Reliability Estimation of Weibull -Exponential Distribution via Bayesian Approach

Himanshu Pandey, Arun Kumar Rao


Bayesian estimation is employed in order to estimate the reliability function of Weibull-Exponential distribution by using different priors. The Bayes estimators of the reliability function have been obtained under square error, precautionary and entropy loss function


Weibull-Exponential Distribution, Reliability,Bayesian method,Noninformative and beta prior,Squard error, precautionary and entropy loss functions

Full Text:



Oguntunde, P.E., Balogun, O.S., Okagbue, H.I. and Bishop, S.A., (2015):

“Weibull-exponential distribution: Its properties and applications”. Journal of

Applied Sciences, 15(11): 1305-1311.

Zellner, A., (1986): “Bayesian estimation and prediction using asymmetric loss

functions”. Jour. Amer. Stat. Assoc., 91, 446-451.

Basu, A. P. and Ebrahimi, N., (1991): “Bayesian approach to life testing and

reliability estimation using asymmetric loss function”. Jour. Stat. Plann. Infer., 29,


Canfield, R.V.: A Bayesian approach to reliability estimation using a loss

function. IEEE Trans. Rel., R-19, 13-16, (1970).

Norstrom, J. G., (1996): “The use of precautionary loss functions in Risk

Analysis”. IEEE Trans. Reliab., 45(3), 400-403.

Calabria, R., and Pulcini, G. (1994): “Point estimation under asymmetric loss

functions for left truncated exponential samples”. Comm. Statist. Theory &

Methods, 25 (3), 585-600.

D.K. Dey, M. Ghosh and C. Srinivasan (1987): “Simultaneous estimation of

parameters under entropy loss”. Jour. Statist. Plan. And infer., 347-363.

D.K. Dey, and Pei-San Liao Liu (1992): “On comparison of estimators in a

generalized life model”. Microelectron. Reliab. 32 (1/2), 207-221.



  • There are currently no refbacks.

Copyright (c) 2021 Himanshu Pandey

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.