Existence and Uniqueness of solution of Volterra Integrodifferential Equation of Fractional Order via S-Iteration
Abstract
Keywords
Full Text:
PDFReferences
. R. Agarwal, D. O’Regan, and D. Sahu, Iterative construction of fixed points of nearly asymptotically non-expansive mappings. Journal of Nonlinear and Convex Analysis, 8(2007), 61-79.
. Y. Atalan and V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with deviating argument, Journal of Nonlinear and Convex Analysis, 18(4) (2017), 675-684.
. Y. Atalan, and V. Karakaya, Stability of Nonlinear Volterra-Fredholm Integro Differential Equation: A Fixed Point Approach, Creative Mathematics and Informatics 26 (3) (2017), 247-254.
. Y. Atalan and V. Karakaya, An example of data dependence result for the class of almost contraction mappings, Sahand Communications in Mathematical Analysis (SCMA), Vol.17, No.1(2020), pp. 139-155.
. Y. Atalan, Faik Gu ̈rsoy and Abdul Rahim Khan, Convergence of S-iterative method to a solution of Fredholm integral equation and data dependency, Facta Universitatis, Ser. Math. Inform. Vol. 36, No 4(2021), 685-694.
. V. Berinde, and M. Berinde, The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpathian J. Math, 21(1-2)(2005), 13-20.
. V. Berinde, Existence and approximation of solutions of some first order iterative differential equations, Miskolc Mathematical Notes, Vol. 11(2010), No.1, 13-26.
. C. E. Chidume, Iterative approximation of fixed points of Lipschitz pseudo-contractive maps, Proceedings of the American Mathematical Society, Vol. 129, No. 8(2001), 245-2251.
. R. Chugh, V. Kumar and S. Kumar, Strong Convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Mathematics, 2(2012), 345-357.
. M. B. Dhakne and H. L. Tidke, Existence and uniqueness of solutions of nonlinear mixed integrodifferential equations with nonlocal condition in Banach spaces, Electronic Journal of Differential Equations, Vol. 2011, No. 31(2011), 1-10.
. M. Dobritoiu, An integral equation with modified argument, Stud. Univ. Babes-Bolyai Math. XLIX (3)2004, 27-33.
. M. Dobritoiu, System of integral equations with modified argument, Carpathian J. Math, 24 (2008), No. 2, 26-36.
. M. Dobritoiu, A nonlinear Fredholm integral equation, TJMM, 1(2009), No. 1-2, 25-32.
. M. Dobritoiu, A class of nonlinear integral equations, TJMM, 4(2012), No. 2, 117-123.
. M. Dobritoiu, The approximate solution of a Fredholm integral equation, International Journal of Mathematical Models and Methods in Applied Sciences, Vol.8(2014), 173-180.
. M. Dobritoiu, The existence, and uniqueness of the solution of a non-linear Fredholm-Volterra integral equation with modified argument via Geraghty contractions, Mathematics 2020, 9, 29, https://dx.doi.org/ 10.3390/math9010029.
. V. Daftardar-Gejji, Hossein Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl. 328(2007) 10261033.
. F. Gu ̈rsoy and V. Karakaya, Some Convergence and Stability Results for Two New Kirk Type Hybrid Fixed Point Iterative Algorithms. Journal of Function Spaces doi:10.1155/2014/684191, 2014.
. F. Gu ̈rsoy, V. Karakaya and B. E. Rhoades, Some Convergence and Stability Results for the Kirk Multistep and Kirk-SP Fixed Point Iterative Algorithms. Abstract and Applied Analysis doi:10.1155/2014/806537, 2014.
. E. Hacioglu, F. Gu ̈rsoy, S. Maldar, Y. Atalan, and G.V. Milovanovic, Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning, Applied Numerical Mathematics, 167(2021), 143-172.
. N. Hussain, A. Rafiq, B. Damjanovic ́, and R. Lazovi(c ) ́, On rate of convergence of various iterative schemes. Fixed Point Theory and Applications 2011(1), 1-6.
. S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American Mathematical Society, vol. 4491974), 147-150.
. S. M. Kang, A. Rafiq and Y. C. Kwun, Strong convergence for hybrid S-iteration scheme, Journal of Applied Mathematics, Vol. 2013, Article ID 705814, 4 Pages, http://dx.doi.org/10.1155/2013/705814.
. S. H. Khan, A Picard-Mann hybrid iterative process. Fixed Point Theory and Applications (1)2013, 1-10.
. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol 204, Elsevier, Amsterdam, 2006.
. S. Maldar, F. Gu ̈rsoy, Y. Atalan, and M. Abbas, On a three-step iteration process for multivalued Reich- Suzuki type a non-expansive and contractive mapping, Journal of Applied Mathematics and Computing, (2021), 1-21.
. S. Maldar, Iterative algorithms of generalized non-expansive mappings and monotone operators with application to convex minimization problem, Journal of Applied Mathematics and Computing, (2021), 1-28.
. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
. B. G. Pachpatte, On Fredholm type integrodifferential equation, Tamkang Journal of Mathematics, Vol.39, No. 1(2008), 85-94.
. B. G. Pachpatte, On higher order Volterra-Fredholm integrodifferential equation, Fasciculi Mathematici, No. 47(2007), 35-48.
. D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, vol. 12, no.1(2011), 187-204.
. D. R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly pseudo-contractive mappings in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 17(2011), 6012-6023.
. S. Soltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl, 2008, 242916(2008). https://doi.org/10.1155/2008/242916.
DOI: http://dx.doi.org/10.23755/rm.v43i0.791
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Haribhau Laxman Tidke, Gajanan Suresh Patil, Rupesh Tulshiram More

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.