### Common fixed point theorems in complex valued fuzzy metric spaces

#### Abstract

#### Full Text:

PDF#### References

F. Brain A. Azam and M. Khan. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim., 32(3):243–253, 2011.

C. T. Aage and J. N. Salunke.

Common fixed point theorems in fuzzymetric spaces. International Journal of Pure and Applied Mathematics, 56(2):155–164, 2009.

J. J. Buckley. Fuzzy complex numbers. Proceedings of ISFK,Guangzhou, China, pages 597–700, 1987.

J. J. Buckley. Fuzzy complex numbers. Fuzzy sets and systems, 33(3):333–345, 1989.

J. J. Buckley. Fuzzy complex analysis i: Differentiation. Fuzzy sets and systems,41:269–284, 1991.

J. J. Buckley. Fuzzy complex analysis ii: Integration. Fuzzy sets and systems, 49:

–179, 1992.M. Friedman D. Ramot, R. Milo and A. Kandel. Complex fuzzy sets. IEEE Transactions of Fuzzy systems, 10(2):171–186, 2002.

M. Imdad D. Singh, V. Joshi and P. Kumam. A novel framework of complex fuzzy metric spaces and fixed point theorems. Journal of Intelligent and Fuzzy Systems, 30(6):3227–3238, 2016.

I. Demir. Fixed point theorems in complex valued fuzzy bapplication to integral equations. Miskolc Mathematical Notes, 22(1):153–171, 2021.

Z.K. Deng. Fuzzy pseudo metric spaces. J. Math. Anal. Appl., 86:74–95, 1982.

M.A. Ercez. A metric space in fuzzy set theory. J. Math. Anal. Appl., 69:205–230,1979.

A. George and P. Veeramani. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64:395–399, 1994.

T. Biswas J. Choi, S.K. Datta and M.N. Islam. Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Honam Mathematical J., 39(1):115–126, 2017.

G. Jungck and B.E. Rhoades. Fixed point theorems for occasionally weakly compatible mappings. Fixed Point Theory, 7(2):287–296, 2006.

O. Kaleva and S. Seikkala. On fuzzy metric spaces. Fuzzy Sets and Systems, 12: 215–229, 1984.

I. Kramosil and J. Michalek. Fuzzy metric and statistical metric spaces. Kybernetika, 11:336–344, 1975.

L.A. Zadeh. Fuzzy sets. Information and control, 8:338–353, 1965.

DOI: http://dx.doi.org/10.23755/rm.v41i0.645

### Refbacks

- There are currently no refbacks.

Copyright (c) 2022 Nazimul Islam

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.