Existence and Uniqueness of solution of Volterra Integrodifferential Equation of Fractional Order via S-Iteration

Haribhau Laxman Tidke, Gajanan Suresh Patil, Rupesh Tulshiram More

Abstract


In this paper, we study the existence and other properties of solutions of existence and uniqueness of solution of Volterra integrodifferential equation of fractional order involving the Caputo fractional derivative. The tool employed in the analysis is based on application of $S-$ iteration method. Since the study of qualitative properties in general required differential and integral inequalities, but here $S-$iteration method itself has equally important contribution to study various properties such as dependence on initial data, closeness of solutions and dependence on parameters and functions involved therein. Am example in support of the all established results.

Keywords


Existence and uniqueness; Normal $S-$iterative method; Fractional derivative; Continuous dependence; Closeness; Parameters.

Full Text:

PDF

References


. R. Agarwal, D. O’Regan, and D. Sahu, Iterative construction of fixed points of nearly asymptotically non-expansive mappings. Journal of Nonlinear and Convex Analysis, 8(2007), 61-79.

. Y. Atalan and V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with deviating argument, Journal of Nonlinear and Convex Analysis, 18(4) (2017), 675-684.

. Y. Atalan, and V. Karakaya, Stability of Nonlinear Volterra-Fredholm Integro Differential Equation: A Fixed Point Approach, Creative Mathematics and Informatics 26 (3) (2017), 247-254.

. Y. Atalan and V. Karakaya, An example of data dependence result for the class of almost contraction mappings, Sahand Communications in Mathematical Analysis (SCMA), Vol.17, No.1(2020), pp. 139-155.

. Y. Atalan, Faik Gu ̈rsoy and Abdul Rahim Khan, Convergence of S-iterative method to a solution of Fredholm integral equation and data dependency, Facta Universitatis, Ser. Math. Inform. Vol. 36, No 4(2021), 685-694.

. V. Berinde, and M. Berinde, The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpathian J. Math, 21(1-2)(2005), 13-20.

. V. Berinde, Existence and approximation of solutions of some first order iterative differential equations, Miskolc Mathematical Notes, Vol. 11(2010), No.1, 13-26.

. C. E. Chidume, Iterative approximation of fixed points of Lipschitz pseudo-contractive maps, Proceedings of the American Mathematical Society, Vol. 129, No. 8(2001), 245-2251.

. R. Chugh, V. Kumar and S. Kumar, Strong Convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Mathematics, 2(2012), 345-357.

. M. B. Dhakne and H. L. Tidke, Existence and uniqueness of solutions of nonlinear mixed integrodifferential equations with nonlocal condition in Banach spaces, Electronic Journal of Differential Equations, Vol. 2011, No. 31(2011), 1-10.

. M. Dobritoiu, An integral equation with modified argument, Stud. Univ. Babes-Bolyai Math. XLIX (3)2004, 27-33.

. M. Dobritoiu, System of integral equations with modified argument, Carpathian J. Math, 24 (2008), No. 2, 26-36.

. M. Dobritoiu, A nonlinear Fredholm integral equation, TJMM, 1(2009), No. 1-2, 25-32.

. M. Dobritoiu, A class of nonlinear integral equations, TJMM, 4(2012), No. 2, 117-123.

. M. Dobritoiu, The approximate solution of a Fredholm integral equation, International Journal of Mathematical Models and Methods in Applied Sciences, Vol.8(2014), 173-180.

. M. Dobritoiu, The existence, and uniqueness of the solution of a non-linear Fredholm-Volterra integral equation with modified argument via Geraghty contractions, Mathematics 2020, 9, 29, https://dx.doi.org/ 10.3390/math9010029.

. V. Daftardar-Gejji, Hossein Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl. 328(2007) 10261033.

. F. Gu ̈rsoy and V. Karakaya, Some Convergence and Stability Results for Two New Kirk Type Hybrid Fixed Point Iterative Algorithms. Journal of Function Spaces doi:10.1155/2014/684191, 2014.

. F. Gu ̈rsoy, V. Karakaya and B. E. Rhoades, Some Convergence and Stability Results for the Kirk Multistep and Kirk-SP Fixed Point Iterative Algorithms. Abstract and Applied Analysis doi:10.1155/2014/806537, 2014.

. E. Hacioglu, F. Gu ̈rsoy, S. Maldar, Y. Atalan, and G.V. Milovanovic, Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning, Applied Numerical Mathematics, 167(2021), 143-172.

. N. Hussain, A. Rafiq, B. Damjanovic ́, and R. Lazovi(c ) ́, On rate of convergence of various iterative schemes. Fixed Point Theory and Applications 2011(1), 1-6.

. S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American Mathematical Society, vol. 4491974), 147-150.

. S. M. Kang, A. Rafiq and Y. C. Kwun, Strong convergence for hybrid S-iteration scheme, Journal of Applied Mathematics, Vol. 2013, Article ID 705814, 4 Pages, http://dx.doi.org/10.1155/2013/705814.

. S. H. Khan, A Picard-Mann hybrid iterative process. Fixed Point Theory and Applications (1)2013, 1-10.

. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol 204, Elsevier, Amsterdam, 2006.

. S. Maldar, F. Gu ̈rsoy, Y. Atalan, and M. Abbas, On a three-step iteration process for multivalued Reich- Suzuki type a non-expansive and contractive mapping, Journal of Applied Mathematics and Computing, (2021), 1-21.

. S. Maldar, Iterative algorithms of generalized non-expansive mappings and monotone operators with application to convex minimization problem, Journal of Applied Mathematics and Computing, (2021), 1-28.

. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

. B. G. Pachpatte, On Fredholm type integrodifferential equation, Tamkang Journal of Mathematics, Vol.39, No. 1(2008), 85-94.

. B. G. Pachpatte, On higher order Volterra-Fredholm integrodifferential equation, Fasciculi Mathematici, No. 47(2007), 35-48.

. D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, vol. 12, no.1(2011), 187-204.

. D. R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly pseudo-contractive mappings in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 17(2011), 6012-6023.

. S. Soltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl, 2008, 242916(2008). https://doi.org/10.1155/2008/242916.




DOI: http://dx.doi.org/10.23755/rm.v43i0.791

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Haribhau Laxman Tidke, Gajanan Suresh Patil, Rupesh Tulshiram More

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.