### Controlling the Transmission Dynamics of Measles Infection: Sensitivity Analysis and Optimal Control Analysis Approaches

#### Abstract

In this paper, a deterministic model for the transmission dynamics of measles infection with two doses of vaccination and isolation is studied. The disease-free equilibrium state and basic reproduction number,, of the model are computed. The sensitivity analysis of the model parameters is carried out using the Latin Hypercube Sampling (LHS) scheme in other to ascertain the crucial parameters that contribute to the spread of measles in the population. The result of the sensitivity analysis shown that transmission rates, vaccination rates and isolation of the infected persons in prodromal stage are significant parameters to be targeted for the eradication of measles infection. Based on the result of sensitivity analysis, the optimal control analysis is carried out using Pontryagin’s maximum principle to identify the optimal control strategies to be adopted by public health practitioners and policy health makers in curtailing the spread of measles infection. The result of the numerical simulations revealed that combined implementation of timely and correct administration of the two doses of vaccination, isolation of infected persons in prodromal stage and mass distribution of nutritional support will curtail the measles disease outbreak in the population. However, in a situation where there is limited facility to isolated the infected persons in prodromal stage, the combined implementation of mass distribution of nutritional support and administration of the two doses of vaccination will still eradicate measles infection in the population.

#### Full Text:

PDF#### References

S. O. Adewale, A. I. Olopade, S. O. Ajao, G. A. Adeniran. Optimal control analysis of the dynamical spread of measles. International Journal of Research Granthaalayah, 4(5): 2016.

F. B. Agusto, N. Marcus, K. O. Okosun. Application of optimal control to the epidemiology of Malaria. Electronic Journal of Differential Equation, 81(45):1-22, 2012.

D. Aldila, D. Asrianti. A deterministic model of measles with imperfect vaccination and quarantine intervention. IOP Conf. Series: Journal of Physics: Conf. Series, 1218(2019):012044, 2019.

G. Bolarian. On the dynamical analysis of a new model for measles infection. International Journal of Mathematics Trends and Technology, 7 (2):144–155, 2014.

C. Castilho. Optimal Control of an epidemic through educational campaigns. Electron. Journal. Deferential Equation. 2006, 8(5):1-11, 2006.

O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts. The Construction of next- generation matrices for compartmental epidemic models. Journal of Royal Society Interface, 7(47): 873-885, 2009.

B. Gbolahan. On the Dynamical analysis of a new model for measles infection. International Journal of Mathematics Trends and Technology, 7 (2); 144-155, 2014.

H. R. Joshi. Optimal control of an HIV immunology model. Optimal Control Applied Mathematics. 2(7):199-213, 2002.

K. G. Kristinsson. Mathematical models as tools for evaluating the effectiveness of interventions: a comment on Levin. Clinical Infectious Diseases, 33(3): 174–179, 2001.

A. A. Momoh, M. O. Ibrahim, I. J. Uwanta, S. B. Manga. Mathematical model for control of measles epidemiology. International Journal of Pure and Applied Mathematics, 87 (5):707-718, 2013.

J. M. Ochoche, R. I. Gweryina. A Mathematical model of measles with vaccination and two phases of infectiousness. IOSR Journal of Mathematics, 10(5):95-105, 2014.

R. T. Perry, N. A. Halsey. The clinical significance of measles: a review. Journal of Infectious Diseases, 1(189):4-16, 2004.

O. J. Peter, O. A. Afolabi, A. A. Victor, C. E. Akpan, F. A. Oguntolu. (2018). Mathematical Model for the Control of measles. Journal of Applied Science Environment Management, 22 (4): 571 – 576, 2018.

L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, E. F. Mishchenko. The Mathematical Theory of optimal processes, Wiley, New York, 4(9):234-236, 1962.

M. G. Roberts, M. I. Tobias. Predicting and preventing measles epidemics in New Zealand: Application of mathematical model. Cambridge University Press, 124(7): 279-287, 2000.

E. Simons, M. Ferrari, J. Fricks, K. Wannemuehler, A. Anand, A. Burton, P. Strebel, P. Assessment of the 2010 global measles mortality reduction goal: Results from a model of surveillance data. Lancet 379(6):2173–2178, 2012.

E. Stephen, R. E. Kitengeso, G. T. Kiria, N. Felician, G. G. Mwema, A. P. Mafarasa. A mathematical model for control and elimination of the transmission dynamics of measles. Applied and Computational Mathematics, 4 (6):396-408, 2015.

N. Takkar, S. S. A. Gilani, Q. Hasan, K. A. McCarthy. Decreasing measles burden by optimizing campaign timing. Proceedings of the National Academy of Sciences, 116(22):11069–11073, 2019.

O. M. Tessa. Mathematical model for control of measles by vaccination. Abdou Moumouni University, Niamey, Niger, 8(10): 31-3, 2006.

S. Verguet, M. John, S. K. Morris, C. L. Gauvreau, P. Jha, M. Jit. Controlling measles using supplemental immunization activities: A mathematical model to inform Optimal Policy. Vaccine, 33(10): 1291-1296, 2015.

WHO/UNICEF Joint statement. Reducing Measles Mortality in Emergencies. World Health Organization, 2004. Accessed on 14th August, 2022 on http://apps.who.int/iris/handle/10665/68744

WHO. WHO/UNICEF estimates of National Immunization Coverage, 2022. Accessed on 27th February 2022 on https://www.who.int/teams/immunization-vaccines-and-biologicals/immunization-analysis-and-insights/global-monitoring/immunization-coverage/who-unicef-estimates-of-national-immunization-coverage.

WHO. SAGE Working Group on measles and rubella vaccines (November 2011 – June 2019), 2022. Accessed on 14th August 2022 on http://www.who.int/groups/strategic-advisory-group-of-experts-on-immiunization/working-groups/measles-and-rubella

World Health Organization. The number of global measles cases reported to WHO, 2017. Available online: http://www.who.int/en/. Accessed on 1st April, (2021).

P. Yan, G. Chowell. Quantitative methods for investigating infectious disease outbreaks, Springer, Cham, Switzerland, 1(5):45-47, 2019.

G. Zaman, Y. H. Kang, J. H. Jung. Optimal treatment of an SIR epidemic model with time delay. Biology systems, 98 (1):43, 2009.

ECDC. Factsheet about Measles, 2022. Accessed 30th January 2022 on www.ecdc.europa.eu/en/measles/facts,

CDC. Measles, 2021. Accessed 27th February 2022 on https://cdc.gov/vaccines/pubs/pinkbook/meas.html.

S. O. Sowole, A. A. Ibrahim, D. Sangare, Ahmed. Mathematical model for measles disease with control on the susceptible and exposed compartments. Open J. Math. Anali., 4(1), 60 – 75, 2020.

J. Bakhtiar, T. Bakhtiar. Control policy mix in measles transmission dynamics using vaccination, therapy and treatment. International Journal of Mathematics and Mathematical Sciences, 2020, Article ID 1561569.

S. O. Adewale, I. A. Olopade, S. O. Ajao, G. A. Adeniran. Optimal Control Analysis of the Dynamical Spread of Measles. International Journal of Research – GRANTHAALAYAH, 4(5):169 – 188, 2016.

Y. Xue, X. Ruan, Y. Xiao. Measles dynamics on network models with optimal control strategies. Advances in Difference Equations, 2021:138, 2021.

H. W. Berhe, O. D. Makinde. Computational modelling and optimal control of measles epidemic in human population. Biosystems, 190; 104102, 2020.

D. Suandi. Optimal control problem of vaccination for the spread of measles diseases model. J. Ris & Ap. Mat., 2(2):76 – 83, 2018.

L. Pang, S. Ruan, S. Liu, Z. Zhao, X. Zhang. Transmission dynamics and optimal control of measles epidemics. Applied Mathematics and Computation, 256, 131-147, 2015.

S. A. Rahmayani, D. Aldila, B. D. Handari. Cost-effectiveness analysis on measles transmission with vaccination and treatment intervention. AIMS Mathematics, 6(11): 12491 – 12527, 2021.

M. A. Kuddus, M. Mohiuddin, A. Rahman. Mathematical analysis of a measles transmission dynamics model in Bangladesh with double dose vaccination, Scientific Reports, 11, 16571, 2021.

S. Edward, K. E. Raymond, K. T. Gabriel, F. Nestory, M. G. Godfrey, M. P. Arbogast. A Mathematical model for control and elimination of the transmission dynamics of measles. Applied and Computational Mathematics, 4(6): 396 – 408, 2015.

Ethiopian Health, Nutrition Research institute. Guideline on Measles Surveillance and Outbreak Management, Addis Ababa, Ethiopia, 2012. Accessed on 27th February 2022 on https://www.ephi.gov.et/images/guidelines/guideline-on-measles-surveillance-and-outbreak-management2012.pdf

G. T. Tilahun, S. Demie, A. Eyob. Stochastic model of measles transmission dynamics with double dose vaccination. Infectious Disease Modelling, 5:478 – 494, 2020.

H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres. Sensitivity analysis in a dengue epidemiological model. Conference Papers in Mathematics. Articles ID:721406, 2013. doi: 10.1155/2013/721406.

S. M. Blower, H. Dowlatabadi. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Stat. Rev. 62(1994): 229-243, 1994.

S. M. Kassa, J. B. H. Njagarah, Y. A. Terefe. Analysis of the mitigation strategies for COVID-19: From mathematical modelling perspective. Chaos, Solitons and Fractals, Nonlinear Science and Nonequilibrium and Complex Phenomena 138(2020): 109968, 2020.

CDC. Morbidity and Mortality Weekly Report (MMWR). Progress toward Regional Measles Elimination – World, 2000-2019. Weekly / November 13, 2020 / 69(45): 1700-1705, 2020. Access 27th February 2022 on https://www.cdc.gov/mmwr/volumes/69/wr/mm6945a6.htm?s_cid=mm6945a6_w

WHO. Worldwide Measles Deaths climb 50% from 2016 to 2019 claiming over 207,500 lives in 2019. Access 27th February 2022 on https://www.who.int/news/item/12-11-2020-worldwide-measles-deaths-climb-50-from-2016-to-2019-claiming-over-207-500-lives-in-2019

WHO. Measles, 2019. Access 27th February 2022 on https://www.who.int/news-room/fact-sheets/detail/measles

DOI: http://dx.doi.org/10.23755/rm.v42i0.742

### Refbacks

- There are currently no refbacks.

Copyright (c) 2022 Chinwendu E. Madubueze

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.