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Abstract

This paper is the first in a series of documents showing that
Newtonian physics and Einsteinian relativity theory can be unified,
by using a Generalized Real Boost (GRB), which expresses both
the Galilean Transformation (GT) and the Lorentz Boost. Here, it
is proved that the Closed Linear Transformations (CLTs) in
Spacetime (ST) correlating frames having parallel spatial axes, are
expressed via a 4x4 matrix Aj, which contains complex Cartesian
Coordinates (CCs) of the velocity of one Observer / Frame (O/F)
wrt another. In the case of generalized Special Relativity (SR), the
inertial Os/Fs are related via isotropic ST endowed with constant
real metric, which yields the constant characteristic parameter w)
that is contained in the CLT and GRB of the specific SR. If w is
imaginary number, the ST can only be described by using complex
CCs and there exists real Universal Speed (ci). The specific value
wi==i gives the Lorentzian-Einsteinian versions of CLT and GRB
in ST endowed with metric: -gioon and ci=c, where i; ¢; gioo; 1 are
the imaginary unit; speed of light in vacuum; time-coefficient of
metric; Lorentz metric, respectively. If w; is real number, the
corresponding ST can be described by using real CCs, but does not
exist ci. The specific value =0 gives GT with infinite ¢;. GT is
also the reduction of the CLT and GRB, if one O/F has small
velocity wrt another. The results may be applied to any ST
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endowed with isotropic metric, whose elements (four-vectors)
have spatial part (vector) that is element of the ordinary Euclidean

space.
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Abbreviations-Annotations

CCs: Cartesian Coordinates
CILToCST: Closed Isometric Linear Transformation of Complex Spacetime
CLT: Closed Linear Transformation
ci: Universal Speed
E3: three-dimensional Euclidean Space
E*: Euclidean Spacetime
ERT: Einsteinian Relativity Theory
ESR: Einsteinian Special Relativity
GR: General Relativity
GRB: Generalized Real Boost
GSR: Generalized Special Relativity
GT: Galilean Transformation
1O: Inertial Observer
LT: Linear Transformation
LB: Lorentz Boost
M*: Minkowski Spacetime
NPs: Newtonian Physics
O/F: Observer / Frame
QMs: Quantum Mechanics
RT: Relativity Theory
SR: Special Relativity
ST: Spacetime (four-dimensional Space)
TPs: Theory of Physics
U: Invariant Speed
wrt: with respect to
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Closed Isometric Linear Transformations of Complex Spacetime endowed with
Euclidean or Lorentz or generally Isotropic Metric

1 Introduction

Linear transformations (LTs) are very important in Relativity Theory (RT)
and Quantum Mechanics (QMs) [1]. Moreover, there exist many different
approaches of RT, which emerge the corresponding QMs. For instance,
Galilean Transformation (GT) endowed with the corresponding metric of
Spacetime (ST) produces Newtonian Physics (NPs), which gives the classic
QMs (Schrodinger Equation). Thus, many low-velocity phenomena, like the
atomic spectra (without fine structure) were explained. On the other hand,
Lorentz Transformation (endowed with the Lorentz metric of ST) produces
Einsteinian Special Relativity (ESR), which gives relativistic QMs (Klein-
Gordon Equation). Thus, many high-velocity phenomena and the fine
structure of atomic spectra were explained [2].

In this paper, we prove that there exist two types of Closed Isometric Linear
Transformation of Complex Spacetime (CILToCST) with common solution
the GT. These can apply not only to Special Relativity (SR), but also to
General Relativity (GR), because they are reached without adopting one
specific metric of spacetime. In addition, any complex Cartesian Coordinates
(CCs) of the theory may be turned to the corresponding real CCs, in order to
be perceived by human senses [3] (pp. 5-6).

SR relates the frames of Inertial Observers (10s), via LTs of linear
spacetime. ESR uses real spacetime (Minkowski spacetime) (M%) endowed
with Lorentz Metric (n) and the frames of two 10s with parallel spatial axes
are always related via Lorentz Boost (LB). But is known that LB is not Closed
Linear Transformation (CLT). In contrast, Lorentz Transformation
(combination of spatial Euclidean Rotation with LB) is CLT (e.g. see [4],
p. 41, eq. 1.104). Thus, if three Observers / Frames (Os/Fs): Oxyz, O'x"y’z" and
O’’x""y’z"" are related, where the axes of O'x’y’z" are parallel not only to the
corresponding axes of Oxyz, but also to the corresponding axes of O"'x"’y"'z",
then the axes of Oxyz and O"'x"’y"’z’" are not parallel (Figure 1). Thus, the
transitive attribute in parallelism (which is equivalent to the 5" Euclidean
postulate) is cancelled, when more than two Os/Fs are related. This
consideration leads to successful results, such as Thomas Precession, which
explains the fine structure of atomic spectra. But this happens only if we take
successive observers O, O" and O"" with Thomas’ order [5]. The reversed
order of this sequence yields a result with 200% relative error.
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Figure 1: Correlation of three successive observers (frames), by using Lorentz Boost.
The frame O'X'y'z" has parallel axes to the corresponding of frame Oxyz, moving
with velocity (f1¢, 0, 0) wrt Oxyz. The frame O"x"y"z"" has parallel axes to the
corresponding of frame O'X'yz’, moving with velocity (0, f2c, 0) wrt O'X’y'z’". The
correlation of the observers, by using Lorentz Boost, cancels the absolute character
of parallelism. Thus, the axes of frame O'x"y"z’" are not parallel to the
corresponding of frame Oxyz (Thomas Rotation).

In this paper, we prove that there exists CLT, which relates Os/Fs with
parallel spatial axes (in case of 10s, or observers that have the same
acceleration). Thus, the transitive attribute in parallelism is valid in complex
three-dimensional Euclidean Space (E®) and the axes rotation that happens in
real space, when more than two observers are related, is the equivalent
phenomenon of the corresponding Generalized Real Boost (GRB) [3] (pp. 5-
6). The CLT is divided into two cases: one, where time depends on the
position where the event happens, which can have real Invariant Speed (U) and
another, where time is independent from the position and has U=co. Moreover,
the demand that the CLT is isometric, gives the CILToCST. If the metric of ST
is independent from the position of the event in ST, we have the case of SR and
the CILToCST may be applied globally, relating 10s. Thus, infinite number of
SR-theories is produced (each one of which with the corresponding metric of
ST), keeping the ESR-formalism. In the case that the metric of ST depends on
the position of the event in ST, we have the case of GR and the CILToCST
may be applied locally, relating Os/Fs with the same acceleration. Thus,
infinite number of GR-theories is produced (each one of which with the
corresponding metric of ST of 10s), all of them keeping Einsteinian GR-
formalism. Of course, zero acceleration leads to the corresponding SR. Finally,
we present the improper isometric LT in ST endowed with Euclidean, or
Lorentz, or generally any isotropic metric.
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Euclidean or Lorentz or generally Isotropic Metric

2 The Matrix of Closed Linear Transformation
of Complex Spacetime

Initially, we determine the matrix 4 of active interpretation of the CLT of
complex ST endowed with any metric.

Z z
y ¥
i _(Bc.0,0)
0 N o 7

Figure 2. Two frames Oxyz and O’x’y’z’ initially coincide. The second is moving
with velocity (fc, 0, 0) wrt to Oxyz.

2.1 Motion in the x-Direction

We consider one unmoved O/F Oxyz, measuring real spacetime and another
O/F O’x’y’z’ with parallel spatial axes, moving to the right, along x-axis with
velocity v = ‘B‘c = B¢ wrt O/F Oxyz (Figure 2), where ¢=299,792,458 m s ! is

the speed of light in vacuum and the frames initially coincide. Supposing the
next linear transformation

cd¢” = bedt + adx + kdy + vdz Q)
dx " = gcdt + fdx + ody + 6dz 2
dy” = gicdt + f1dx + hdy + Adz (3)
dz" = gocdt + fodx + &dy + udz, (@)

we determine the coefficients with the following condition: the space has
isotropy. Rotating the coordinates system about the x-axis, by one negative
right angle (Figure 1), we correspond the new axes to the initial axes: t—t,
t’—>t’, x—X, X' =X, y—-z,y'—-2’, z—y and z’—y’. Thus, from (1), we have

cdt” = bedt + adx - kdz + vdy. (5)
(1) compared to (5), gives k=v=0. Besides, from (2) we have
dx’= gcdt + fdx - 6dz + 6dy. (6)
(2) compared to (6), gives 0=6=0. Besides, from (3) we obtain
-dz’= gicdt + f1dx - hdz + Ady. (7)

(4) compared to (7), gives g2=-01, f2 =-f1, {=-4 and u=h. Besides, from (4), we
have

dy’= gocdt + fodx - £dz + udy. (8)
(3) compared to (8), gives g@.=0i1, f=f;, ¢&=-1 and u=h. So,
k=v=0=60=g1=0>=f1=f»=0, &=-4, u=h and the transformation becomes

309




S. Vossos, E. Vossos, Ch. G. Massouros

cdt’ = bedt +adx 9)
dx” = gcdt + fdx (20)
dy’ = hdy + Adz (11)
dz"=-Ady + hdz. (12)

Using matrices we have the active interpretation of the LT [4] (p. 6):
cdt’ b a 0 O0]]cdt

dx’ _ g f 0 0 ‘ dx ’ (13)
dy’ 0 0 h Af|dy
dz’ 0 0 -2 h||dz
or equivalently,
dX" = A1 dX, (14)
where the base and the coordinates are
d x° cdt
)=l & & &l ax-|9 |- (15)
dx dy
dx® dz
respectively. Besides, the velocities are related in the following way:
, c+fo, . , ho,+iv, . -4y, +hy,
e e R el

2.2 General Linear Transformation (Motion in a random direction)

We then consider one unmoved O/F Oxyz and another O/F O'x’y’z" with
parallel spatial axes, moving with velocity (vx, vy, v;) wrt Oxyz, where they
initially coincide (Figure 3). We rotate Oxyz, in order to parallelize the unitary
vector X to the velocity vector o of the moving O’x’y’z". This is sequentially
achieved as following (Figure 4). We firstly rotate the coordinate system Oxyz

about z-axis, through an angle 6: O(X,9,2) — O(I, JIZ) \We then rotate the
coordinate system O(i, j,k) about j, by an angle w: O(i, j,k) = O(", j’,K').
Thus, we have the transformation

Xg Coswcosé coswsingd  sinw | | X
Ve |=| —sin@ cos @ 0 ||yl (17)
Z; —sinw cos@ -—sinw sind cosw | |z

where

2 2
v VO Uy (18)

UY Uy . H _ "z -
I —, SNw=—, COSw= =
NS Yo o, 0] 0]

As a result, the 3x3 matrix of (17) becomes

sing = ; COS@ =
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I 1
A b A
V; Z Z
B
R — _ y X 0 (19)
\/,sz +ﬁy2 \/ﬁxz +ﬂy2
BB BB B +B,
NN N Y S
and we define
Ao F 0] (20)
0 R

The unit means that time is not affected by the spatial rotation. Moreover, the
transformation O(X,9¥,2) —> O'(X,¥,2) is analyzed to the following sequence

of successive transformations:
O(%,9,2) > O(", i",k); Of", j",K) > O'(", §'K);
O'(i",J k) > 0% Y,2).
The above simple transformations have active interpretations:
Xg =RX ; Xp=AyXg i X'=RTXg, (21)
respectively, where RT is the transpose matrix of R . Thus, the transformation
0(X,¥,2) > O'(X,9,2) is actively interpreted:

dX'=R"A RAX =A,d X . (22)
So, we_calculate i
b ;ﬁx ;ﬁy ;ﬁz
S5 (t-nlin DAL R T
L 7 \ 7 A5 1A ] @3
" %ﬁy (i - ﬁiﬁzy_ﬂiﬂ, (f—h)’B—+h (f - BB, i/l
G A 1A Ei A 1A
R L
18 a1 A 18 p
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z

Figure 3: Two frames Oxyz and O'x’y’z’, which initially coincide. The second is
moving with random velocity (vx, vy, v;) Wrt to Oxyz.

Figure 4: Rotation of the initial frame Oxyz, in order to achieve parallelization of

vector X to the velocity vector o of the moving observer O'x’yz’
[O(%,¥,2) > O, k) > O@", J',k") 1.

2.3 Solution of the proper Closed Linear Transformation of Complex
Spacetime (Correlation of two perpendicular moving Observers /
Frames)

We consider one unmoved O/F Oxyz, another O/F O'x’yz” with parallel
spatial axes, moving to the right, along x-axis with velocity (pc, 0, 0) wrt Oxyz
and also a third O/F O"'x"'y"'z"" with parallel spatial axes, moving upward,
along y-axis with velocity (0, Bc, 0) wrt Oxyz (Figure 5). All of them initially
coincide and also g > 0, because

B=|A. (24)
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¥
(0,pe.0)

{Pec,0,0)

8] o’

Figure 5: Two frames O'x’y 2" and O"'x"’y"’z"” moving with corresponding velocities
(gc, 0, 0) and (0, pc, 0) wrt Oxyz.

The transformation O'(X,Y,2Z) —> O"(X,y,2) is analyzed to the following
sequence: O'(X,¥,2) > O(X,¥,2); O(X,Y,2) > O"(X,¥,2). The above simple
transformations have active interpretations, respectively:
X =Ny X' 7 X"=Ap, X .
Thus, the transformation O'(X,Y,2) — O"(X,Y,2) is actively interpreted:
X"= Az(y)AjX)X "=TIX'.
According to equation (23), it is

b a 0 O
g f 0 O
Mo=lg o h 2 (25)
0 0 -4 h]
and
b 0 a 0]
A _[oho -2 26)
Mg 0 f 0
0 4 0 h

Thus, we have
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f -a 0 0
bf —ag bf —ag
—9 b 0 0
IT= Ay Ay = Ay, | P 729 BT -2 h IRE (27)
0 0
h? ;/12 h? Jﬁ/lz
0 0
i h*+ 22 h*>+4%]
or equivalently,
[ bf —ab ah —al |
bf —ag bf —ag h*+4* h?>+ A
_gh bh 2 —ha
_|bf —ag bf —ag h*+4* h?+ 2
=" " _ag o o—fa | (28)
bf —ag bf —-ag h*+1* h>+A°
—gi b hA h?
| bf —ag bf —ag h*+4* h*+ 2|

Now, we calculate the velocity factor ,B; of observer O"'x"y"z”" wrt O'x’y z".

rrrrr

direction and observer O’ can be considered as the observed body. So, it is

, _9 o _hg AP
ﬂAx _B’ﬁ4y = b ’ ﬁ42 == b (29)
and we obtain

R R A A

= b —F _._2+h +A°. (30)
g

Replacing the above to (23), yieldsA,,=4,. The condition that the

transformation is closed, gives

B

11 = Aa. (31)
Comparing the matrices, element by element, we shall calculate the parameters
a, f and g. The transformation must be reduced to GT, if one 10 has small
velocity wrt another 10. So, it must be b, g, f, h # 0. We have two cases:
(i) =0 and (ii) A£0.

2.3.1 The case of proper Closed Linear Transformations of Complex
Spacetime with =0 (time independent from the position, i.e. a=0).

When 1=0, we compare matrices /7 and A4 element by element and we also
take into account (29). Thus, we have: hs=1 (from element /733) and 24=0 (from
element 7713). We then obtain f4=1 (from element /712). So,
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ha=fs=1 ; 14=0. (32)
From elements /710 and /720, we get
99 ___¢oh . gh _ o (33)
~ [ g2 bf —ag 2 bf —a
‘ﬂ‘ % +h? : %—2 +h? ]
Z \/A
respectively. Thus,
ph?
g= —Q- (34)
From elements 7701 and 77o2, we have
a,g __a . ah a (35)
. [ g2 bf —ag 2 h
‘ﬁ‘ %—2 +h? : %—2 +h?
Z 1z
respectively. So,
9 ___bh (36)
‘ ﬂ‘h bf —ag
Replacing (34) to the above, implies
0=0, (37)

for the CLT, or g=0 for the non-closed LT (because (34) gives h=0 and matrix
(25) cannot be identical). Thus, element 1711 gives

f=h (38)
and (34) becomes
g=-|Ah. (39)
Finally, (23) yields the general matrix of CLT:
b 0 0O 5 5 0
A _|"hs hoo o{b oT]ﬁ:ﬂX:ﬂz o-lo. 4o
P |-ng, 0 h 0| |-hg hi,|’ ﬁy 7 ' ol
-hg, 0 0 h ‘
and the typical matrix CLT (along x-axis):
b 0 00
fo7s o n ol @
0 0 0 h

where b=bg and h=h,.
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Next, we calculate the corresponding CILToCST. The representation of the

non-degenerate inner product in basis |6, |<[e, & &, é3]:[cAt,>‘<, y,2] is the
real matrix of metric
0w 0 0 0
0O g, O 0
0 0 g, O
0 0 0 gy

In this paper, we consider goo<O [signature of spacetime: (-+++), or (----)]. The
fundamental equation of isometry - Killing’s equation in a linear space - (see
e.g. [4], p.10, eq.1.15) is

g= (42)

g'=4"g4. (43)
The element by element comparison of the above matrices gives
91 =0»=03=0; =0; =0, géozbzgoo- (44)
The isometry of spacetime [see e.g. [4], (p. 240)] is
ds 2= ds?, (45)
or equivalently,
g4 C°dt”? +d X/} dX') =g C?dt? +dx;g; dx’, (46)
which combined with (44) and (40) gives
b=1 for the CLT, (47)

or b=-1, i for the non-closed LT (because matrix (25) cannot be identical).
So, since b=1, CLT keeps time invariant. The Einstein’s summation convention
[4] (p. 3) was used in (46) and will be used in the equations that follow.
Besides, (44ii) becomes

9o = Yoo- (48)
Thus, for any O/F the metric of the ST in accordance with the complex LT is
do 0 0 0
0 00O
= : 49
9 =6 0 0 0 (49)
0 00O

We observe that detgr=0. So, this spacetime is degenerate [6] (p. 174). In
order to calculate function h, we consider the unmoved O/F Oxyz, another O/F
O’x’y’z" moving to the right, along the x-axis with velocity (,BC,0,0) wrt Oxyz
and a third O/F O"’'x"'y"’z"" moving to the left, along the x-axis with velocity
(- £¢,0,0) wrt Oxyz. Thus, X =ApX and X =AwpX give

X"= A(X)(fﬁ)A_(i)(ﬂ) X" (50)
Also, the typical transformation of velocities (16) becomes
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v, =h(-pc+v,), v, =hv,, v, =hv,. (51)

Thus, the calculation of the velocity factor of observer O"" wrt O/F O'X’y’z’
gives

ﬁéx = _Zhﬂv ﬁéy :0’ ﬂ?:z =0. (52)
As the transformation is closed, we have
A(X)(—ﬂ)A_(i)(ﬂ) = A(X)(ﬂa)’ (53)
or equivalently,
1 0 0 O]
1 .00 0]|g 195 0 1 0 0 O
ph h 00 h 2h;hB h, 0 O
1o o L of" - 64
0 0 h O h 0 0 h, O
0O 0 O h 0 0 0 % 0 0 0 h

from which it derives that h, = ey =1 for any value of . As h depends only

on the norm of velocity factor g, the only solution is h=1. Hence, there derives
the GT, which is expressed by the general matrix

1 O 0

0 1
-B. 100 1 O Al 12 )
Arp = = s B=By =87 (55)
_IBy 0 1 O _IB |3 ﬁ ﬁ?:
-4, 0 0 1 ’
and typical matrix along x-axis
1 000
- 1 00
A, = : 56
0 0 01

which produces NPs with invariant time and infinite universal speed. As
unmoved O/F Oxyz measures real velocity, the transformation matrix (Ar)
contains only real numbers. So, the spacetime is limited to the real domain
R*. Moreover, this ST (Galilean spacetime) endowed with the Galilean
metric (49), is degenerate.

2.3.2 The case of proper Closed Linear Transformations of Complex
Spacetime with 40 (time dependent on the position).

When A£0, we compare matrices /7 and A4 element by element and we also
take into account (29). We start with (44)21+(A44)12=IT>1+I112 and we obtain
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2gh(f,-h,) _  ag X
o bf —ag h*+2°"
‘ﬁ‘ ‘%‘2 +h?+ 22

B

We then use (A4)32+(A4)23=1132+1123, Which gives
2h(f,—h,) _ f-h

2 T K2 2
9 ihzyp h"+4

A
The combination of (57) with the above equation implies
g(f-h) _ag 7
Aoz +22)  bf-ag h?+2
Also, (A4)31+(A4)13=IT31+1113 gives
-2g9(f,-h,) Db h
“bf-ag hZ+A2

The combination of the above equation with (58) also gives
~g(f-h) _ bh h?
llh?+22) bf —ag h*+2*

We then add (59) and (61) and get

f=h ; fa=ha.

Moreover, from (A4)11=1T11 and (A4)oo=IToo, We have

~bhbf

“bf-ag bf-ag

which combined with (62) gives

4 4

f=h=h.
We then use (A44)22=I1>, and we obtain
ho—_
Y ohie A
The combination of the above equation with (63) gives
b f
bf —ag h?+ A%
Furthermore, (A4)o1=ITo1 and (Aa)o2=ITo2 give respectively:
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ga, ab

2 " bf —ag ; ©7)
‘,B‘ si—z+h2+}b2
g
a, a
- _ 68
g9° 2, 42 h?+2* )
~—+h"+4
Z
The substitution of (68) to (67) gives
g b
= =— : (69)
7+ 22)  bf —ag
Moreover, the combination of the above equation with (66) gives
= -|Aih. (70)
Finally, (66) combined with (64) and (70) yields
2
a=4. (71)
h|B
The replacement of (64), (70), (71) and
zszb, (72)
makes the general matrix (23) equivalent to
I 5 2 2]
azﬂx ~12 'BY -2 ,BZ
I
g, b LA BAL L 0h @S b
e A Alo|_ A 1 @B -of,|.(73)
_bﬂy _@ b @ _ﬂy _wﬂz 1 a)ﬂx
‘ﬂ‘ ‘ﬁ‘ _ﬂz a)ﬁy _a)ﬂx 1
A
~bp, p L f iﬁ b
_ A A
We also define
Bl | B . 5] (6. 0 B -5 o B -p 24
p=|p, =5t | 7 5=|s,|=|* |  Ap=|-8 0 s |s|-p o p |
B B 5, |¢° By -p O gt -p 0

It is noted that the antisymmetric matrix A is related to the cross product
(external product) [7] (p. 1048), because

Awo=|-Bx5|=5x 3| (75)
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Thus, the four-vectors of two observers are related, by using the general
Matrix:

1 o' o'f, 0P,

2 T
Aoy =P —ﬁx —;ﬂ a)lﬂ Z a)wﬂﬁy =b{—lﬁ | f a)ﬂA (76)
y z x 3 (8)
B, o, -of 1
Besides, the typical Matrix along x-axis is
1 o8 0 0
A o # 1L o 0 (77)

0 0 -wp 1
So, the proper Closed Linear Transformation of Complex Spacetime (22) is

cdt’ 1 @'p, o’B, B, |[cdt
dx’ - 1 - d
X, — b ﬂX a)ﬂz a)ﬂy . X ] (78)
d y - ﬂy - a)ﬁz 1 a)ﬂx d y
dz' -B, B, -op 1 dz
The pure mathematical approach is simply obtained by replacing ct—x°. Thus,
d X!O l wZﬂl COZIBZ wZﬂB d XO
n ! 3 2 1
dX2 b ﬁz 1 3 of a),bl’ . dX2 . (79)
dx’ -p° —op 1 of dx
dx? -p opft -opf 1 dx®

Below, we calculate the corresponding CILToCST. For simplicity reasons,
when we write i (the imaginary unit), we mean =i:
i—>+i ; —i—>Fi. (80)
The combination of the fundamental equation of isometry (43) (the Killing's
equation in a linear space) with the above, gives

. —12 .
011 =02 =033 =0iis 9o :%; gtl)o = b2(1+0)2ﬂ2)goo = b2(1+w2‘,3‘ )lel ; (81)
gii :b2(1+w2‘,é‘2)gii' (82)
So, for any O/F, the metric of spacetime in accordance with the CILToCST is
isotropic:

9o O 0 O
0 g; 0 O
g= (83)
0 0 g O
0 0 0 g,
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and also

@t =i (84)
Yoo
Thus, w? is a real number. So, w is a real or an imaginary number, which only
depends on the metric of spacetime. Besides, the metrics of the spacetime of
two observers (frames) Oxyz and O'x’y 'z’, are related using the formulas

' 2 2l o 2 .
9'=b*(L+0’|A )g; (85)
’ 2 2| n 2
g; =b"(l+w ‘,3‘ )9 (86)
So,
pr=%i 1 (87)
Oi 1+ a)z‘ﬂ‘
Using the well-known Lorentz y-factor function
1 1 1
V) = = — = =75 (88)
@ -6Ts V1-5.6 \/1_‘5‘2 ©
equation (87) may be written as
2 _ Qi o
b = g_,, Y ) - (89)
Besides, the isometry of spacetime (45) combined with (89) and (78) gives
gi = Gii- (90)
Thus, (89) gives b® = 75(05) and we obtain
D=%4us >0. (91)
Moreover, (81iii) gives
Joo = Joo- (92)

This means that the metric of ST must be affected in the same way for any
O/F, in the case of CILToCST. Equivalently, the observers that are related
must be 10s or must have the same acceleration. Thus, the metric of spacetime
in accordance with the CILToCST is

Jo O O 0 L -1 0 0 0

> 0 0
(2 2
0 0 g, 0| g 010 O 0 -0 0
0 0 0 gy 0 0 0 1 0 0 0 -0

In case of SR (the frames are moved with constant velocity / the observes
are 10s), equation (84) becomes
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02 =i (94)
9100
So, the time and space metric’s coefficients are independent from the position
and they are combined to produce w1, which is the characteristic parameter of
SR. The continuity of the metric of spacetime at the point A=»=0 and the
matrices (49) and (93) gives

limg,;; = Iirr(])gii =0. (95)

o, —0
We also observe that if the metric’s coefficients have the same sign [signature
of spacetime: (----)], then the characteristic parameter wy is a real number, in
contrast with the case that the coefficients of metric have different signs
[signature of spacetime: (-+++)], where the characteristic parameter wy is an
imaginary number.
The representation of the non-degenerate inner product in basis

k= & & &,]=[ct,%, y,2] for 10s i the matrix
0
0

Jiw 0 0 — 000 -1 0 0 0
0 .0 @ —w? .
9, = S =g 0 1 0 0j=—g,, 0 @ Oz 0 (%)
0 0 g, O o 010 0 0 -w° 0
0 0 0 g, 6 00 1 0 o0 0 -

Generally, equation (78) gives the active transformation of O/F Oxyz to O/F
O’x’yz’ (if they are accelerated with the same acceleration):

Ccdt’ 1 @B, o°B, of,|[cdt
dx’ - B, 1 of, -—-opf,||dx
| = Vo) | _ _ gl ' ®7)
dy p, —op, 1  op ||dy
L dz’ -B, of, -opf 1 dz
The replaceme_nt ct—x° gives the pure mathematical approach. Thus,
d XIO 1 a)Zﬂl a)ZﬁZ a)ZIBS d XO
dx" - 1 oft —-of®||dx
2 || 23 1| 2 | (98)
dx p of 1 of dx
Ldx’® -B ot -of 1 dx®

Using vectors, the above transformation becomes
cdt' =y, (cdt+o?B-dx) ; dx'=y,,; [[dx - Bedt)-whxdx|. (99)
Moreover, the general and typical matrices of CILToCST are, respectively:
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1 a)zﬁx a)zﬂy coz,BZ
_ 1 ) - 1 CUZ T
Awpy = Yiop) o 1'6 i 5y =7(mﬂ){ | ﬂA }(100)
_ﬂy _a)ﬂz CU,BX _ﬂ 3T @ )
_ﬁz a)ﬂy _a)ﬁx 1

B, . 0 B, B, . -5 1 0 0 ].(101)
ﬂ: IBy ’ A(ﬁ) = _ﬂz 0 ’Bx ’ A(X)(“"ﬂ) = Vion) 0 0 1 a)ﬂ |
:Bz 'Hy _'Bx 0

The above matrices A have the following properties:

0
Aoy =ls7 0=|0]; (102)
0
Nop) =Norp 5 (103)
detA,, ;= 1. (104)

In case of SR, the matrices form a new group (which corresponds to Lorentz
group) with elements

b | |ct,
0= (Ag . B) B2 |= 2] (105)
b b,
b® b,
and operation
di*d2= (A, ) Mwp)r May g, Brt B2), (106)

where:
b# is the u-coordinate which is measured in O'x’y 2", when all the coordinates

x", forv=0, 1, 2, 3, in Oxyz are equal to zero and

b# is the u-coordinate which is measured in O"'x"y"z"", when all the
coordinates x', for v=0, 1, 2, 3, in O’'xyz are equal to zero. The above
operation expresses the successive transformations:

0(X,9,2) > 0'(X,¥,2) ; O'(X,¥,2) >0"(%,Y,2). (107)
These have active interpretations:
X'=Ag X +B ; X"=A(, , X'+B,. (108)

respectively. Thus, the transformation O'(X,¥,2) > O"(X,¥,2) is actively
interpreted:

X" X+A B, +B,. (109)

= A(wl,ﬂz)A(w.,ﬂl) (®.5,)
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As o? is a real number, we observe that we always have real time. Besides,
the norm of the position four-vector for Os/Fs with the same acceleration / the
same metric of ST, is the corresponding invariant quantity

dS? =dXTgdX = g,,cdt? + g, d%2 = g"(czdt +dx )——goo(—czdtz ~ o’ dx?)- (110)
9
In the case of SR, the above equation becomes
dS?=dXTgdX =g, c2dt? + g,, dX? :g,i{lzczdtz +diz}:—goo(—czdt2 _wpdx?) (111)

If w is a real number [the coefficients of metric of time and space have the
same sign: signature of spacetime: (----)], then

w=+ |9 _g (112)
900
with se R . Thus, the transformation matrix (4) contains only real numbers
and the ST is limited to the real domain R*. Finally, the four-vectors of two
Os/Fs have the same metric

gy 0 0 0 iz 00 0 1. 0 0 o0
S 2
g-= 0 ;i 0 0 _g. 0 100 — gy, 0 -s 02 0 (113)
0 0 g; O 0 010 0 0 - 02
0 0 0 g 0 00 1 0 0 0o -

and their CCs are related via the matrix:
1 s, s°B, S°B,
_ﬁx 1 Sﬂz _Sﬂy 1 SzﬂT
iep) — B, —sB 1 sf = isp) —B L+sA, | (114)
y z X 3 (p)
_ﬂz SIBy - Sﬂx 1

The typical matrix along x-axis is

A p) =

1 s 0 0

|- 1 0 o0
w6 — Vi 0 0 1 sp|

0 0 -sp 1

If @ is an imaginary number [the coefficients of metric of time and space
have different sign: signature of spacetime: (-+++)], then

=i |G go [ S (116)
- gOO - gOO

with & e R, . Thus, the transformation matrix (4) contains complex numbers

and the spacetime is represented by the complex domain RxC?*. Finally, the
four-vectors of two Os/Fs have the same metric

A (115)
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do 0 0 O —5—12 000 -1 0 0 O
2
g= g %i 0 g =0 0 100 =_9008 é:) 02 g (117)
i 0 01 0 g )
0 0 0 g 0 0 0 1_ 0O 0 0 ¢

and their CCs are related via the matrix:
1 =&, &8, -&°B,
; ; 2 T
Aip) = Viep) _ﬁx —i]é;ﬂ ISZBZ ifgﬁy = (éﬁ)li_lﬂ |+ig'i ](118)
y 2 X 3 (8)
-p, iép,  —igp, 1
Besides, the typical Matrix along x-axis is
1 =& 0 0
3 -p 1 0 0
wEip = Ve 0 0 1 ieg|
0 0 —-iés 1
The substitution of (64), (70), (71) and (72) to (16) gives the velocities
typical transformation of CILToCST:

,_ b —pC ¢ :Uy+a),6’uZ oy :uz—a)ﬂuy
* cto’Po, YUcre’pu, T " c+o’po,
For the purpose of finding a possible Invariant Speed (U) for Os/Fs with the
same w (or equivalently the same acceleration), we assume that a particle is
moving to the right with velocity o =Ug, ; U > 0. So, we have

A (119)

L C. (120)

o, =2=PC ¢ o0 =0, (121)
c+ o pU

According to the Euclidean metric in the ordinary space E3, the norm of U is

. 2 2 2.2
uzz[u—ﬁccj 40402 Z2BCULPCT o g0y

c+ o’ pU c’+w'BfU? +20° fcU
which may be written as
(@'U*—c*)p? +2U(w?cU? +c*)B =0. (123)
So, we obtain
2 c?
U = —E f (124)
or equivalently,
CZ
o° = ne (125)
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Since norm U > 0, w is an imaginary number (o =¢£1,¢ € R, ) independent
from the velocity (i.e. depends on the acceleration or equivalently the
gravitation). Thus, we have

U=-c. (126)

So, itis
Yiop) = L 1 -t _, (2
Jl B ro'ff \/1 gH "

and (110) can also be written as
dSZZdXngngii[_Uzdt2+d ]——go{—czdt +(Uj dx } (128)

In the case of spacetime endowed with constant metric (or equivalently
10s), equation (126) becomes

1
c,=—-=C. (129)
s
and we obtain the Universal Speed (ci) of the specific SR. Besides, we have
Yiap) - = = Yen = = =715, 130)
) I \2 u
\/1+w.ﬂﬂ \/1+a), L \/1 &%|p \ 1_[uJ &
CI

and
dS?=dX'gdX = g,“[ ¢, dt? +dX] _gool—czdt J{CJ dx } (131)
I

Now, let us find the corresponding Euclidean CILToCST. We initially
define

dx, L cdt Lax
d Xl a)d a)d 1 0 1 0
dX,=| -, |=| 9% |=] 9X | ; dX, ==dx’, (132)
dx d y d XZ )
3
dx dz | | dx® |
where X ; X? are the zeroth- coordlnates by using the bases
I_e,u J: €& € & 3 ) [eu J: [Eo €& & és] (133)
of ST endowed with metric (93) and Euclidean metric, respectively. Thus,
€ € =Yoo ; EO'EOZL (134)

where dot “-” is Euclidean inner product [4] (p. 7). So, we understand that
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= |
~

E = g . (135)
’ v~ Y00 i

Then, the CILToCST (97) can be written as

lCdt’ 1 a)ﬂx a)ﬂy wﬂz lCdt
(0] , B 1 B (0]
dx" |- Viop) b P by |odx , (136)
dy’ —wf, —op, 1 wp, dy
i dz’ | _a)ﬂz a)ﬂy _wﬂx 1 i dz |
or equivalently,
AX =R, AXo (137)
where
1 of,  of, op, 5 5
ﬁ —y — O)ﬂx 1 a)ﬂz - a)ﬂy i ﬂ _ ,BX _ ﬂz (138)
@) =Ten| _pp  _wp, 1 op, |’ ,By f ;

_a)ﬂz a)ﬂy _wﬂx 1
or equivalently,
~ 1 of’

R = = {I + O ' (139)
o) yia) }/i(u @ *
(@P) (1o5) —a),B I3+a)A(ﬂ) (opytie _ﬂ A(ﬂ)

The above matrix R is a rotation matrix with the following properties:

0
Reoy =ls; 0=|0], (140)
0
s =
Rim = Res) = Riapy (141)
detR,,, = 1. (142)

The corresponding typical matrix along the x-axis in Euclidean spacetime (E*)
IS
1 wf O 0

-of 1 0 0

0@s) = Viop)| 0 1 wBl|
0 0 -wp 1

Now, using vectors the CILToCST of equation (136) becomes

Cd_t:y(i(oﬁ)(ﬁ"'a),é'd)ﬁ(); d)?':7(iwﬁ){(dz_wﬁﬂj—wﬁ><d4, (144)
1) 1) 1)

or equivalently,

R (143)
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AX.% =y, [AX, +0B-d%) 1 dX' =7, [dX-wBdX,’)-wfxdx|. (145)

Thus, we have the Euclidean metric of the position four-vector X, in E*, and
the corresponding invariant quantity is

452 =dX g, dX, =~ cdt? +dx® =([dx,°f +d % :gid S2,  (146)
w i

according to (110ii).

Also, we observe that g-factor can be written as
. dx dx' B' . dx
= = =— ; B'= ,

d dx’ wdX,)' o dx,°
by using (132ii). The quantity B' is called B-factor and it can substitute the -
factor, in E*. Then, equations (136-139) are rewritten:

(147)

dx;’ 1 B* B* B®||dx)®
dX!l _ Bl 1 83 _ BZ Xm
=Y, . , 148
erZ ]/(|B) —82 _BS 1 Bl dXZ ( )
dx” -B* B* -B' 1 dx®
dX'w: I-i(B) de, (149)
1 B* B? B .
~ - B? 1 B® -B? 5
R, =y, © B=|B?|, 150
®=7@®)| _g2 _gs 4 gt . (150)

-B* B -B' 1

R 1 B’ {l 0 B (151)
:7i :yi + .
@ TEI_B Lt+Ag | T =B Ay

The above matrix R is a rotation matrix having the following properties:

Roy =14 (152)
Re) =R =Rig):; (153)
detReg, = 1. (154)
Besides, the corresponding typical matrix along the x-axis in E* is
1 B 0 O
~ -B 1 0 O
Roge) = 7as 0 0o 1 BI (155)
0 0 -B 1

Note that the above transformation can be limited in the real spacetime (R%),
because the corresponding Lorentz y-factor is positive for any real B-factor.
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We observe that the above results could be obtained from the initial equations

of E* (136-146), when w—1 and ct—X,,. We also observe that R reminds us
of the contravariant electromagnetic tensor [3] (p. 14), [4] (p. 414):

0 E* E? E®
-E' 0 cB,’ -cB,’
Fean =| gz _¢ B, 0 ¢B," | (156)

-E®* c¢B,” -¢cB' 0
where E and Bm are the intensity of electric field and induction of magnetic
field, respectively [4] (p. 396). Actually, they are correlated via the formula

~

' ' i VigB’
Ry =Fee,) +7ie s 3 BN =74gB; ij=%. (157)

Thus, it is

El=cB,’ ; E'E,=c(B,'B,,) (158)
where (158ii) is the same as the electromagnetic waves in vacuum, while
(158i) means that the vectors of the induction of magnetic field and intensity
of electric field are parallel. This reveals a hidden correlation between the
spacetime and electromagnetism (Maxwell equations).

Moreover, for any constant value of w; (or more precisely for any constant
metric, i.e. constant values of gioo and giii), we have a specific CILToCST
which correlates 10s and the corresponding SR-theory.

Furthermore, the limit s—s—0 in the equations (113-115) and their
combination with (95) gives GT of complex spacetime with infinite universal
speed. In the same way, the limit {—¢& —0 in the equations (117-119) and
their combination with (95), gives again GT. Thus, the result when 2=0 (GT) is
embedded to the case when J#0, if we take the corresponding limit to zero
(A—0, or equivalently, w—0).

Besides, if one O/F has small velocity wrt another, the CILToCST (even
been complex) is reduced to GT.

The replacement ¢— &=1 to the equations (118) and (119), produces the
Lorentzian-Einsteinian version of CILToCST (4g) [7] (pp.1047-1048), which
Is expressed via the general matrix

1 =B -8B, -5
B 1 B —ip,
=B, -ipg, 1 ip
-p, i, -ip,. 1

and the typical matrix along the x-axis

Ay =7 (159)
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1 - 0 0
“f 1 0 0

Ny =7 0o o0 1 gl (160)
0 0 —-ip 1
From (96), we take the corresponding metric of complex spacetime
-1 000
0 100
95 = Qi 0 0 1 0 =0y, (161)
0 001

which for gii=1 becomes the Lorentz metric. Thus, we have the SR-theory
with universal speed being the speed of light in vacuum (ci=c) [7,8]. This
theory gives results that are exactly the same as ESR, when only two Os/Fs are
related. But the results are different, when more than two Os/Fs are related.
Besides, it calculates the fine structure peeks of atomic hydrogen’s spectrum
[8] (p. 4) more accurately than ESR. The explicit form of forward Lorentzian-
Einsteinian CILToCST is

ct’ = y(ct— fux — By — paz) (162)
x' = ]/(— ﬂx ct+x+ |ﬂzy - iﬂyZ) (163)
Y =y Byt - B x +y +ifxz) (164)
z" = y(— Bt +ifyX - ifxy + 2) (165)

The explicit form of reverse Lorentzian-Einsteinian CILToCST is

ct=y(ct"+ fox’ + fyy’ + faz’) (166)
X=y(Bxct' +x -ify +ifyz") (167)
y=ypByct +ifx"+y -ipxz) (168)
Z=yp(fCt -ifyx’ +ify +2z) (169)

When the metric of ST depends on the position of the event in spacetime
(GR), the transformation is applied locally, not globally (correlating Os/Fs
with the same acceleration / gravitation). A metric is in accordance with the
CILToCST, if only the limit of vanishing acceleration leads to the
corresponding SR. Thus, the usage of (84) and (94) leads to

[iﬁ(]) 9ii = i (170)
. e T ITT
L'_rg O = |gll_r)T(1) ? = ? =0i00- (171)

3 Proper Time — Special and General Relativity

Let P be a particle moving with velocity o, wrt observer O (o, wrt
observer Q) in spacetime. The generalized definition of proper time (z) is
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,  ds?

dr° = .
Yoo c?

(172)

Using (84) and (110), we have
2
drz=—9i [ L g gx? |2 Lo vdx? |, (173)
Uy C° \@° ¢’ o’
00
or equivalently,

2 2
dz? :dt2+i’—2dx2 :dt2(1+i)—26,,2). (174)
Thus, the relation between the time and the proper time is
dt?
o Y o) - (175)

For w=s with se R, there does not exists real Invariant Speed (U) and the
y-factor is always positive. So,
dt
— = Visp 176
dz /G (176)

When w=¢& with £ € R, there exists a real U. If the speed of particle is less
than the invariant speed (|u,| <U), then the y-factor is positive again. Thus,

dt
a4z Ve (77)
For GT with s—¢—0 (the limit of degenerate spacetime),
Yisge) = Viepy = 1. S0, dr =dt” = dt (time is invariant) as we know in NPs.

In the case of ST with constant metric (10s), equation (175) becomes

dt>
dz2 e (178)
Thus, the Lorentzian-Einsteinian version of CILToCST with wi=i (&=1),
gives U=ci=c. If the speed of a particle is less than the speed of light in vacuum

(|5s| < c), then y-factor is positive again. Thus,

dt

and we have the same result as the ESR.
In any case, using proper time, we can define four-velocity, four-
momentum etc, building the whole structure of Generalized SR and GR.
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4 The Results of Closed Linear Transformation
of Complex Spacetime - Discussion

In this section, we present the typical matrix 4, the general matrix 4,
the covariant matrix of spacetime metric g, the invariant speed U and the
domain of the coordinates C* that corresponds to the transformation of a
contravariant infinitesimal four-vector in spacetime: dX =4dX .

(Awp), 4@, 9, U, CY

|
|1=45b:?
7#0 | 220
|
] | ] |
1 a)zﬂ 0 0 b(ﬂ) 0 0 0
-p 100 ~hpb hy 00
A =b , A _ |
()(B) () 0 0 1 wp (x)(8) 0 0 h(ﬂ) 0
S | 0 0 0 hy
B 2 5T - ;
Aw=%>1 P UeRra). mm=km O | U=t
| |
| isometry | isometry
| |
1 a)2 0 O 0 l 0 0 0
-1 0 0 - 100
A = i ! A = ,
(X)(@,p) 7(|(uﬁ) O 0 1 a)ﬂ r)(8) 0 O L 0
0 0 -wp 1 0 001
1 a)leT 1 B 1 OT
A = 7/iw ’ A = ,
(8) ( ﬂ)l:_ﬂ |3+(0A(ﬂ)_ r'(p) _—IB |3
-0 0 0 | _goo 0 00
0 -o° 0 0 00 0 B
9=-0¢ 2 ) gr = , U =+00, R4,
0 0 -0 0 0 000
0 0 0 -o (0 000
|
| w="?
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w=C¢iel | w=5seR
|
| |
1 —&5 0 0 1 s 0 0
Ayien = Vep 0,6’ ; (1) igﬂ ' Awes =i 0,3 (1) 2 S?B ’
0 0 —-i&p 1 0 0 -sp 1
N 1 =& N 1 s
(50 =Ven| _ g LA, | €n) = Tasn| _ g I, +SA, |
-1 0 0 O -1 0 0 0
0 & 0 0 0 - 0 0
Jd=-0u 0 0 §2 0 ! 9="00 0 0 _g2 0 )
0 0 0 & 0 0 0 -g?
U:éceR+, X eRC?. U does not exist, X e R*.

The results may be applied to any complex or real isotropic space of
dimension four (spacetime), endowed with the corresponding metric, whose
elements (four-vectors) have spatial part (vector) with Euclidean metric. We
simply put

ct—x ;) x—oxt ;) yox? ;) zoxd (180)
So, the p-factor is written as
;o dx!
b=—— 181
= (181)

New spaces are produced from the initial space: (i) with derivation of the
initial four-vector wrt an invariant quantity, such as ‘proper time’, or (ii) with
multiplication of the initial four-vector with invariant quantity, such as ‘mass’
(see e.g. [4] p. 109). Moreover, there exist applications beyond physics as
biometry, econometrics etc, producing suitable vectors and four-vectors.

The specific value wi=i (&=1) gives the Lorentzian-Einsteinian version of
CILToCST endowed with Lorentz metric (for gii=1), which produces the
Lorentzian Complex Relativity Theory, which

M is using the Lorentzian-Einsteinian version of CILToCST instead of
Lorentz transformation that is used by ESR,

(ii) is using complex Cartesian Coordinates creating a Generalized Euclidean
Geometry,

(iii)  creates the new group Of CILTOCST with elements complex matrices,
instead of the Lorentz group of ESR,
(iv)  can produce the Lorenz Boost of ESR [3] (p. 6),
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) is successfully applied to mechanics and electromagnetism,
(vi)  maintains the Classical Physical Laws and the formalism of ERT,
(vil)  is in accordance with Quantum Mechanics,
(viii)  gives results that are exactly the same as ERT, if only two observers are
related,
(ix) gives different results than ERT, when more than two observers are
related, and
x) calculates with better accuracy the fine structure peeks of spectrum of
atomic Hydrogen than ESR [8] (p. 4).
Finally, we can consider that the value of w; depends on the cosmic time (tc).
Thus, Lorentz metric is valid, only for ‘events’ near to (nowadays, Earth). This
could be an explanation for the problem of dark matter and dark energy.

5 Improper isometric Linear Transformations in
Spacetime endowed with Euclidean, or Lorentz,
or generally Isotropic metric

In the derivation of proper closed isometric LT (ICLToCST) (|1), we have
chosen positive b [the lower sign () in (91)] and via (64) f is positive (1), too.
So, there have remained the following three (3) improper non-closed isometric
LTs (which do not contain the identity transformation) [see also the
Lorentzian-Einsteinian version [7] (pp. 1049-1050)]:

(i) Space inversion non-closed isometric Linear Transformation (|]) in

isotropic ST and E*with corresponding matrices (detA =detR = —1):
1 a)ZﬂT

A(ﬂ) :7(iwﬂ)|:ﬁ —I3—a)A (182)

(5)

R = 1 of’ LB g (183)
@) = Viep) of —l,-0A,, =) g .. = Ry -

The respective typical transformations along the x-axis, have
1 o’ 0 0
ﬁ -1 0 0

0 0 a)ﬂ -1
1 of O 0 0
- wf -1 1.0 0
Reows = Viiap) 0 _1 —a),B 1 -B|~ Rpoe - (185)
0 0 wp B -1
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(if) Time inversion non-closed isometric Linear Transformation (11) in
isotropic ST and E*with corresponding matrices (detA =detR = —1):

_1 —Q)ZﬂT

ANpomy =V ; 186
B(8) 7(|(oﬂ)|:_ﬁ |3+a)A(ﬁ) (186)

R A LB g (187)
o :yiw :7/i = .
D) _wp 1reng | T -B LtAg | @

The respective typical transformations along the x-axis, have
-1 -&’8 0 0

- 1 0 0.
Ao =7 ; (188)
0B = Yiop) 0 0 1 wp
0 0 -of 1
1 -wf 0 0 1 -B 0 0
~ ~0f 1 0 0 -B 1 0 0| = (189
Riows) = 7 iap) 0 0 1 wp =7ig) 0 0 1 B =R (189)
0 0 -wp 1 0 0 -B 1

(iii) Spacetime inversion non-closed isometric Linear Transformation (1)) in
isotropic ST and E*with corresponding matrices (detA =detR =1):

-1 _a)leT } .

A = 190
0 7(-wﬂ)[ﬁ l-0A,, (190)

~ -1 —~of’ -1 -BT ~
“” y('”ﬁ){a)ﬂ —|3—a)A(ﬁJ 7/('5{8 —|3—A(J @ (19

The respective typical transformations along the x-axis, have
-1 -0’8 0 0

s -1 0 0o |.
Acap =7 ; (192)
CIORA] I 0 1 —wp
0 0 o -1
-1 -ofp 0 0 -1 -B 0 0
~ of -1 0 0 B -1 0 O ~
R(x)(wﬁ) =Y(iop) 0 0 1 —wp =7(is) 0 o 1 B = R(x)(B) . (193)
0 0 wp -1 0 0 B -1

These matrices are exactly the opposite of the corresponding proper
ICLToCST.

The above can be compared to the case of Lorentz Boost [4] (pp. 30-31), [7]
(pp. 1050-1052), where we have:
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(a) Space inversion Lorentz Boost in M* and E* with corresponding matrices
(detAL =detR, = —1):

;
V() Yip)P
Ay =1 _ 1 R (194)
7(ﬁ)ﬂ 3 B BB
- 140 —i V(s )'BT Y(is) _7(iB)BT - (195)
Rigm =| _; Y ~ Vie —1 =Rl
—|7(ﬁ)ﬂ o Ph ﬂ i ﬂﬂ 7(iB)B —1,- BB BB
The respective typical transformations along the x-axis, have
Yo YwP 0 0
~Vph _7(/?) 0 01,
A ; (196)
Lx(8) = 0 0 -1 0
0 0 0 -1
Y(p) 0 V(i) 7/iB)B 0 0
5 _ _iy(ﬁ)ﬁ 0| |=7usB (iB) 0 0] = . (197)
L(x)(B) 0 -1 0 0 -1 0 L(x)(B)
0 0 -1

(b) Time inversion Lorentz Boost in M* and E4 Wlth corresponding matrices
(detAL =detR, :1):

;
Al V)P
Ay = Yo tL oo | (198)
7(ﬁ)ﬂ I5- ﬂTﬂ pp
- ~7(p) _i7ﬂ)ﬁT —7ie) —7(iB)BT (199)
R = Yis) +1 Rig-
Iﬂ/(ﬂ)ﬂ I3_ ﬁﬂ ﬂﬂ }/(IB)B |3_ BTB BBT
The respective typical transformations along the x-axis, have
Yy Yph 00
_|Ywf 1w O 0.
AL(X)(ﬁ)_ 0 0 1 0!’ (200)
0 0 0 1
Y “lrpp 0 0 ~Yie) ~YiB 0 0
5 _|ef e 00 7B mre 0 05 (o0
L(x)(8) 0 0 10 0 0 1 0 L(x)(B)
0 0 01 0 0 01

(c) Spacetime inversion Lorentz Boost in M* and E* with corresponding
matrices (detAL =detR,_ =—1):
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.
~7p) ~ Vb . (202)
Ay = Yptl |
rpB st —— P
(ﬂ) 3 ﬂTﬁ
- ~7p) i7/(ﬁ)ﬂT —7Ys) i?”(iB)BT N
Rip =| - Y+l =] w+l =R (203)
Lp) I)/(ﬂ)ﬂ S+ ’([?)Tﬂ ﬂﬂT '7(iB)B _|3+7(BBT)B BBT L(B)
The respective typical transformations along the x-axis, have
Ve “Ywh 00
A "B vy 0 0, (204)
LO)(B) 0 0 -1 0 ’
0 0 0 -1
Yy P 0 01 1=V rweB O 0
= | e 0 0 _1reB v O 0 5 (ops)
L(x)(B) 0 0 -1 0 0 0 -1 0 L(x)(B)
0 0 0 -1 0 0 0 -1

5 Conclusions

In a 3D complex ‘space’ endowed with Euclidean metric, we consider one
frame Oxyz, where a ‘position’ vector has real Cartesian Coordinates. Another
real independent variable (‘time’) and the aforementioned coordinates produce
a real four-vector. There exist two cases of closed linear ‘spacetime’
transformation of this real four-vector: one with the ‘time’ depending on the
position, where the ‘event’ happens and another with the ‘time’ being
independent from the position. The first case can have real Invariant ‘Speed’
(U), in contrast to the second case, which has only infinite U.

Moreover, for transformation having isometry, the first case transformation
matrix is totally calculated and contains a parameter o, with ©?= gii/goo (the
ratio of coefficients of ‘spacetime’ metric) in addition to the ‘velocity’ of the
frame O'x’yz"” wrt Oxyz. The second case is turned to Galilean
Transformation (GT). The assumption that w—0 in the first case yields GT.
So, in isometry, the second case is embedded to the first case transformation.
Besides the first case is divided to two types: one type, where ‘time’ and
‘space’ have ‘spacetime’ metric coefficients with different signs [signature of
spacetime: (-+++)], which leads to complex 3D ‘space’ with real U. The
second type, where ‘time’ and ‘space’ have metric coefficients with the same
sign [signature of spacetime: (----)], leads to real 3D ‘space’ without U. Time
remains real, in both cases.

If the metric is independent from the ‘position’ of the ‘event’ in
‘spacetime’, it is w=wi=constant and we have the case of ‘Special Relativity’
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(‘SR’) and the transformation can be applied globally, relating ‘Inertial
Observers / Frames’ (‘10s/Fs’). Thus, infinite number of ‘SRs’ are produced
(each one with the corresponding metric), all of them keeping Einsteinian SR-
formalism. In the case that metric depends on the ‘position’ of the ‘event’ in
‘spacetime’, we have the ‘General Relativity’ (‘GR’) and the transformation
may be applied locally, relating ‘accelerated observers / frames’. Thus, infinite
number of ‘GRs’ are produced (each one with the corresponding metric of
I0s” spacetime), all of them keeping Einsteinian GR-formalism. Of course,
vanishing ‘acceleration’ leads to the corresponding ‘SR’.

This new modeling of study allows studying Einsteinian Relativity Theory,
Newtonian Physics (NPs), or any other Theory of Physics that is in accordance
with closed Linear Spacetime Transformations simultaneously. This is
achieved, because the coefficients of spacetime metric are contained in the
transformation matrix. Besides, NPs is obtained, not only by the low velocity
limit, but also by the zero limit of the space coefficient of spacetime metric
(9ii—0), or equivalently w—0. Finally, we can consider that the value of w
depends on the cosmic time (t;) and Lorentz metric is valid only for ‘events’
near to the (nowadays, Earth). This could be used for the explanation of dark
matter and dark energy.
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