The Bayesian Hidden Markov Chain Modeling of the Ghana COVID-19 Blood Type Infection Distribution

Joseph Johnson Kwabina Arhinful, Emmanuel deGraft Johnson Owusu-Ansah, Burnett Tetteh Accam, Olusola Atinuke Adebanji

Abstract


This work uses the Bayesian Poisson-Hidden Markov Model (BP-HMM) to develop a model that properly describes the blood type distribution among newly diagnosed COVID-19 patients. The study estimated the number of Hidden states for COVID-19 datasets from Ghana based on blood type distribution. The study's results show that the number of hidden states and rates of infection vary by blood type, four hidden states were found for the $AB^{-}$ blood group whereas all the others had five each. It was established that, the blood group O had the highest infection rate and more susceptible for an infected person deteriorated through the transition states.


Keywords


\textbf{Keywords}: Hidden Markov Chain; Bayesian-Poisson Hidden Markov; COVID-19; Transition Probabilities

Full Text:

PDF

References


E. Ackermann, C. T. Kemere, and J. P. Cunningham. Unsupervised clusterless decoding using a switching poisson hidden markov model. bioRxiv, pages 1–23, 2019. doi: 10.1101/760470.

B. Alafchi, S. Yazdi-Ravandi, R. Najafi-Vosough, A. Ghaleiha, andM. Sadeghifar. Forecasting new cases of bipolar disorder using poisson hidden markov model. International Clinical Neuroscience Journal, 5(1):7, 2018.

S. G. . W. N. Baum L. E., Petrie T. A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical Statistics, 41(1):164–171, 1966.

R. C. E. Beal M. J., Ghahramani Z. The infinite hidden markov model. Advances in neural information processing systems, pages 577–584, 2002.

M. Castillo-Riquelme, Z. Chalabi, J. Lord, F. Guhl, D. Campbell-Lendrum, C. Davies, and J. Fox-Rushby. Modelling geographic variation in the costeffectiveness of control policies for infectious vector diseases: The example of Chagas disease. Journal of Health Economics, 27(2):405–426, 2008. ISSN 01676296. doi: 10.1016/j.jhealeco.2007.04.005.

J. M. I. . W. A. S. Fox E. B., Sudderth E. B. Bayesian nonparametric inference of switching dynamics in complex systems. Proceedings of the National Academy of Sciences, 112(3):2014–2021, 2015.

J. M. I. Ghahramani Z. Factorial hidden markov models. Journal of Machine learning, 29(2-3):245–273, 1997.

M. J. Johnson and A. S. Willsky. Bayesian Nonparametric Hidden Semi-Markov Models. 14:673–701, 2013.

M. D. King, S. Pujar, and R. C. Scott. A hidden Markov model analysis of subject-specific seizure time-series data as a potential aid to clinical decision making. F1000Research, 5(May):2592, 2016. ISSN 2046-1402. doi: 10.12688/f1000research.9746.1.

V. Koerniawan, N. Sunusi, and R. Raupong. Estimasi Parameter Model Poisson Hidden Markov Pada Data Banyaknya Kedatangan Klaim Asuransi Jiwa. ESTIMASI: Journal of Statistics and Its Application, 1(2):65, 2020. ISSN 2721-3803. doi: 10.20956/ejsa.v1i2.9302.

Y. J. . W. D. Li Y., Lu H. A hidden markov model-based framework for disease progression modeling. BMC Bioinformatics, 17(Suppl 7):247, 2016.

S.W. Liao Y., Smyth G. K. The r package rmixmod for (mixture model) clustering, classification, and density estimation. Journal of Statistical Software, 86 (6):1–30, 2018.

G. Luo, F. L. Nkoy, P. H. Gesteland, T. S. Glasgow, and B. L. Stone. A systematic review of predictive modeling for bronchiolitis. International Journal of Medical Informatics, 83(10):691–714, 2014. ISSN 13865056. doi:10.1016/j.ijmedinf.2014.07.005.

J. Murakami. Bayesian posterior mean estimates for Poisson hidden Markov models. Computational Statistics and Data Analysis, 53(4):941–955, 2009. ISSN 01679473. doi:10.1016/j.csda.2008.11.012.

C. F. Nam, J. A. Aston, and A. M. Johansen. Parallel sequential Monte Carlo samplers and estimation of the number of states in a Hidden Markov Model. Annals of the Institute of Statistical Mathematics, 66(3):553–575, 2014. ISSN 15729052. doi: 10.1007/s10463-014-0450-4.

R. L. R. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

J. D. Raffa. Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models by. 2012.

S. Rojas-Salazar, E. M. Schliep, C. K. Wikle, and M. Hawkey. A bayesian hidden semi-markov model with covariate-dependent state duration parameters for high-frequency data from wearable devices. arXiv preprint arXiv:2010.10739, pages 1–27, 2020.

L. Shaochuan. A Bayesian multiple changepoint model for marked

poisson processes with applications to deep earthquakes. Stochastic

Environmental Research and Risk Assessment, 33(1):59–72,

ISSN 14363259. doi: 10.1007/s00477-018-1632-z. URL

https://doi.org/10.1007/s00477-018-1632-z.

X. Song, K. Kang, M. Ouyang, X. Jiang, and J. Cai. Bayesian Analysis

of Semiparametric Hidden Markov Models With Latent Variables. Structural Equation Modeling, 25(1):1–20, 2018. ISSN 15328007. doi: 10.1080/10705511.2017.1364968.

W. Su and X. Wang. Hidden Markov model in multiple testing on dependent count data. Journal of Statistical Computation and Simulation, 90(5):889–906, 2020. ISSN 15635163. doi: 10.1080/00949655.2019.1710507. URL

https://doi.org/00949655.2019.1710507.

S. M. . G. T. L. Tran T., Turner R. E. Hierarchical dirichlet processes. Journal of Machine Learning Research,, 17(1), 2016.

D. Z. Y. Zhang Y., Wu S. Hidden markov model-based financial time series prediction. Entropy, 21(6):585, 2019.

W. Zucchini, I. L. MacDonald, R. Langrock, W. Zucchini, I. L. MacDonald, and R. Langrock. Preliminaries: mixtures and Markov chains. Hidden Markov Models for Time Series, (July 2007):3–28, 2018. doi: 10.1201/b20790-1.




DOI: http://dx.doi.org/10.23755/rm.v54i0.1602

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 JOSEPH JOHNSON

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.