### Rough sets applied in sublattices and ideals of lattices

#### Abstract

The purpose of this paper is the study of rough hyperlattice. In this regards we introduce rough sublattice and rough ideals of lattices. We will proceed by obtaining lower and upper approximations in these lattices.

#### Keywords

#### Full Text:

PDF#### References

R. Ameri, Approximations in (bi-)hyperideals of Semihypergroups, Iranian Journal of Science and Technology, IJST, 37A4 (2013) 527-532.

R. Balbes, P. Dwingel, Distributive lattices, University of Missouri Press, Columbia, (1974).

G. Birkhoff, Lattice theory, American Mathematical Society, Third Edition, Second Printing, (1973).

R. Biswas, S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math. 42 (1994), 251-254.

Z. Bonikowaski, Algebraic structures of rough sets, W. P. Zirako(Ed.), Rough sets, Fuzzy Sets and Knowledge Discovery, Springer-Verlage, Berlin, (1995), 242-247.

S.D. Comer, On connections between information systems, rough sets and algebraic logic, in: C. Rauszer (Ed.), Algebraic Methods in Logic and Computer Science, Banach Center Publications 28, Warsaw, (1993), 117-124.

B. Davvaz, Rough sets in a fundamental ring, Bull. Iranian Math. Soc. 24 (2) (1998) 49-61.

B. Davvaz, Roughness in rings, Inform. Sci. 164 (2004) 147-163. [9] B. Davvaz, Lower and upper approximations in Hv-groups, Ratio Math. 13 (1999) 71-86.

B. Davvaz, Approximations in Hv-modules, Taiwanese J. Math. 6 (4) (2002) 499-505.

B. Davvaz, Fuzzy sets and probabilistic rough sets, Int. J. Sci. Technol. Univ. Kashan 1 (1)(2000) 23-29.

D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. General Syst. 17 (2-3)(1990) 191-209.

G. Gratzer, General lattice theory, Academic Prees, New York, (1978).

J. Hashimoto, Ideal theory of lattices, Math. Japon, 2, (1952), 149-186.

T. Iwinski, Algebraic approach to rough sets, Bull. Polish Acad. Sci. Math. 35 (1987) 673-683.

Y.B. Jun, Roughness of ideals in BCK-algebras, Sci. Math. Jpn. 57 (1) (2003) 165-169.

N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100 (1997) 139-163.

N. Kuroki, J.N. Mordeson, Structure of rough sets and rough groups, J. Fuzzy Math. 5 (1)(1997) 183-191.

N. Kuroki, P.P. Wang, The lower and upper approximations in a fuzzy group, Inform. Sci. 90 (1996) 203-220.

S. Nanda, S. Majumdar, Fuzzy rough sets, Fuzzy Sets Syst. 45 (1992) 157-160.

Z. Pawlak, Rough sets, Int. J. Inf. Comp. Sci. 11 (1982) 341-356.

Z. Pawlak, Rough sets–theoretical aspects of reasoning about data, Kluwer Academic Publishing, Dordrecht, (1991).

L. Polkowski, A. Skowron (Eds.), Rough sets in knowledge discovery, Methodology and Applications, Studies in Fuzziness and Soft Computing, vol. 18, Physical-Verlag, Heidelberg, (1998).

L. Polkowski, A. Skowron (Eds.), Rough sets in knowledge discovery, Applications, Studies in Fuzziness and Soft Computing, vol. 19, Physical-Verlag, Heidelberg, (1998).

J.A. Pomykala, The stone algebra of rough sets, Bull. Polish Acad. Sci. Math. 36(1988) 495-508.

DOI: http://dx.doi.org/10.23755/rm.v29i1.18

### Refbacks

- There are currently no refbacks.

Copyright (c) 2015 R. Ameri, H. Hedayati, Z. Bandpey

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.