Un esempio di ipergruppo ottenuto mediante combinazioni lineari.

Emma Gelsomini


This paper is the summary of a conversation that took place at the Politccnico of Milan during a seminar in which we wanted to give examples of hypergroups by means of elementary structures. This is the reason why the example of wipergroup is presented by means of a vectorial space or a real variable, instead of utilizing a more general form suggested in h four.

Full Text:



L. BERARDI, F. EUGENI, S. INNAMORATI, Generalized designs. linear spaces, hypergroupoids and algebraic cryptography. Proceedings of the Fourth international Congress on Algebraic Hyperstructures and Applications, Xantlti, Greece, (1990), World Scientific, 55-65.

P. CORSINI, Recenti risultati in teoria degli ipergruppi. B.U.M.I. 2-A, (1983), 135-138.

P. CORSINI, Prolegomena of hypergroup theory. Ed. Aviani, 1992.

E. GELSOMINI, Un ipergruppo associato all’insieme delle matrici quadrate di ordine n non singolari. Ratio Mathematica 10 (1996), 99-103.

M. GIONFRIDDO, lbpergroups associated with multihomomorphisms between generalized graphs. Alli Convegno su “Sistemi binari e loro applicazioni”, Taormina (1978), 161-174.

L. LOMBARDO RADICE. Istituzioni di algebra astratta. Feltrinelli. Milano, 1980.

F. MERCANTI, L. CERRITELLI, Sul concetto di Iateralizzazione nelle iperstrutture, su questo stesso volume.


  • There are currently no refbacks.

Copyright (c) 1996 Franco Eugeni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.