with radiant dose, the following one: 
 

𝑆�̂�(𝐷) = 𝑒−𝑎∙𝐷−𝑏∙𝐷
2
,                                                                                      (15) 

 

where 𝑆�̂� is the survival rate, a and b are two arbitrary parameters and D is the 

radiant dose. We must estimate the parameters a and b of the model as a function 

of the experimental data. Even in this case we linearize the model and apply the 

least squares method. 
Dose (Gy) SF  Dose (Gy) SF 

0.0000 1.0000 5.5036 0.19609 

0.53957 0.87780 6.0072 0.18372 

1.0072 0.84048 6.5108 0.14785 

1.5468 0.73778 7.0144 0.11642 

2.0144 0.78746 7.5180 0.097850 

2.5180 0.62009 7.9856 0.073780 

3.0216 0.55627 8.4892 0.058100 

3.5252 0.46753 8.9928 0.043800 

3.9928 0.36816 9.4964 0.036020 

4.5324 0.33752 10.000 0.033750 

5.0360 0.26007 10.504 0.026010 

Table n. 2: Numerical data relating to the graph in figure 3, further on 
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11.  Assumptions for the radiotherapy 

When we face the problem of finding the relationship between a dynamic 

model of natural growth of a tumor and its radio-therapeutic treatment, collateral 

effects inevitably arise that create states other than those we would have liked 

to encounter. The complete modeling of a radiotherapy treatment requires the 

consideration of numerous variables that influence the interaction between 

tumor cells and radiant doses. For this reason, as a first approximation, we put 

some valid hypotheses to simplify the method. The choice of the hypotheses 

useful for the simplification of an effective model for the treatment of a tumor 

is in any case indispensable every time the control of the final results is desired. 

If we consider the analysis of the problem from a mathematical point of view, it 

is necessary to think about the implication of having to replace differential 

equations, defined in the continuous, with equivalent equations defined in the 

discrete. At this point we present the list of the necessary hypotheses to get on 

with the analysis of the process. 

Assumption 1: The Gompertz model is a good representation of the growth 

dynamic of a tumor mass, starting from a first degenerated cell up to 

asymptotically reaching a volume of 25 cm3. Thus, it is possible to simulate 

tumor growth using the equations (1), (2) and (3). 

Assumption 2: A solid tumor, in general, consists of proliferating cells P, 

quiescent cells Q and dead cells U. The number of total cells N at time t is 

therefore given by 

 

N(t) = P(t) + Q(t) + U(t).                  (16) 

 

Table 3 and Figure 5 refer only to proliferating cells since ionizing radiations 

are much less effective if directed against quiescent cells. 

Assumption 3: In a solid tumor, on an experimental basis, it is possible to 

state that the number of quiescent and dead cells becomes significant with 

respect to the total of cells at the inflection point of the Gompertz curve (3) and 

(12). 

Assumption 4: Radiation therapy has instantaneous effects, causing the 

immediate death of the cancer cells. These effects should at least be faster than 

the growth of tumor cells. This avoids a detailed kinetic analysis of the toxicity 

of radiation. 

Assumption 5: After undergoing radiotherapy treatment, the tumor grows 

with the same dynamic modalities that preceded the treatment. It is a common 

convention in scientific treatises; however, there are also different points of view 

on this matter [6]. 

Assumption 6: The maximum dose in a single treatment is 3 Gy. You can 

also perform multiple treatments if and only if they are repeated at 24-hour 

intervals. It is not possible, however, to exceed 65 Gy. This assumption is 
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indicated by the radiotherapeutic protocols followed in the therapy of some 

tumors. The 3 Gy dose allows healthy tissues affected by radiation to recover 

from damage. 

Assumption 7: We assume the existence of two critical thresholds in the 

treatment phase: 1) if after treatment a tumor falls below 1 mm3, then we 

consider a therapy to be successful; 2) if, on the other hand, the volume increases 

beyond the dimension corresponding to the inflection point of the Gompertz 

curve, the therapy must be considered as failed. In practice, nothing justifies this 

assumption from a clinical or biological point of view and yet we accept it as 

work hypothesis. 

Based on these hypotheses, we can proceed with the estimation of the model 

parameters (15) and with the application of the programmed therapy. 

 

12.  Procedure for a rational therapy 

The method we will use for the treatment of glioblastoma, meets the 

following two objectives: 

1) Check if there is a relationship between the effectiveness of the radiotherapy 

treatment used and the rate of tumor growth. 

2) In case of an affirmative answer to the first objective, find a specific treatment 

protocol that allows to optimize the relationship between the benefits of the 

therapy and the costs due to the induction of toxic effects; in concrete terms, it 

is necessary to find the minimum amount of radiation to be used with the 

maximum destructive effect of cancer cells. 

We start with the estimation of the parameters of the model (15) using the 

well-known method of least squares and, also in this case, evaluating the 

goodness of fit with index I2 (11). The model (15) must be linearized: 

 

𝐿𝑜𝑔[𝑆�̂�(𝐷)] = −𝑎 ∙ 𝐷 − 𝑏 ∙ 𝐷2                                                                             (17) 
 

and applying the least squares method we have: 

 

𝑆(𝑎, 𝑏) =∑ (𝐿𝑜𝑔 (𝑆𝐹(𝐷𝑗)) − 𝐿𝑜𝑔 (𝑆�̂�(𝐷𝑗)))
2𝑛

𝑗=1
= 

              = ∑ (𝐿𝑜𝑔 (𝑆𝐹(𝐷𝑗)) + 𝑎 ∙ 𝐷 + 𝑏 ∙ 𝐷
2 )

2𝑛

𝑗=1
. 

 

Calculating the partial derivatives of S(a, b) with refer to a and to b, we obtain 

the system 
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{
 
 

 
 (∑ 𝐷𝑗

2
𝑛

𝑗=1
) ∙ 𝑎 + (∑ 𝐷𝑗

3
𝑛

𝑗=1
) ∙ 𝑏 = −∑ 𝐷𝑗

𝑛

𝑗=1
∙ 𝐿𝑜𝑔[𝑆𝐹(𝐷𝑗)]

(∑ 𝐷𝑗
3

𝑛

𝑗=1
) ∙ 𝑎 + (∑ 𝐷𝑗

4
𝑛

𝑗=1
) ∙ 𝑏 = −∑ 𝐷𝑗

2
𝑛

𝑗=1
∙ 𝐿𝑜𝑔[𝑆𝐹(𝐷𝑗)]

                        (18) 

 

Considering the data in Table 2 and solving (18) with refer to a and b we 

obtain: 
 

𝑎 ≅ 0.124275;  𝑏 ≅ 0.0264028. 
 

The model adapted to the data in table 2 is, therefore: 
 

𝑆�̂�(𝐷) ≅ 𝑒−0.124275 𝐷−0.0264028 𝐷
2
                                                                (19) 

 

Using the coefficient of variation: 
 

𝐼2,𝑆𝐹 =
1

𝑀(𝑆�̂�(𝐷))
∙ √
∑ (𝑆𝐹(𝐷𝑗) − 𝑆�̂�(𝐷𝑗))

2𝑛
𝑗=1

𝑛
                                                      (20) 

 

and taking into account both the data in table 2, and the theoretical values 

calculated with (19), we get the goodness of fit: 𝐼2,𝑆𝐹 ≅ 0.0998765. This value 

shows that our approach is good. Figure 3 presents both the trend of 

experimental data and the interpolated model. 

 

 
 

Figure 3: the graph shows the link between the radiant dose and the fraction of 

surviving individuals (19). The points represent, in Cartesian coordinates, the 

data of table 2. We put on the D-axis the radiant dose, on the ordinate axis the 

survival rate SF(D). 

 

13.  Research of the inflection point 

At this point, it is necessary to start the therapy taking into account what has 

resulted from these preliminary procedures. We consider again the model (10) 

and figure 3. Furthermore, on the basis of the assumption 3, the most effective 

radiotherapy treatment is the one which begins at the inflection point of the 

Gompertz curve. 
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We consider the model (12): 
 

�̂�(𝑡) = 𝑋0 ∙ 𝑒
𝛼0
𝛽
∙(1−𝑒−𝛽∙𝑡)

  ,                                                                                     (21) 
 

and taking into account that a cancer cell has a volume of 10−9 cm3 and that 

𝛽 = 0.016 we have: 

 

�̂�(𝑡) = 10−9 ∙ 𝑒23.9421 (1−𝑒
−0.016 𝑡)  .                                                                   (22) 

 

Calculating the second derivative of X(t) and setting it equal to zero we get 

the inflection point (198.477 days, 9.19654 cm3) [7]. We note that this result is 

different from that obtained using the model (10). Here, in fact, the parameters 

of the Gompertz model are changed, which are now imposed not by the 

experimental data of the single experimental nodule (which in our case led to 

the model (10)), but by a different operating standard that requires both a start 

from a single tumor cell, whose volume is fixed at 10 –9 cm3, and from a critical 

maximum limit of tumor expansion equal to 𝐾 ≅ 25 cm3. Figure 4 presents the 

function with the flex point. 

At this point the radiant doses should be applied at intervals that allow the 

patient's average life to be maximized. The first simulation (Fig. 4) considers a 

single-dose therapy to hit the tumor mass with a single dose of radiation (from 

1 to 3 Gy with intervals of 0.4). Starting at the time of the cancer diagnosis 

observation, when the tumor mass can vary from a minimum of 0.0050 cm3 to 

a maximum marked by the flex point, we have to measure the effect of the 

therapy on the cancer using the delay time of its growth. This time corresponds 

to the one that the tumor mass needs, after having been treated with 

radiotherapy, to return to the mass it had before the treatment was carried out. 

Methods and procedures are reported in [2]. In the last two graphs we report two 

other simulations in which, with respect to the protocol for the search for an 

optimal result, two different outcomes are observed. In figure 5, the result is not 

satisfactory; instead, in figure 6 the protocol gives a favorable outcome and the 

mass of the glioblastoma is reduced below the desired minimum threshold. 
 

 
Figure 4. Gompertz curve (22) related to the investigated tumor. The inflection 

point is (198.477 days, 9.19654 cm3). On the t-axis there is the time in days and 

on the ordinate axis the tumor volume in cm3. 
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Figure 5. The graph 

describes the effect of 12 

radiotherapy treatments on 

a glioblastoma. The doses, 

in Gray, is (1, 2, 3, 1, 2, 0, 

0, 1, 2, 3, 1, 2). Note that 

the treatment did not give 

the desired result. The 

mass of the tumor has not 

been reduced below the 

critical threshold set by the 

protocol. 
 

 
 

 
 

 

Figure 6. The graph 

describes the effect of 12 

radiotherapy treatments 

on a glioblastoma. The 

doses, in Gray, is (2, 2, 3, 

3, 3, 0, 0, 2, 2, 3, 3, 3). In 

this case, it should be 

noted that the treatment 

has reached the desired 

result. The tumor mass 

was reduced under the 

critical threshold 

established by the 

protocol. 

 
 

Each cusp corresponds to the flex point of the various curves that sequentially 

describe the progression of tumor growth after each treatment. 
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En Route for the Calculus of Variations 
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Abstract    

Optimal control deals with the problem of finding a control law for a given 

system such that a certain optimality criterion is achieved. An optimal control is 

an extension of the calculus of variations. It is a mathematical optimization 

method for deriving control policies. The calculus of variations is concerned 

with the extrema of functionals. The different approaches tried out in its solution 

may be considered, in a more or less direct way, as the starting point for new 

theories. While the true “mathematical” demonstration involves what we now 

call the calculus of variations, a theory for which Euler and then Lagrange 

established the foundations, the solution which Johann Bernoulli originally 

produced, obtained with the help analogy with the law of refraction on optics, 

was empirical. A similar analogy between optics and mechanics reappears when 

Hamilton applied the principle of least action in mechanics which Maupertuis 

justified in the first instance, on the basis of the laws of optics. 
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1 Introduction 

Our intention here is to write the history of the brachistrone and its 

remarkable consequences. In the contemporary socio-cultural context, the 

question would essentially be formulated in the following text: what shape 

should we make slides in children’s playgrounds so that the time of descent 

should be minimized? The considerable importance of this question is well 

understood when we consider how children behave, and they want to obtain the 

best performance, but the question is also important in a more general way, and 

a great number of scholars have attempted to solve this problem. 

Unfortunately the problem appears to be particularly tricky, and it depends 

upon a number of parameters, including the variable value of the friction 

between the clothes of the child and the surface of the slide. We shall not attempt 

to solve that particular problem here, but content ourselves with theory of the 

idealized problem, simplifying the situation sufficiently in order to be able to 

find a solution. In fact we shall replace the child by a perfectly smooth marble, 

and we assume that it rolls down a smooth surface, thus assuming that friction 

forces are negligible with respect to gravity. 

Now, we are simply confronted with the  problem of brachistrone as Johann 

Bernoulli expressed it in the Acta Eruditorum published in Leipzig in June 1696 

([1], vol. 1, p. 161): Datis in plano vertacali duobus punctis A & B, assignare 

Mobili M viam AMB, per quam gravitate sua descenden, & moveri incipiens a 

puncto A, brevissimo tempore perveniat ad alterum punctum B. 

The expression brevissimo tempore is the latin translation of the greek term 

brachistochrone (brachys is brief, brachisto is quickest, chronos is time and 

brachistochrone is the shortes time). In a modern style: Given two points A and 

B in a vertical plane, what is the curve traced out by a point subject only to the 

force gravity, starting from rest at A, such that it arrives at B in the shortest time? 

Common sense suggests that this curve is necessarily situated in the vertical 

plane containing the points A and B. Common sense also leads us to think that 

the quickest route is the shortest, and is given by the line segment joining the 

points A and B. But this is not the case. We know, for example that a longer 

journey on a motorway be faster than going a shorter distance on an ordinary 

road. Here, in order to try to solve the problem of brachistochrome, it is 

necessary to consider all the curves joining points A and B and compare all the 

corresponding times of travel. Taking everything into account, even under these 

restrictions, the problem turns out to be a subtle one. The brachistochrone 

problem, a priori a simple game for mathematicians, turns out in the end to be a 

considerable problem. 
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2 Falling bodies, reflection and refraction 

In 1638, well before the problem had been explicitly stated, Galileo gave 

his solution to the brachistochrone problem in the course of the Third Day of 

his [5]. It is here that he studied uniform acceleration – Galileo called it 

“natural acceleration” – comparing it with uniform motion, and showed that a 

body falling in space traverses a distance proportional to the square of the time 

of descent (Theorem II in [4]). With regard to bodies moving on inclined 

planes he deduced ([5]): 

Theorem V. The times of descent along planes of different length, slope and 

height bear to one another a ratio which is equal to the product of the ratio of 

the lengths by square root of inverse ratio of their heights. 

We interpret the proportionality to be: a body travels a distance L and 

descends a height H in time t such that: 

𝑡 =
𝑘 ∙ 𝐿

√𝐻
. 

Galileo then proves the following neat result ([5]): 

Theorem VI. If from the highest or lowest point in a vertical circle there be 

drawn any inclined planes meeting the circumference, the times of descent along 

these chords are each equal to the other. 

At the end of the Third Day, Galileo shows that it is also possible to improve 

on this descent ([5]): 

Theorem XXII. If from the lowest point of a vertical circle, a chord is drawn 

subtending an arc not greater than a quadrant, and if from the two ends of this 

chord two other chords be drawn to any point on the arc, the time of descent 

along the two later chords will be shorter than along the first, and shorter also, 

by the same amount, than along the lower of these two latter chords. 

This result is false, since arguing the case from two to three segments is based 

on a faulty intuition from arguing from one to two segments. The 

brachistrochrone problem is considerably more subtle than the one of the 

research into optimum inclination of planes, which is a simple problem of the 

extremum for a function of single variable. 

The demonstration by Johann Bernoulli [1] also derives from an intuitive 

approach. This approach, an analogy with the law of refraction, leads to the 

curve solution which one cannot find a priori, without an arsenal of sufficiently 

sophisticated techniques. Let us begin by recalling the first laws of Optics, 

which are in fact consequences of the principles of optimization. 

Experience tells us that light travels in straight lines. This phenomenon is 

stated as a principle: light chooses the shortest path. This formulation led to a 

real theoretical advance since it allowed Hero of Alexandria in the first century 

AD to explain the law of reflection, namely, the equality of the angles of 

incidence and reflection. In the case of reflection, the speed remains constant. It 
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is not so for refraction, where the speed of light 
n
c  varies as a function of the 

index n of the medium traversed. However, the principle stated above could 

have been stated in the following form as the Fermat’s Principle: light chooses 

the fastest route, which in a homogenous medium where its speed is constant, is 

equivalent to the previous principle. 

So, to go from A to B, passing from a medium of index 
1n  to medium of 

index 2n , the trajectory of the light will not be the line segment AB, but broken 

line AIB such that the trajectory AIB will have the shortest time of all trajectories 

from A to B. Using the initial conditions we calculate that the angle of incidence 

i and the angle of refraction r are related to the respective speeds by the formula: 

 

                                                  
sin  𝑖

𝑣𝑖
=

sin  𝑟

𝑣𝑟
,                                                        (1) 

or using the indices in  and rn  we have the sine formula 

𝑛𝑖 ∙ sin 𝑖 = 𝑛𝑟 ∙ sin 𝑟. 
This formula, discovered by the Dutch scientist Snell in 1621, received its 

correct interpretation with Fermat. In a letter of the 1st  of January 1662 to M De 

la Chambre, Fermat explains ([4], vol. II, pp. 457-463): As i said in my previous 

letter, M. Descartes has never demonstrated his principle; because not only do 

the comparisons hardly serve as a foundation for the demonstrations, but he 

uses them in the opposite sense and supposes that the passage of light is more 

easy in dense bodies than in rare bodies, which is clearly false. I will not say 

anything to you about the shortcomings of the demonstration itself … 

Fermat puts his principle to work, and proves the sine formula using his 

method ‘de maximis et minimis’ ([4]). Another example of a non-homogeneous 

medium where the shortest trajectory is not the quickest occurs in mechanics, 

where the effect of gravity is in the vertical direction. And this is the context for 

Johann Bernoulli brachistochrone problem. Johann Bernoulli in the Acta 

Eruditorum of May 1697 ([1], vol. 1, pp. 187-193). His method typically 

corresponds to what we now call a discretisation of the problem. He imagines 

space carved into small lamina, sufficiently fine so that within each one it is 

possible to imagine that the speed is constant. Within each strip the trajectory 

becomes the shortest route, and necessarily a segment. The complete trajectory 

appears as a sequence of segments. But how we move from one strip to another? 

We must always optimize the time of travel. As in refraction of light, this is done 

by using Fermat’s principle. Thus, if  iv  is the speed in a given band and rv  in 

the band immediately below, the angle i is the angle made with the vertical by 

segment of the trajectory in the first band, an the angle r in the neighboring band, 

then they are connected by the rule of sines (1). If we now imagine that the 

horizontal strips become progressively thinner, and their number increases 

indefinitely, the line of segments tends towards a curve. The tangents at each 
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point of this curve approach the sequence of segments. The angle u which the 

tangent makes with the vertical is then connected to the speed v by the relation:  
sin 𝑢

𝑣
= 𝑐𝑜𝑛𝑠𝑡. 

Here, the speed v of a particle is known; it is result of the action of gravity 

and, as we know from Galileo, it is a function of the distance fallen y, according 

to the formula 

𝑣 = √2𝑔𝑦. 

And so the rule of sines leads to the equation: 
sin 𝑢

√𝑦
= 𝑐𝑜𝑛𝑠𝑡. 

In particular, for y = 0, the tangent is vertical. 

That is a characteristic equation of a well-known curve of the time, the 

cycloid. 

We have just seen that the solution to the curve is a cycloid. But how can we 

construct such a curve, starting from a point A, an arriving exactly at a point B? 

Newton gave a simple solution in a letter to Montague on the 30th of January 

1697 (see [10], p. 223). In addition to Newton’s contribution to the solution of 

the problem of the brachistochrone, we must also mention Leibniz, and in a 

lesser role, the Marquis de l’Hospital, and most of all, Jacob Bernoulli, the older 

brother of Johann ([1], vol. 1,  p. 194-204): … my elder brother made up the 

fourth of these, that the three great nations, Germany, England, France, have 

given us each one of their own to unite with myself in such a beautiful search, 

all finding the same truth. 

The method used by Jacob Bernoulli is laborious, but quite general. Also, 

Jacob, in wanting to show the singular character of Johann’s method, extended 

the problem by posing new questions. Indeed, Johann’s method, founded on an 

analogy, does not work except in a particular case, and cannot be used for more 

general problems of this type. In particular, Jacob Bernoulli put the following 

question to his brother” given a vertical line which of all the cycloids having the 

same starting point and the same horizontal base, is the one which will allow a 

heavy body passing along it to arrive at the vertical line the soonest? Such 

statement reminds us of Calileo’s first version, which was about finding the 

inclined plane through a given point which gave the shortest time to reach a 

given vertical. Johann Bernoulli ([1], vol. 1, p. 206-213) replied and showed that 

the cycloid in question is the one which meets the given line horizontally. More 

generally, the cycloid which allows us to achieve the swiftest possible descent 

to a given oblique line is the one which meets the line at right angles.  This 

cycloid which, as we have just said, is a brachistochrone curve, was also known 

to Huygens fro 1659 as the tautochrone curve: bodies which fall in an inverted 

cycloid arrive at the bottom at the same time, no matter from what height they 

are released. This property was perhaps closer to that observed by Galileo: the 
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equality of the times for the distance on the chords of the same circle. Among 

the other problems posed by Jacob Bernoulli to Johann are those which are 

called isoperimetric problems, which together with brachistochrone problem are 

prototypes of optimization problems. These scientific exchanges between the 

two brothers were carried out in the form of letters. Here is a sample of Johann’s  

response to same criticisms by Jacob ([1], vol. 1,  p. 194-204): So there it is, his 

imagination, stronger and more vivid than those claiming to be sorcerers who 

believe they have found themselves bodily present at a Sabbath, has seduced 

him; he is carried along by a torrent of vain conjectures; in a word, he is longer 

ready to give reign to reason … The resolution of these problems is then the 

object – reason or excuse? – for a long dispute between the two brothers; a 

dispute which developed into a major row, but which gave birth to new area in 

mathematics, the Calculus of Variations. 

3 The Calculus of Variations 

When we look for boundary values of a function f of a variable x, i.e. when 

we look for values of the variable x for which the value 𝑓(𝑥) is a maximum or 

minimum, we look for the points where the graph of  f  has a horizontal tangent, 

or we say we look for the values where 𝑓′(𝑥) = 0. In the case of a function f of 

two variables x and y, we have to consider the points where the tangent plane is 

horizontal to the surface which has the equation 𝑧 = 𝑓(𝑥, 𝑦). Alternatively we 

could say we seek the number pairs [ x, y ] for which 
𝜕𝑓

𝜕𝑥
(𝑥, 𝑦) =

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) = 0. 

Or we can say we are looking for the points where the function f  has a 

stationary value. In the case of a finite number of variables, the difficulties seem 

surmountable, and the approach to the problem may be effected with the aid of 

the differential calculus of Newton and Leibniz. Here the object which changes 

is not a number or a point, but a curve, a function, and the corresponding 

quantity to maximize or minimize is a number depending on this curve or on 

this function. It is necessary to conceive an extension of the differential calculus. 

The new theory which was created is called the calculus of variations, the 

variations being those of the function. But, in 1696, this theory had not been 

formulated and our problem becomes a priori somewhat subtle. A problem in 

the calculus of variations can be presented generally in the following fashion: 

we try to find a curve, being the graphical representation of a function y of x, 

which minimizes or maximizes a certain quantity among all the curves 
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constrained by certain conditions§. The quantity whose extreme value has to be 

found** is expressed generally in the form of an integral: 

𝐼(𝑦) = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥

𝑏

𝑎

 

where y represented the unknown function, 𝑦′ its derivative, x variable and F a 

particular function.  

Among the typical problems of the calculus of variations, besides the 

isoperimetric problems above are investigations of the geodesic lines on surface, 

i.e. the curves of minimum length joining two points of a surface. Also, the 

investigation of the shapes of the surfaces of revolution which offer the least 

resistance to movement, a problem which Newton tackled in 1687 in the 

Principia. The statement of the brachistochrone problem in 1696 could be 

considered as the definitive origin of the calculus of variations, for it is the 

problem which generated general methods of investigation which were 

gradually developed in a competitive context. 

Johann Bernoulli himself posed the problem of geodetics to Euler. Euler re-

worked the ideas of Jacob Bernoulli, simplified them, and finally was the first 

to formulate the general methods which allowed them to be applied to the 

principal problems of the calculus variation. He developed these ideas 

systematically in 1744 in [3]. In a way like Jacob Bernoulli, Euler tackles the 

problem as a problem of limits in an investigation of the ordinary extremum. 

Euler derived the differential equation: 

                             
𝜕𝐹

𝜕𝑦
(𝑥, 𝑦, 𝑦′) −

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
(𝑥, 𝑦, 𝑦′)) = 0                                          (2) 

which satisfies each solution y. It is only a necessary condition and the method 

does not establish the existence of a solution. The equation (2), today called the 

Euler-Lagrange equation, is a second order differential equation in y: 

 

𝜕𝐹

𝜕𝑦
(𝑥, 𝑦, 𝑦′) −

𝜕2𝐹

𝜕𝑦′𝜕𝑥
(𝑥, 𝑦, 𝑦′) −

𝜕2𝐹

𝜕𝑦′𝜕𝑦
(𝑥, 𝑦, 𝑦′) −

𝜕2𝐹

𝜕𝑦′2
(𝑥, 𝑦, 𝑦′) = 0. 

 

In 1760, Lagrange greatly simplified matters by introducing the differential 

symbol δ, specifically for the calculus of variations, corresponding to a variation 

of the complete function. He makes the point of it in the introduction to [6]: For 

as little as we know the principles of the differential calculus, we know the 

method for determining the largest and smallest ordinates of curves; but there 

are questions of maxima and minima at a higher level which, although 

depending on the same method, are not able to be applied so easily. They are 

                                                      
§ For brachistochrone problem – the curve joining two points A and B. 
** Here – the time of the journey. 
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those where it is needed to find the curves themselves, in which a given integral 

expression becomes a maximum or minimum with respect to all the other curves. 

… Now here is a method which only requires a straightforward use of the 

principles of the differential and integral calculus; but above all I must give 

warning that while this method  requires that the same quantities vary in two 

different ways, in order not to mix up these variations, I have introduced into 

my calculations a new symbol δ. In this way, δZ expressed a difference of Z 

which is not the same as dZ, but which, however, will be formed by the same 

rules; such that where we have for any equation dZ=m dx, we can equally have 

δZ=m δx, and likewise for other cases. 

A century later, Mach was able to write in [7]: In this way, by analogy, 

Johann Bernoulli accidentally found a solution to the problem. Jacob Bernoulli 

developed a geometric method for the solution of analogous problems In one 

stroke, Euler generalized the problem and the geometrical method, Lagrange 

finally freed it completely from the consideration of diagrams, and provided an 

analytical method. 

4 The Principle of Least Action 

We shall make a digression, the purpose of which will soon become clear 

Maupertuis stated his Principle of Least Action in 1744 in [8]. He explains and 

justifies his principle from the law of refraction: In thinking deeply upon this 

matter, I reflected that light, as it passes from one medium to another, yet not 

taking the shortest path, which is a straight line, might just as well not take the 

shortest time. Actually, why should there be a preference here for time over 

space? Light cannot go at the same time by the shortest path and by the 

quickest route, so why does it go by one route rather than another? In fact, it 

does not take either of these; it takes a route that has the greater real 

advantage: the path taken is the one where the quantity of action is the least. 

Now I must explain what I mean by the quantity of action. When a body is 

moved from one place to another, a certain action is needed: this action depends 

neither on the speed of the body and the distance travelled; but it depends on 

the speed nor the distance taken separately. The quantity of action is moreover 

greater when the speed of the body is greater and when the path travelled is 

greater; it is proportional to the sum of the distance multiplied respectively by 

the speed travelled over each space. … It is quantity of action which is the true 

expenditure of Nature, and which she uses as sparingly as possible in the motion 

of light. Let there be two different media, separated by a surface represented by 

the line CD, such that the speed of light in the medium above is m. and the speed 

in the medium below is n. 

Let a ray of light, starting from point A, reach a point B: to find the point R 

where the ray changes course, we look for the point where if the ray bends the 
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quantity of action is the least: and I have 𝑚 ∙ 𝐴𝑅 = 𝑛 ∙ 𝑅𝐵 which must be a 

minimum. … 

That is to say, the sine of the angle of incidence to the sine of the angle of 

refraction is in inverse proportion to the speed with the light traverses each 

medium. 

All the phenomena of refraction now agree with the central principle that 

Nature, in the production of its effects, always tends towards the most simple 

means. So this principle follows, that when light passes from one medium to 

another the sine of the angle of refraction to the sine of the angle of incidence 

is in inverse ratio to the speed with which the light traverses each medium.  

And so for Maupertuis, light is propagated so as to minimize 𝐴𝑅 ∙ 𝑣1 = 𝑅𝐵 ∙ 𝑣2 

and not the quantity 
𝐴𝑅

𝑣1

=
𝑅𝐵

𝑣2

.  For these conclusions to agree with the 

experimental results of the time, and so that his principle would lead to the sine 

law. It is true that at that time no one knew how to measure the speed of light 

and no one could find a way of deciding between the different theories. The 

experimental proof that light travels faster in air than in water was not 

established until 1850 Foucault. 

In 1746, Maupertuis extended his principle from optics to mechanics ([9]): 

When a body is carried from one place to another, the action is greater when 

the mass is heavier, when the speed is faster, when the distance over which it is 

carried is longer. … Whenever a change in Nature takes place, the quantity of 

action necessary for this change is the smallest possible. 

With this general principle, Maupertuis established a kind of union between 

philosophy, physics and mathematics: Nature works in such a way as to 

minimize its action; the idea of causality is abandoned in favor of the idea 

achieving an aim, characterized by a harmony between the physical world and 

rational thought. 

5 Conclusion 

It would be right to conclude by revisiting our initial problem of the slides 

in the playground. We are circumspect, and content ourselves with noticing that 

in the course of this wander through diverse disciplines, the theme of 

minimization or maximization briefly the problem of optimalization is ever 

present, and should not be underestimated during these unhappy times. 
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Abstract

The distinguishing number (index) D(G) (D′(G)) of a graph G is
the least integer d such that G has an vertex labeling (edge labeling)
with d labels that is preserved only by a trivial automorphism. The
co-normal product G ? H of two graphs G and H is the graph with
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E(G) or x2y2 ∈ E(H)}. In this paper we study the distinguishing
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1 Introduction and definitions
Let G = (V,E) be a simple graph of order n ≥ 2. We use the the following

notations: The set of vertices adjacent in G to a vertex of a vertex subset W ⊆ V
is the open neighborhood N(W ) of W . Also N(W ) ∪ W is called a closed
neighborhood of W and denoted by N [W ]. A subgraph of a graph G is a graph
H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). If V (H) = V (G), we call
H a spanning subgraph of G. Any spanning subgraph of G can be obtained by
deleting some of the edges from G. Two distinct vertices u and v are called true
twins if N [v] = N [u] and false twins if N(v) = N(u). Two vertices are called
twins if they are true or false twins. The number |N(v)| is called the degree of v
in G, denoted as degG(v) or deg(v). A vertex having degree |V (G)| − 1 is called
a dominating vertex of G. Also, Aut(G) denotes the automorphism group of G,
and graphs with |Aut(G)| = 1 are called rigid graphs.

A labeling of G, φ : V → {1, 2, . . . , r}, is said to be r-distinguishing, if no
non-trivial automorphism of G preserves all of the vertex labels. The point of the
labels on the vertices is to destroy the symmetries of the graph, that is, to make the
automorphism group of the labeled graph trivial. Formally, φ is r-distinguishing
if for every non-trivial σ ∈ Aut(G), there exists x in V such that φ(x) 6= φ(σ(x)).
The distinguishing number of a graph G is defined by

D(G) = min{r| G has a labeling that is r-distinguishing}.

This number has defined in [1]. Similar to this definition, the distinguishing
index D′(G) of G has defined in [8] which is the least integer d such that G has
an edge colouring with d colours that is preserved only by a trivial automorphism.
If a graph has no nontrivial automorphisms, its distinguishing number is 1. In
other words, D(G) = 1 for the asymmetric graphs. The other extreme, D(G) =
|V (G)|, occurs if and only if G is a complete graph. The distinguishing index of
some examples of graphs was exhibited in [8]. For instance,D(Pn) = D′(Pn) = 2
for every n ≥ 3, and D(Cn) = D′(Cn) = 3 for n = 3, 4, 5, D(Cn) = D′(Cn) =
2 for n ≥ 6, where Pn denotes a path graph on n vertices and Cn denotes a
cycle graph on n vertices. A graph and its complement, always have the same
automorphism group while their graph structure usually differs, hence D(G) =
D(G) for every simple graph G.

Product graph of two graphs G and H is a new graph having the vertex set
V (G) × V (H) and the adjacency of vertices is defined under some rule using
the adjacency and the nonadjacency relations of G and H . The distinguishing
number and the distinguishing index of some graph products has been studied in
literature (see [2, 6, 7]). The Cartesian product of graphs G and H is a graph,
denoted by G2H , whose vertex set is V (G) × V (H). Two vertices (g, h) and
(g′, h′) are adjacent if either g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′.
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The distinguishing number and the distinguishing index of co-normal product of
two graphs

In 1962, Ore [10] introduced a product graph, with the name Cartesian sum of
graphs. Hammack et al. [4], named it co-normal product graph. The co-normal
product of G and H is the graph denoted by G ? H , and is defined as follows:

V (G ? H) = {(g, h)|g ∈ V (G) and h ∈ V (H)},
E(G ? H) = {{(x1, x2), (y1, y2)}|x1y1 ∈ E(G) or x2y2 ∈ E(H)}.

We need knowledge of the structure of the automorphism group of the Carte-
sian product, which was determined by Imrich [5], and independently by Miller
[9].

Theorem 1.1. [5, 9] Suppose ψ is an automorphism of a connected graph G with
prime factor decomposition G = G12G22 . . .2Gr. Then there is a permutation
π of the set {1, 2, . . . , r} and there are isomorphisms ψi : Gπ(i) → Gi, i =
1, . . . , r, such that

ψ(x1, x2, . . . , xr) = (ψ1(xπ(1)), ψ2(xπ(2)), . . . , ψr(xπ(r))).

Imrich and Klavžar in [7], and Gorzkowska et.al. in [3] showed that the dis-
tinguishing number and the distinguishing index of the square and higher powers
of a connected graph G 6= K2, K3 with respect to the Cartesian product is 2.

The relationship between the automorphism group of co-normal product of
two non isomorphic, non rigid connected graphs with no false twin and no domi-
nating vertex is the same as that in the case of the Cartesian product.

Theorem 1.2. [12] For any two non isomorphic, non rigid graphs G and H ,
Aut(G?H) = Aut(G)×Aut(H) if and only if both G and H have no false twins
and dominating vertices.

Theorem 1.3. [12] For any two rigid isomorphic graphsG andH , Aut(G?H) ∼=
S2.

Theorem 1.4. [12]The graph G?H is rigid if and only if G � H and both G and
H are rigid graphs.

In the next section, we study the distinguishing number of the co-normal prod-
uct of two graphs. In section 3, we show that the distinguishing index of the co-
normal product of two simple connected non isomorphic, non rigid graphs with
no false twin and no dominating vertex cannot be more than the distinguishing
index of their Cartesian product. As a consequence, we prove that all powers of a
connected graph G with no false twin and no dominating vertex distinguished by
exactly two edge labels with respect to the co-normal product.
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2 Distinguishing number of co-normal product of
two graphs

We begin this section with a general upper bound for the co-normal product
of two simple connected graphs. We need the following theorem.

Theorem 2.1. [12] Let G and H be two graphs and λ : V (G ? H)→ V (G ? H)
be a mapping.

(i) If λ = (α, β) defined as λ(g, h) = (α(g), β(h)), where α ∈ Aut(G) and
β ∈ Aut(H), then λ is an automorphism on G ? H .

(ii) If G is isomorphic to H and λ = (α, β) defined as λ(g, h) = (β(h), α(g)),
where α is an isomorphism on G to H and β is an isomorphism on H to G,
then λ is an automorphism on G ? H .

Theorem 2.2. If G and H are two simple connected graphs, then

max
{
D(G2H), D(G), D(H)

}
≤ D(G?H) ≤ min

{
D(G)|V (H)|, |V (G)|D(H)

}
.

Proof. We first show that max{D(G), D(H)} ≤ D(G?H). By contradiction,
we assume that D(G ? H) < max{D(G), D(H)}. Without loss of generality we
suppose that max{D(G), D(H)} = D(G). LetC be a (D(G?H))-distinguishing
labeling of G ? H . Then the set of vertices {(g, h∗) : g ∈ V (G)}, where
h∗ ∈ V (H) have been labeled with less than D(G) labels. Hence we can define
the labeling C ′ with C ′(g) := C(g, h∗) for all g ∈ V (G). Since D(G ? H) <
D(G), so C ′ is not a distinguishing labeling ofG, and so there exists a nonidentity
automorphism α of G preserving the labeling C ′. Thus there exists a nonidentity
automorphism λ ofG?H with λ(g, h) := (α(g), h) for g ∈ V (G) and h ∈ V (H),
such that λ preserves the distinguishing labeling C, which is a contradiction. Now
we show that D(G2H) ≤ D(G ? H), and so we prove the left inequality. By
Theorems 1.1 and 2.1, we can obtain that Aut(G2H) ⊆ Aut(G ? H), and since
V (G2H) = V (G ? H), we have D(G2H) ≤ D(G ? H).

Now we show that D(G ? H) ≤ min {D(G)|V (H)|, |V (G)|D(H)}. For
this purpose, we define two distinguishing labelings of G ? H with D(G)|V (H)|
and |V (G)|D(H) labels, respectively. Let C be a D(G)-distinguishing label-
ing of G and C ′ be a D(H)-distinguishing labeling of H . We suppose that
V (G) = {g1, . . . , gn} and V (H) = {h1, . . . , hm}, and define the two following
distinguishing labelings L1 and L2 of G?H with D(G)|V (H)| and |V (G)|D(H)
labels.

L1(gj, hi) := (i− 1)D(G) + C(gj),

L2(gj, hi) := (j − 1)D(H) + C ′(hi).
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We only prove that the labelingL1 is a distinguishing labeling, and by a similar
argument, it can be concluded that L2 is a distinguishing labeling of G ? H . If f
is an automorphism of G ? H preserving the labeling L1, then f maps the set
Hi := {(gj, hi) : gj ∈ V (G)} to itself, setwise, for all i = 1, . . . ,m. Since the
restriction of f to Hi can be considered as an automorphism of G preserving the
distinguishing labeling C, so for every 1 ≤ i ≤ m, the restriction of f to Hi is the
identity automorphism. Hence f is the identity automorphism of G ? H . 2

The bounds of Theorem 2.2 are sharp. For the right inequality it is sufficient to
consider the complete graphs as the graphs G and H . In fact, if G = Kn and H =
Km, then G ? H = Knm. For the left inequality we consider the non isomorphic
rigid graphs as the graphs G and H . Then by Theorem 1.4, we conclude that
G ? H and G2H are a rigid graph and hence max

{
D(G2H), D(G), D(H)

}
=

D(G ? H).

With respect to Theorems 1.1 and 1.2, we have that the automorphism group
of a co-normal product of connected non isomorphic, non rigid graphs with no
false twin and no dominating vertex, is the same as automorphism group of the
Cartesian product of them, so the following theorem follows immediately:

Theorem 2.3. If G and H are two simple connected, non isomorphic, non rigid
graphs with no false twin and no dominating vertex, then D(G?H) = D(G2H).

Since the path graph Pn (n ≥ 4), and the cycle graph Cm (m ≥ 5) are con-
nected, graphs with no false twin and no dominating vertex, then by Theorem 2.3
we have D(Pn ? Pq) = D(Pn ? Cm) = D(Cm ? Cp) = 2 for any q, n ≥ 3, where
q 6= n and m, p ≥ 5, where m 6= p. (see [7] for the distinguishing number of
Cartesian product of these graphs).

To prove the next result, we need the following lemmas.

Lemma 2.1. [13] For any two distinct vertices (vi, uj) and (vr, us) in G ? H ,
N((vi, uj)) = N((vr, us)) if and only if

(i) vi = vr in G and N(uj) = N(us) in H , or

(ii) uj = us in H and N(vi) = N(vr) in G, or

(iii) N(vi) = N(vr) in G and N(uj) = N(us).

Lemma 2.2. [13] A vertex (vi, uj) is a dominating vertex in G ? H if and only if
vi and uj are dominating vertices in G and H , respectively.

Theorem 2.4. [12] For a rigid graphG and a non rigid graphH , |Aut(G?H)| =
|Aut(H)| if and only if G has no dominating vertex and H has no false twin.
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Now we are ready to state and prove the main result of this section.

Theorem 2.5. Let G be a connected graph with no false twin and no dominating
vertex, and ?Gk the k-th power of G with respect to the co-normal product. Then
D(?Gk) = 2 for k ≥ 3. In particular, if G is a rigid graph, then for k ≥ 2,
D(?Gk) = 2.

Proof. By Lemmas 2.1 and 2.2, we can conclude that G ?G has no false twin
and no dominating vertex. We consider the two following cases:

Case 1) Let G be a non rigid graph. If H := G ? G, then D(?G3) = 2 by
Theorem 2.3. Now by induction on k, we have the result.

Case 2) Let G be a rigid graph. In this case, |Aut(G ? G)| = 2, by Theorem
1.3, and so D(G ? G) = 2. If H := G ? G, then |Aut(G ? H)| = |Aut(H)|, by
Theorem 2.4. Hence |Aut(?G3)| = 2. By induction on k and using Theorem 2.4,
we obtain D(?Gk) = 2 for k ≥ 2, where G is a rigid graph. 2

3 Distinguishing index of co-normal product of two
graphs

In this section we investigate the distinguishing index of co-normal product of
graphs. Pilśniak in [11] showed that the distinguishing index of traceable graphs,
graphs with a Hamiltonian path, of order equal or greater than seven is at most
two.

Theorem 3.1. [11] If G is a traceable graph of order n ≥ 7, then D′(G) ≤ 2.

We say that a graph G is almost spanned by a subgraph H if G− v, the graph
obtained from G by removal of a vertex v and all edges incident to v, is spanned
by H for some v ∈ V (G). The following two observations will play a crucial role
in this section.

Lemma 3.1. [11] If a graph G is spanned or almost spanned by a subgraph H ,
then D′(G) ≤ D′(H) + 1.

Lemma 3.2. Let G be a graph and H be a spanning subgraph of G. If Aut(G) is
a subgroup of Aut(H), then D′(G) ≤ D′(H).

Proof. Let to call the edges of G which are the edges of H , H-edges, and the
others non-H-edges, then since Aut(G) ⊆ Aut(H), we can conclude that each
automorphism ofGmapsH-edges toH-edges and non-H-edges to non-H-edges.
So assigning each distinguishing edge labeling of H to G and assigning non-H-
edges a repeated label we make a distinguishing edge labeling of G.
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Since for two distinct simple non isomorphic, non rigid connected graphs,
with no false twin and no dominating vertex we have Aut(G?H) = Aut(G2H),
so a direct consequence of Lemmas 3.1 and 3.2 is as follows:

Theorem 3.2. (i) If G and H are two simple connected graphs, then D′(G ?
H) ≤ D′(G2H) + 1.

(ii) IfG andH are two simple connected non isomorphic, non rigid graphs with
no false twin and no dominating vertex, then D′(G ? H) ≤ D′(G2H).

Theorem 3.3. Let G be a connected graph with no false twin and no dominating
vertex, and ?Gk the k-th power of G with respect to the co-normal product. Then
for k ≥ 3, D′(?Gk) = 2. In particular, if G is a rigid graph, then for k ≥ 2,
D′(?Gk) = 2.

Proof. By Lemmas 2.1 and 2.2, we can conclude that G ?G has no false twin
and no dominating vertex. We consider the two following cases:

Case 1) Let G be a non rigid graph. If H = G ? G, then D(?G3) = 2 by
Theorem 3.2(ii). Now by an induction on k, we have the result.

Case 2) Let G be a rigid graph. In this case, |Aut(G ? G)| = 2, by Theorem
1.3, and so D(G ? G) = 2. If H := G ? G, then |Aut(G ? H)| = |Aut(H)|, by
Theorem 2.4. Hence |Aut(?G3)| = 2. By an induction on k and using Theorem
2.4, we obtain D(?Gk) = 2 for k ≥ 2, where G is a rigid graph.

Theorem 3.4. Let G be a connected graph of order n ≥ 2. Then D′(G?Km) = 2
for every m ≥ 2, except D′(K2 ? K2) = 3.

Proof. Since |Aut(G ? Km)| ≥ 2, so D′(G ≥ Km) = 2. With respect to
the degree of vertices G ? Km we conclude that G ? Km is a traceable graph. We
consider the two following cases:

Case 1) Suppose that n ≥ 2. If m ≥ 3, or m = 2, and n ≥ 4, then the order of
G?Km is at least 7, and so the result follows from Theorem 3.1. If m = 2, n = 3,
then G = P3 or K3. In each case, it is easy to see that D′(G ? Km) = 2.

Case 2) Suppose that n = 2. Then G = K2, and so G ? Km = K2m. Thus
D′(G ? Km) = 2 for m ≥ 3, and D′(K2 ? K2) = D′(K4) = 3. 2

By the value of the distinguishing index of Cartesian product of paths and
cycles graphs in [3] and Theorem 3.2, we can obtain this value for the co-normal
product of them as the two following corollaries.

Corolary 3.1. (i) The co-normal product Pm?Pn of two paths of ordersm ≥ 2
and n ≥ 2 has the distinguishing index equal to two, exceptD′(P2?P2) = 3.

(ii) The co-normal product Cm ? Cn of two cycles of orders m ≥ 3 and n ≥ 3
has the distinguishing index equal to two.
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(iii) The co-normal product Pm ? Cn of orders m ≥ 2 and n ≥ 3 has the distin-
guishing index equal to two.

Proof.

(i) If n,m ≥ 4, then the result follows from Theorem 3.2 (ii). If n = 2 or
m = 2, then we have the result by Theorem 3.4. For the remaining cases,
with respect to the degree of vertices in Pm ? Pn, we obtain easily the dis-
tinguishing index.

(ii) If n,m ≥ 5, then the result follows from Theorem 3.2 (ii). If n = 3 or
m = 3, then we have the result by Theorem 3.4. For the remaining cases
we use of Hamiltonicity of Cm ? Cn and Theorem 3.1.

(iii) If n ≥ 5 and m ≥ 4, then the result follows from Theorem 3.2 (ii). If n = 3
or m = 2, then we have the result by Theorem 3.4. The remaining cases
are Cn ? P3 and C4 ? Pm. In the first case and with respect to the degree of
vertices in Cn ? P3, we obtain easily the distinguishing index. In the latter
case, we use of Hamiltonicity of C4 ? Pm and Theorem 3.1. 2
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Abstract  

This paper describes a new theorem that relates the lengths of the legs of a right 

triangle with the ratio of three complex exponentials. The big novelty of the 

theorem consists in transforming two real measures of legs derived from 

Euclidean geometry into a combination of imaginary elements obtained from 

the complex analysis. 
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1. Introduction  

It seems difficult, apparently, to imagine that the difference between the 

lengths of the legs of a right triangle may have some connection with the ratio 

of complex numbers, or vice-versa, that a ratio of complex numbers may be 

obtained from the difference of the legs of a right triangle, but this theorem, that 

we will call, precisely, Theorem of the complex exponentials, shows that it is 

possible. 

Let’s start with some historical and mathematical considerations, from which 

our research is inspired. In ancient Greece, the right triangles were basically 

solved by the first and second theorem of Euclide (IV-III century B.C.) and by 

the theorem of Pythagoras (about 575-495 B.C.). This happened because the 

Greek trigonometry, that was only applied to the study of astronomy, was based 

on the measurement of the ropes of a circle (subtended by a certain angle), rather 

than on that of sines and cosines. The functions sine and cosine, developed by 

the Indians in the IV-V century A.C., have been imported in the Arab world 

around the VIII century A.C., and then, to the West world, a few centuries later. 

From this moment, the triangles started to be solved by the relations that bind 

the lengths of the sides of the triangle with the values of the trigonometric 

functions of its angles. In particular, two fundamental trigonometric theorems 

were introduced, through which it has been possible to solve any problem 

related to the elements of a triangle: the theorem of sines and the theorem of 

Carnot. The first one states that in any triangle the ratio between one side and 

the sine of the opposite angle is always constant and equal to the diameter of 

the circle circumscribed to the given triangle; the second one states that in any 

triangle the square of one side is equal to the sum of the squares of the other 

two, plus their product to the cosine of the angle included. From the theorem of 

sines, applied to the right triangles, it descends the theorem according to which 

in a right triangle a leg is equal to the product of the hypotenuse for the sine of 

the angle opposite to the leg. Finally, we arrive at the XVIII century A.C., 

where, in another branch of mathematics completely different from the above 

one, is developed, in all its entirety, the theory of complex numbers of the form 

x+iy, with x and y real numbers and i = √-1 the imaginary unit. In particular, 

the studies of Abraham de Moivre (1667-1754) and Leonhard Euler (1707-

1783) provided to the complex numbers a definitive and systematic structure 

from which descended the complex trigonometric functions and the complex 

exponential functions. De Moivre left us the famous formula (1739) that 

calculates the power of a complex number expressed in the form trigonometric 

(cos α + sin α)ᵐ= cos(mα) + i sin(mα), while Euler left us the equally famous 

formula (1748) that binds the trigonometric functions sine and cosine to the 

complex exponential function  = cos w + i sin w.  
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Our theorem is inspired by a very specific motivation: considering that the 

sides of a right triangle may be expressed by a trigonometric function, and this 

one by a complex variable, we wanted to discover if the same sides may have a 

relationship with the elements of the complex analysis and, in case of positive 

response, in which way and form. With this purpose, we discovered two 

important results: the first one is that the ratio between the difference of the legs 

of a right triangle and the difference of their projections on the hypotenuse, 

multiplied by the cosine of half-difference of two angles opposite to the legs, is 

always constant; the second one is that this constant is given by the ratio between 

complex exponentials,  or their powers, where the most important constants of 

the all mathematics are appearing: the constant of Napier e (or of Euler), 

introduced by John Napier on 1618 and used systematically by Euler (1736) for 

its exponentials; the imaginary unit i, officially introduced by Friedrich Gauss 

(1777-1855) in an essay of 1832; the constant of Archimedes (287-212 B.C.) π, 

calculated with approximation by the greek mathematician in the III century 

B.C. and definitively calculated, with 35 decimal digits, by Ludolf van Ceulen 

on 1610. Both the above important results are set forth and proved in the 

following theorem. 

 

2. The theorem of the complex exponentials 

                                                                       

Statement: In a right triangle CAB (rectangle in A), where a is the 

hypotenuse, c and b the legs, m and n the projections of the respective legs c 

and b on the hypotenuse, γ and β the angles respectively opposed to c and b, it 

results: 

 

where e=2,71….is the Napier’s constant, π=3,14…..is the pi and i=  is 

the imaginary unit. 

 

 

Proof. Let us consider the right triangle CAB of Figure 1, rectangle in A 

(α=90°), having hypotenuse a, height h,  minor leg b and major leg c, n and m 

the respective projections of b and c on the hypotenuse a, γ the angle opposed 

to c and β the angle opposed to b. 
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Figure 1 

 

 

With reference to the right triangle of Figure 1, we know that the first Euclid’s 

theorem asserts: 

 

                                                             

  

                                                                                                                    

 

from which, subtracting member to member, it derives: 

 

 

                                          
                                              

 

namely:                                

  

 

 

 

 

Taking into account that it is: c=a sinγ and b=a sinβ, from (3) it derives: 

 

 
 

Simplifying and applying the formulas Prosthaphaeresis to the denominator 

of second member (4), from (4) it’s obtained:  

(1) 

(2) 

(4) 

(3) 
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But we know that  γ + β = 90°, so in the denominator of (5) it’s   2 sin 

 , therefore from (5) it derives: 

 

 
                                                                                                                                                              

namely:                                                                                                                                     

 
                                                                                            

        

We know, from complex number’s theory, that the trigonometric form of the 

complex number 1+i is: 

 

 1+i =                                                

 

                                                                                                                                                                   

For the formula of Euler it’s: 

 

cos  

                                                                                                                                                               

Replacing (9) in (8), we obtain: 

 

1+i=  

 

namely:                                                                                                                                                                   

 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Let us remind now that it is: 

 

1=     and    i=  

 

Replacing (12) in (11), we obtain: 

 

 
 

Finally, replacing the second member of (7) with the second member of (13), 

we obtain: 

 

 
 

And the theorem is thus proven. 

 

 

Conclusions 

 We have shown a theorem born from the motivation to investigate and solve 

a problem: to link a geometric result of III century B.C., although it reworked 

by the trigonometric functions of XVI century, to the last theories of complex 

numbers of XVIII century, apparently irreconcilables with the Euclidean 

geometry. We think to have got two relevant teachings: on the one hand we have 

bound the elements of a right triangle (legs and angles) to a constant  of complex 

analysis, given by the combination of three most important constants of 

mathematics; on the other hand we have notably pointed out a precise 

methodological procedure of the proof, based strictly on the deductive method, 

where, starting from a general axiom alleging geometric structure of the right 

triangles, we reached, through a series of rigorous logical concatenations, a 

particular result alleging  new structure of complex analysis. 

We finally think that from this article we also can draw another useful 

teaching: to discover this theorem allowed us to investigate on three completely 

different (among their) branches of mathematics (Euclidean geometry, 

trigonometric functions, complex analysis), born and developed in different  

(11) 

(12) 

(13) 
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ages, transmitted by several men separated by time and by different languages, 

cultures and religions, who, although not knowing themselves with each other, 

have always improved the ideas of their predecessors and transmitted it to the 

future generations. They have been united only by their love for mathematics, 

in addition to the desire to contribute to its development. We think that we all 

must pick up an example from this act of faith, that only mathematics, between 

all sciences, is able to provide. 
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Abstract  

Pupils learn different calculating algorithms. The effective use of 

learned algorithms requires creativity in their application to 

solving diverse tasks. To achieve this goal, it is necessary to create 

a concept of the calculating algorithm for pupils. The present 

paper describes a method of creating a zero-point method. The 

teaching of this method is divided into two stages. In the first 

stage, the student masters the basic algorithm and becomes 

familiar with the main ideas of this method, while in the second 

stage a student learns how to apply this method with some 

modifications in other types of tasks. In our article, we present the 

application of a zero-point method in solving quadratic 

inequalities. 
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1 Introduction  
 

Recently the education at primary and secondary schools has undergone 

several reforms. One of the essential features of these reforms has been a 

reduction of the curriculum of individual subjects and reducing the number of 

lessons, especially science lessons. The main aim of reducing the curriculum 

and thus reducing the demands was monitoring the improvements in 

educational achievements of our students [1]. But PISA 2015 test results say 

otherwise. Slovak students achieved in 2015, on average, significantly worse 

results than the OECD average. It is worthy of reflection that our students 

achieve the best results-the results almost on an average of the best students 

in the OECD. Another feature of this educational reform is teaching a 

"playful" way. Pupils should acquire new knowledge and skills not by 

memorizing and practising, but above all by the playful way. PISA testing in 

2015 showed that, in terms of pupils' attitudes to learning, our students 

declare significantly lower endurance to solve complex problems, lower 

openness to solve tasks and less belief in their own abilities. It can also 

negatively be reflected on their results in mathematics. Compared to 2003, 

many of Slovak students' attitudes to learning significantly deteriorated. 2015 

PISA test results are in substantial agreement with the results of the external 

part of the school leaving examination (maturita). All Slovak students have to 

pass maturita from Slovak language and literature and a foreign language. 

Only those students have to pass maturita from mathematics, who choose 

math as a maturita subject. Nevertheless, over the past three years, the 

average percentage of school maturita exam in mathematics is always worse 

than the average percentage of school maturita exam in compulsory subjects. 

We think that the ideas of school reforms are correct, but it turns out that it is 

not right to use the same methods to achieve the goals for all subjects. 

Mathematics affects almost every area of human life. In the education of 

our youth, who should be, according to the reference of John Paul II., our 

hope for the future. Math is challenging in its own way but at the same time 

can also be beautiful. We think it is necessary to seek such forms and 

methods of teaching mathematics [2], that we make the beauty of math 

available to students [3].  In the following lines, we will outline one possible 

way of teaching mathematics. 

 

2  Two stages of mathematical education 

Mathematical education can be divided into two stages. The first, basic 

stage is the acquisition of basic calculating algorithms. These calculating 

algorithms are acquired by students, who practice them on the appropriate 

number of tasks. We can talk about math "drill", without which it is 
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impossible to be a successful solver of mathematical problems. The 

information-receptive didactic method with a combination of the reproductive 

method is mainly used in this stage. It is very important that the student 

acquires the necessary skill of how to use them by repeated use of basic 

calculating algorithms. The teacher, by the right choice of tasks, ensures that 

pupils acquire these calculating algorithms at least at the level of 

understanding, not only at the level of memorization. The second, application 

stage is the application of the acquired algorithms in different areas of 

mathematics and other disciplines or in practical everyday life. At this stage, 

the mathematical "drill" is replaced by mathematical thinking. Based on the 

assignment a student considers what math knowledge and skills he can use to 

solve the task. Unlike the first stage, he must learn that the first step of task 

solution is not to count but to think. Based on a detailed consideration and 

possible task mathematization the student chooses a suitable calculating 

algorithm. At this stage, the teacher becomes a moderator of solution and 

uses a heuristic didactic method. At this stage, in terms of the taxonomy of 

educational objectives, the level of acquirement of calculating algorithms will 

be increased for the minimum to the application level. If the teaching is 

correct, we can say, that at this stage, the students do not learn new 

calculating algorithms. At this stage, students gain new, mainly theoretical 

knowledge of mathematics, and also learn how to apply already gained 

calculating algorithms in a new context. The above-described stages are 

illustrated on the example of the method of zero points. 

   

3  Method of zero points 

Solving of the most mathematical problems includes solving of various 

equations and inequalities, or their systems. The tasks, where it is necessary 

to solve equations, inequalities and their systems belong to the declaratory 

mathematical tasks [4].  

 Declaratory mathematical tasks are historically the oldest mathematical 

tasks. When solving these tasks the mathematical concepts and methods.  

Those are the tasks that require finding, calculating, constructing etc. of all 

mathematical objects of a particular type, having the desired properties. In 

each declaratory task, we can define as the frame of considerations some non-

empty set M of mathematical objects, which is a carrier of a particular 

structure. Using the terms belonging to this structure, it is then possible to 

express the desired properties of those objects of the set M that we are 

looking for. To characterize the elements of the set M we use propositional 

form V (x) which verity domains then create subsets of the set M.  In each 

determinative task there is a subset K of set M, which elements have the 

characteristics required by task assignment. The task and the objective of the 

investigator are to determine the set P by naming of its elements or to operate 
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with already known subsets of the set M.  We can solve the mathematical 

declaratory task with the direct and indirect methods. 

The direct method of solving means a process by which we determine the 

set of solutions K so that we work exclusively with sets that belong to the 

chain of sets inclusions  

  …   𝑲  …   𝑴, 

where M is a non-empty set of mathematical objects, among which 

elements we are looking for the solving of the task.  Indirect methods consist 

in the fact that instead of solving the task that is defined we solve the other 

task or other tasks (using some direct method) and the results are used to 

obtain the results of the original task. One of the indirect methods is to switch 

to subtasks on the same set. We divide the set M to individual subsets and we 

investigate the specific location of each original task. We will obtain partial 

solutions to the original task on each of these subsets.  The overall result for 

the task will be obtained by the unification of partial results. Method of zero 

points can be included precisely into that category of indirect methods (in 

some literature this method is also called the method of intervals). 

The essential feature of the method of zero points is the attempt to divide 

tasks into several "sub-tasks", solving them on the corresponding subsets - 

intervals. To deal with this method it is necessary to learn the algorithms of 

expression modifying, polynomial factorization to the product of the root 

factors and solving various types of equations [5]. 

 

4 Teaching the method of zero points 

The teaching of this method is recommended to be realized in three levels. 

Level 1: Acquisition of the method 

The students meet the method of zero points for the first time when they 

solve inequalities with an unknown in the denominator. Its basic steps are 

learned through leading example. 

Example 1: On the set R solve the inequality 
2𝑥+3

𝑥−1
< 1  

Solution: Most students have the following knowledge on solving the 

inequalities: Inequalities are solved using the same equivalent adjustment as 

the equations. If the inequality is multiplied or divided by a negative number, 

the sign of inequality is changed to the opposite. On the basis of this 

knowledge the first step of solving is an attempt to remove a fraction of the 

assigned inequality, that is, they multiply the inequality by the expression (x-

1).  Already in the introduction of the model example, students learn another 

difference between solving the equations and inequalities. Inequalities, unlike 

equations, cannot be multiplied by the expression of which I cannot clearly 

decide whether it is positive or negative. If we want students to use the 
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proposed adjustment, it is first necessary to determine for which values of the 

variable the expression (𝑥 − 1) is positive and for which negative. 

Consequently, it is necessary to divide the solving of the inequalities to, in 

this case, two parts - when the expression (𝑥 − 1) is positive and the sign of 

inequality does not change after  multiplication, and when the expression 

(𝑥 − 1) is negative and the sign of inequality changes to opposite one after 

multiplication. Basically, the assigned inequality should be tackled twice. We 

recommend concentrating on the issue of "multiplying inequalities" and pay 

sufficient attention, because it is needed to change students fixed “definition” 

of solving the inequalities. The method of zero points does not require 

multiple solving of the same inequalities and therefore it, is considered to be 

mora effective method. It can be divided into the following steps: 

 

1. Annulling the right side of the equation: 

2𝑥 + 3

𝑥 − 1
− 1 < 0 

 

2. Simplifying the expression on the left side of the inequality: 

𝑥 + 4

𝑥 − 1
< 0         (1) 

After these adjustments, we draw the students’ attention to the 

intermediate target of our solutions. We compare the fraction to zero. 

Therefore, we only need to determine the sign of the expression 
𝑥+4

𝑥−1
. Our 

partial objective is to determine for what value of 𝑥 it is positive and for what 

value negative. 

3. Determining the zero points: 

Zero points are the values of variable x for which numerator and 

denominator separately on the left side of the inequality takes the zero value. 

Zero points can be determined based on solving the equation 𝑥 + 4 =
0;    𝑥 − 1 = 0. Zero points are NB: -4; 1. 

4. Adjusted numerical axis: 

We come to the core of the method. First, we explain the function of zero 

points. Zero points divided real numbers, in this case, into the three sets - 

intervals. For each interval is true: The expression 
𝑥+4

𝑥−1
  is positive or negative 

in the whole interval, in other words, it does not change the resulting sign. 

The adjacent intervals the expression 
𝑥+4

𝑥−1
  has different resulting signs. Based 

on the above it is sufficient, if we want to determine the final sign, to 

substitute any number belonging to this interval to the expression.  If we 

know the final sign in one of the intervals, we automatically recognize the 

resulting sign in all intervals as signs alternate. Using that knowledge, we can 

create a customized numerical axis (Fig. 1): 
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Figure 1. 

There are numbers under the axis to be substituted for variable x in the 

expression; above the axis are values of the expression after substitution. That 

is, if we substitute any number from the interval (-4, 1)   the resulting sign of 

the expression 
𝑥+4

𝑥−1
   is negative, after the substituting  𝑥 = −4, the resulting 

value of the expression is zero. Symbol ∅ means that for the value 𝑥 = 1 the 

expression is not defined.   

    The adjusted numerical axis can be created as follows. First, on the 

numerical axis (from the bottom), we mark zero points. (Students often 

automatically show zero even if it is not the zero point on the numerical axis. 

There should be only zero points on the numerical axis).  

    We substitute any number different from zero points to the expression 

on the left side of the inequality. If the zero point is not zero, we substitute 

number zero to the variable.  After substituting the number zero to the 

variable x, the expression  
𝑥+4

𝑥−1
  has the value of - 4.  Then we write a minus 

sign above the numerical axis in the part corresponding to the interval, from 

which we substituted the number zero. The signs in the other intervals will be 

completed without calculations, whilst complying with the principle of 

alternating signs. We complete 0 above the zero point “of the numerator“ and 

the sign ∅ above the zero point "of the denominator". 

5 Determination of results 

Those values of variable x for which the expression 
𝑥+4

𝑥−1
 acquire negative 

values will be the solution to the inequality (1). Based on the adjusted 

numbering axis, the search solution to the assigned inequality is the interval 

from -4 to 1. Finally, we determine the "brackets" of the final interval. Zero 

point, above which is symbol ∅, cannot be the solution, therefore it will be at 

zero point "of the denominator" always round bracket. If there is the symbol 

0 above the zero point, it means, that after its substituting, the resulting value 

of the expression is zero.  However, we are looking for negative values of the 

expression and therefore the number -4 has a round bracket. The ultimate 

solution is 𝑥∈ (-4.1). 

After solving the model example we recommend to discuss with students 

how the solution would change if we solve the inequality 

2𝑥+3

𝑥−1
> 1 and the inequality 

2𝑥+3

𝑥−1
≤ 1. 

Students should be aware, that in both cases, the first four steps will be 

identical with the model example.  In the fifth step, based on the same 

considerations, the solution of the inequality would be 
2𝑥+3

𝑥−1
> 1 𝑥 ∈
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(−∞; −4) ∪ (1; ∞). The solution of inethe quality 
2𝑥+3

𝑥−1
≤ 1  is 

 𝑥 ∈ ⟨−4; 1) 

Level 2: Understanding of the method  

The main idea behind the method of zero points can be considered 

a comparison of the fraction with zero. A student knows that if a numerator 

and a denominator have the same final sign, so the fraction is positive if they 

have different sign fraction is negative. The correct application of this idea 

leads to an understanding of the method of zero points and also to a more 

efficient using of this method. The correct application of the main idea it is 

essential to understand the "functioning" of zero points. The zero point for 

this expression, in principle, divides the set of real numbers (NA) into three 

subsets. On one of the subsets, it acquires only positive values,  on another 

one just negative. The third subset is only composed of zero point and the 

expression of the set acquires a value of 0. For example, the expression 𝑥 − 5 

has a zero point 5. Then, the expression acquires negative values on the set  

𝑀1 = (−∞; 5), on the set 𝑀2 = (5; ∞)  it acquires positive values and on the 

set 𝑀 = {5} it takes the value 0. Thus, we can simplistically say, that there is 

a different sign of the expression from the various sides of the zero point. If 

the expression is in productive form, the zero points of individual members of 

the product create the zero points of all expression. 

Example 2: On the set R solve the inequality 
(𝑥−9)(𝑥+1)2

(𝑥−4)(𝑥+5)
> 0   

Solution: Zero points -5; -1; 4; 9. 

 

At first, we draw attention to the expression (𝑥 + 1)2.   This expression 

acquires for all x ∈ R non-negative values. Therefore, it has no influence to 

the final sign of the expression 
(𝑥−9)(𝑥+1)2

(𝑥−4)(𝑥+5)
.  The zero point of the expression  

(𝑥 + 1)2 can be described as "unnecessary" zero point and it will not be 

showed on the adjusted numbering axis.  (If we showed it there, the theory of 

alternation marks would not apply.) 

    To obtain the solution of the inequality we only need to know the final 

sign of the expression 
(𝑥−9)(𝑥+1)2

(𝑥−4)(𝑥+5)
 . Therefore. after substituting, for example 

𝑥 = 0, it is not necessary to know the numerical value. At the same time, we 

know that it is not necessary to substitute to the expression  (𝑥 + 1)2. By 

applying the above mentioned ideas after substituting x = 0 we obtain "a 

signed" value of the expression: 
−

−.+
 . 

    We set the adjusted numbering axis (Fig. 2):  
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Figure 2. 

The solution of the assigned inequality based on the adjusted numbering 

line and the sign of inequality is 𝑥 ∈ (−5; 4) ∪ (9; ∞). To obtain the final 

solution, we must once again pay attention to "needless" zero point. We know 

that for = −1, the expression acquires the resulting value zero on the left 

side.  Therefore, the number −1 does not belong to the solution of our set of 

ithe nequality. The ultimate solution of the inequality 𝑥 ∈ (−5; −1) ∪
(−1; 4) ∪ (9; ∞). 

Level 3: Application of the method  

After mastering the basic algorithm and understanding the method of zero 

points we recommend to focus on the teaching of its application in other 

types of examples, such as those in which students can penetrate into its 

mysteries. The closest type of tasks is inequalities in the productive form. The 

student already knows that there are the same rules for comparison zero to the 

product as for the comparison of the quotient to zero. Therefore, in solving 

qualities in productive form, the method of zero points can be used 

identically as in solving the inequalities in productive form. Quadratic 

inequality can be seen as inequality in the productive form. In example 3 we 

show a sample solution. 

 

Example 3: On the set R solve the inequality  𝑥2 + 3𝑥 − 4 ≥ 0. 

Solution: Quadratic trinomial on the left side of the inequality must be 

adjusted to the product of the root factors, and therefore we obtain the 

inequality in the form of productive form 

(𝑥 − 1)(𝑥 + 4) ≥ 0 

Zero points are -4; 1. The quadratic trinomial, after substitution x = 0, 

acquires negative value. In fact, zero is not necessary to be substituted, 

because for x = 0 is the final "a signed" value of quadratic trinomial, identical 

to the sign in front of the absolute member. We set the adjusted numbering 

axis (Fig. 3): 

Figure 3. 

Based on the sign of inequality, in assigned inequality, we search for 

which values of unknown x the expression 𝑥2 + 3𝑥 − 4 acquires positive or 

zero values. Therefore, the solution is inequality is 

𝑥 ∈ (−∞; −4⟩ ∪ ⟨1; ∞). 

If the quadratic equation corresponding to the assigned inequality has less 

than two real roots, the method of zero points is modified. At this 
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modification, we primarily rely on understanding the "functioning" of zero 

points. 

 

Example 4: On the set R solve the inequality 𝑥2 − 4𝑥 + 4 ≥ 0. 

Solution: The inequality should be adjusted to productive form 

(𝑥 − 2)(𝑥 − 2) ≥ 0. 

The left side of inequality will not be left in this form, because the students 

would incorrectly use the principle of alternation marks around the zero 

points. The expression on the left side of the inequality will be written in 

simplified form, and we receive the inequality 

(𝑥 − 2)2 ≥ 0 

Zero point is 2. Since the expression (𝑥 − 2)2 is for all 𝑥 ∈ 𝑹 non-

negative, number 2 is “unnecessary" zero point. Number 2 is the only zero 

point and so it is not needed to set the adjusted numbering axis. The solution 

of the inequality is 𝑥 ∈ 𝑹 and it was discovered when we were considering 

the zero point. 

    After solving example 4 we suggest a discussion on solving 

inequalities: 

𝑥2 − 4𝑥 + 4 > 0,          𝑥2 − 4𝑥 + 4 ≤ 0 ,          𝑥2 − 4𝑥 + 4 < 0. 

Note: A common mistake at solving the inequality (𝑥 − 2)2 ≥ 0  is the 

extract of the root of both sides of the inequality, after which students have 

the wrong inequality 𝑥 − 2 ≥ 0. The following consideration can bring them 

to the fact, that the inequality is incorrect. Both sides of the inequality were 

non-negative before extracting the root and the left side can also takes 

negative values. If we want, even after extracting, both sides being non-

negative, we must put the left side of inequality to an absolute value(√𝑎2 =
|𝑎|). After correct extracting, we get the inequality with absolute value which 

can also be solved by the method of zero points. 

Example 5: On the set R solve the inequality 𝑥2 + 2𝑥 + 6 < 0. 

Solution: On the set R it is not possible to modify the quadratic trinomial 

to the product, as the appropriate quadratic equation 

𝑥2 + 2𝑥 + 6 = 0 

have no real roots. Based on the understanding of the function of zero 

points we know, that expression  𝑥2 + 2𝑥 + 6 has for all x ∈ R a signed 

value. It is identical with the sign in front of the absolute term. So the 

expression on the left side of the inequality is for all real numbers positive. 

The solution of the inequality is x = {}. Even after solving this inequality we 

recommend the discussion about solutions for different variants of the sign of 

inequality. 

    If we want to see if the students understand the method, they must be 

able to apply the basic ideas of the method to solving the task. In other words, 
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we understand the method of solving if it developed our mathematical 

thinking. The following example can be solved by applying the basic ideas of 

the method of zero points. 

 

Example 6: For which parameter values  𝑎 ∈ 𝑅 is each x ∈ R the solution 

of  inequality 

Solution: The expression 𝑥2 − 8𝑥 + 20  has no zero points and according 

to the sign in front of the absolute member we know, that it acquires positive 

values for all 𝑥 ∈ 𝑅. If all real numbers should be the  solution of the 

assigned inequality, the expression in the denominator of the inequality 

fraction must be negative for all 𝑥 ∈ 𝑅.  Using the basic ideas of the method 

of zero points, we consider the following. We need the expression  𝑎𝑥2 +
2(𝑎 + 1)𝑥 + 9𝑎 + 4 "still" negative, and that does not change the final sign, 

and therefore we cannot have the zero points. That is, the quadratic equation 

𝑎𝑥2 + 2(𝑎 + 1)𝑥 + 9𝑎 + 4 = 0 

has no solution. Thus, discriminant has to be negative. This way we get 

the inequality 

𝑥2 − 8𝑥 + 20

𝑎𝑥2 + 2(𝑎 + 1)𝑥 + 9𝑎 + 4
< 0 

The solution to this inequality that we solve using the method of zero 

points is  𝑎 ∈ (−∞; −
1

2
) ∪ (1; ∞). Now, we secure the final sign will be  

negative. We know from the method of zero points, that by substituting zero 

to quadratic trinomial, the final sign is identical with a sign in front of the 

absolute term. The denominator in the assigned inequality is a quadratic 

trinomial with parameter. For 𝑎1 ∈ (−∞; −
1

2
) ∪ (1; ∞)  has the constant sign 

for all x ∈ R. If the absolute member is negative, the resulting sign of 

trinomial will be negative. Therefore we solve the inequality 

9𝑎 + 4 < 0. 

Its solution is 𝑎2 ∈ (−∞; −
4

9
).  Based on the previous considerations, the 

parameter  𝑎 must meet both conditions. The ultimate solution is  𝑎 ∈ 𝑎1 ∩

𝑎2 = (−∞; −
1

2
).  

 

Conclusion 

The basis for the success of a student in solving mathematical tasks is 

acquiring the calculating algorithms [6], [7]. To achieve this goal it is 

necessary to solve, especially alone, the sufficient number of tasks, more or 

less, of the same type. We believe that the mastery of basic calculating 

algorithms is necessary but not sufficient condition for student success in 
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dealing with the tasks. It is not enough just to learn the calculating algorithm,  

it is necessary, after its acquisition, also think about its individual elements. 

This is the way when the basic ideas, used in the algorithm, occur. The 

discovering these main ideas of calculating algorithm lead to understanding, 

as well as acquiring the algorithm at a higher level. The understanding causes 

the method to be is a powerful tool in students dealing with tasks. It affects 

his mathematical thinking. The method of zero points is a method that should 

be understood and not only learned. If a student enters its secrets, it becomes 

flexible and he will be able to use it in different types of tasks and, as 

appropriate, be adapted. By understanding the method will become effective 

tool in the hands of the investigator. The students know that the method of 

zero points is mainly used to solve inequalities. If the students know the 

method, it heads their initial ideas, when solving inequality, to adjust the 

inequality to a productive or quotient form. This fact can be used in teaching 

solutions to quadratic inequalities. Using the method of zero points the 

student does not learn new calculating algorithm, but he learns how to apply 

already acquired knowledge and skills. We think that one of the possible 

ways to increase the efficiency in mathematical learning is the emphasis on 

understanding the calculating algorithms and their subsequent application in 

various areas of mathematics. While we make sure that we choose those 

tasks, where the main ideas can be applied. This way helps us to create the 

thought linking of mathematics as a whole and mathematics with other 

disciplines, e.g. those involving computers into the pedagogical process [8], 

in the mind of the students. Basically, there is no need to reduce the amount 

of subject matter, just to organize the mathematical knowledge better in the 

mind of the students. 
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