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Abstract

It is known that a concrete representation of a finite k-dimensional Projective
Geometry can be given by means of marks of a Galois Field GF [p"], denoted
by PG(k, p").

In this geometry, we define hyperoperations, which create hyperstructures of
finite order and we present results, propositions and examples on this topic.
Additionally, we connect these hyperstructures to Join Spaces.
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1. Introduction

The algebraic hyperstructures, which constitute a generalization of
the ordinary algebraic structures, were introduced by Marty in 1934
[5]. Since then, many researchers worked on hyperstructures. The
results of this work, as well as, applications of the hyperstructures
theory can be found in the books [2] and [3]. Vougiouklis in 1991
introduced a larger class than the known hyperstructures, so called H,-
structures [8] and all about them can be found in his book [9].

Let us give some basic definitions, appearing in [3], [9]:
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Let H be aset, P1{H) the family of nonempty subsets of H and (:)
a hyperoperation in H, that is
- HxH — P(H)
If (X,y)eHxH, its image under (-) is denoted by x-y or xy. If A,B
c H then A-Bor AB isgivenby AB=u {xy/xeA, yeB}.
XA is used for {x}A and Ax for A{x}. Generally, the singleton {x}
is identified with its member x.
The hyperoperation (-) is called associative in H if
(xy)z = x(yz) forall x,y,zeH
The hyperoperation (-) is called commutative in H if
xy =yx forall x,yeH
A hypergroupoid (H,:) that satisfies reproducibility, xH = Hx = H
for all xeH, and associativity, is called hypergroup.
A join operation (-) [6] in a set J is a mapping of JxJ into the family
of subsets of J. A join space is defined as a system (J,-), where (-) is a
join operation in the arbitrary set J, which satisfies the postulates:

i)a-b+0 ii)ab=b-a iii) (a-b)-c=a-(b-c)
iv)albbncld+=Zd = adnbcxd v)ab={xellacbhx}+J.

The Hy-structures are hyperstructures satisfying the weak axioms,
where the non-empty intersection replaces the equality.

Let H=J be a set equipped with the hyperoperations (+), (), then the
weak associativity in (-) is given by the relation

(xy) -z x(yz) =, Vx\y,zeH.
The (-), is called weak commutative if

XyNyX=, VXyeH.

The hyperstructure (H,-) is called H,-semigroup if (:) is weak
associative and it is called H,-quasigroup if the reproduction axiom is
valid, i.e. x-H=H-x=H, ¥xeH.

The hyperstructure (H,-) is called Hy-group if it is an Hy-quasigroup
and an Hy-semigroup. It is called H,-commutative group if it is an Hy-
group and the weak commutativity is valid.
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The weak distributivity of () with respect to (+) is given for all
X,y,zeH, by

X-(y+z) N (X-y+xz) #Q3 , (X+y)-z N (X-z+y-z) # Q.
Using these axioms, the H,-ring, which is the largest class of algebraic
systems that satisfy ring-like axioms, is defined to be the triple
(H,+,-), where in both (+) and (-) the weak associativity is valid, the
weak distributivity is also valid and (+) is reproductive, i.e x+H =
H+x = H, VYxeH.
An H-ring (R,+,:) is called dual H-ring if the hyperstructure (R,-,+)
is also an Hy-ring [4].

Let (H,-) be a hypergroup or an H,-group. The g* relation is defined
as the smallest equivalence relation, one can say also congruence,
such that, the quotient H/B* is a group.

The B* is called fundamental equivalence relation.

2. Representation of the geometry of a k-dimensional space by
means of Galois Fields

Veblen and Bussey [7] have defined a finite projective geometry,
which is said to be a geometry of a k-dimensional space, in the
following way.

It consists of a set of elements, called points for suggestiveness, which
are subjected to the following five conditions or postulates:

l. The set contains a finite number of points. It contains one
or more subsets called lines, each of which contains at least
three points.

Il. If A and B are distinct points, there is one and only one
line that contains both A and B.

. If A, B, C are noncollinear points and if a line | contains
a point D of the line AB and a point E of the line BC
but does not contain A or B or C, then the line |
contains a point F of the line CA.

IV. If m isan integer less than k, not all the points considered
are in the same m-space.
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V. If (IV) is satisfied, there exists in the set of points
considered no (k+1)-space.

Furthermore, a point is called 0-space, a line is called 1-space and a
plane is called 2-space.

By means of marks of a Galois field, we shall now give a concrete
representation of a finite k-dimensional projective geometry.
We denote a point of the geometry by the ordered set of coordinates
(1o, M1, M2s...., Hk), Where po, pa, Ha,...., ik are marks of the GF[p"],
at least one of which is different from zero. It is understood that the
foregoing symbol (uo, w1, po,...., uk) denotes the same point as the
symbol (upo, tps, U,...., tuk), Where p is one of the p"-1 nonzero
marks of the field.
The ordered set of marks po, p1, pa,...., ik may be chosen in (p")
ways, but since the symbol (0, 0, 0,....,0) is excepted, then it may be
chosen in  (p")***-1 ways. So, there exists (p")***-1 points. In this
totality, each point is represented in p"-1 ways (there are p"-1
nonzero marks in the field) and thus, it follows that the number of
points defined is

K+l

This representation of the finite x-dimensional projective geometry by
means of the marks of the GF[p"] constitute the projective geometry
PG(x, p") [1].

Now, for the line containing the two distinct points (uo, w1, 12, ..., Hk)
and (vo, v1, Va,...., vk) We consider the set of points :

(1po + Vo, tpa + VWi, 2 + VW2, L s Mtk + Vi)

where p and v run independently over the marks of the GF[p"],
subjected to the condition that p and v shall not be simultaneously
zero.

Then the number of possible combinations of p and v is (p")? -1
and for each of these the corresponding symbol denotes a point, since
not all the k+1 coordinates are zero. But the same point is

46



represented p"-1 times, due to the factor of proportionality involved
in the definition of points. Therefore, a line so defined contains

(p")’ -1

o =p"+1 points.
p —

It is obvious that any two points on the line may be used in this way to
define the same line.

The five postulates given above for the k-dimensional space are
satisfied by the concrete elements thus introduced [1].

3. On a hypergroup of finite order

Let us denote by V the set of the elements of the PG(x, p") and for
X,yeV let us denote by I,y the line which is defined by the points x
and y. By Iy is denoted the line which is defined by the point x and
any other point of V.

We define the hyperoperation (-) on V, as follows :

Definition 1. Forevery x,yeV, -: VxV — P’(V), such that
{x if x=y
Xy= .
[, if x#y

Obviously, the above hyperoperation is a commutative one, since
xy=ly=lx=yx forevery X,yeV and x #y.

One can compare the above defined hyperoperation with the join
operation [6], when Euclidean Geometry is converted into Join Spaces

by defining ab with a=b, to be the open segment, whose endpoints
are a and b. Moreover, aa is defined to be a.

Proposition 2. For every noncollinear x,y,zeV, |x(yz)|=|(x'y)z| =
p2n +pn +1.
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Proof. All the lines defined in V are having one point in common, at
most. First, let us calculate the points of the set x:(y-z). For y # z,
the set y-z = ly, consists of p" +1 points, including y and z. On the
other hand, the point x (x # y,z), with each of the p" +1 points of the
line Iy, creates p" +1 lines of the type Iy. which are having the point
X in common. This means that the p" +1 lines of the type |, are
having no other point in common. So, each line Iy is having p"
different points from the others. Then it follows that the set x:(yz)
consists of (p"+1)-p" +1=p* +p" +1 different points.

Similarly, it arises that |(x-y)-z| = p*"+p" +1.m

Proposition 3. The hyperstructure (V, ) is a hypergroup.
Proof. Easily follows, that for every xeV

xV = Ux-v)=UWm-x)= Vx=V

veV vel

Now, for every X, y, zeV

if x=y=z then x(yz)=(xy)z=x

if x=y#z then x(yz)=xy)z=lk

if x=z#y then x(yz)=xy)z=ly

if y=z#x then x(yz)=(xy)z=ly

if x#y#z and X, Yy, z collinear, then x:(yz) = (x'y)z=lyy

if X,y, znoncollinear then
for the line Iy, containing the two distinct points y(yo, Y1,...Yx) and
2(zo, z1,..., zx) We take the set of points :

(1yo +VZo, py1 + VZ1 ,..oo.ny WYk + VZk)
where p and v run independently over the marks of the GF[p"]
subjected to the condition that p and v shall not be simultaneously

Zero.
Let X(Xo, X1,...,Xk). Then for the set x-(y-z) we take the set of points :

(pXo + X(pyo + VZO) , PXp Tt )L(Hyl + VZl) erenns , PXk t X(uyk + VZk)) (1)
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where p and A run independently over the marks of the GF[p"]
subjected to the condition that p and A shall not be simultaneously
zero.

Let we x-(y-z), then the coordinates of the point w is of the form of
(D).

For some i€0,1,.....k we have

pXitA(LYi+VZi) = pXi+Apyi+tAvz; = pXi+Auyi+v'z;, where v e GF[p"]
If p=0 (2) then p=A0 for every LeGF[p"] and then
pXi + Auy; + v'zi =A0X; + Ay +v'zi = AMO0x; + pyi ) +v'z
If p=0 (3) then p=An’ forevery A, u eGF[p"]-{0} and then
pXi + Auy; +V'Zi = MUX; + Ay + vz = Mu'Xi ;) vz

The coordinates of the points of the set (x-y)-z are of the form
K(tX; + 1Y) + K'z;
where 1, T, x, ' run independently over the marks of the GF[p"]
subjected to the condition that t, t and k, «’ shall not be
simultaneously zero.
Due to the conditions (2) and (3) we get that
we x(y'z) = We (x'y)z which means that x-(yz) c (x'y)z.
In a similar way, it can be proven that for w'e(x'y)z = W' ex(y-z),
which means that (x-y)-z < x-(y-z). So,

x-(yz) =(xy)z forevery X,y,ZzeV.m

Remark 4. For the hypergroup (V,"), since {x,y} < x'y VX, yeV, the
V/B* is a singleton.

Proposition 5. The hypergroup (V, -) is a Join Space.

Proof. Since the hyperoperation () is commutative, the hyperstructure
(V, -) is a commutative hypergroup.
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Moreover, leta/b N c/d # D, a,b,c,deV . Then, there exists weV
such that wea/b which implies that ae I,, and wec/d which
implies that ce lgy. Since the lines of V are having one point in
common at most, the lines Iy, and lg, intersect at w.

Let the ordered set of coordinates of the points w, a, d be (wy,
Wi,...Wx) , (d, ai,...,a), (do, di,...,dx) respectively. Then, the
coordinates of the point b will be of the form (Aap + pwp , Aa; +
UWi ,...... , Aax + uwy ), where A,ue GF[p"] and the coordinates of
the point ¢ will be of the form («kdg + pwp , kd; + pwi,... ...... , Kay +
pWk ), where x,pe GF[p"]. Since the points w, a, d do not belong to
the line Iy, the marks A,u,x,p of the GF[p"] are not zero.

Now, lpc consists of the points of the form

(vAagtvuwot tdo+tpWo , vAar+vuwi+ tdy+tpwy ... , VAac+tvuwyt
Ak +HTpWy ),

where v and t run independently over the marks of the GF[p"] and
they are not simultaneously zero.

It is known that for the nonzero marks p and p, there exist nonzero
marks v and t such that: vu+tp =0. Then, we get

VUWo + TpWo = (vuttp)wo =0, vuws + tpwy = (vuttp)wi =10 ,........ ,
VUW + TpWi = (vuttp)wi = 0 .

In that case, the point (vAao+ttkdy, vAa;+tkdy ,....... , VAaxt+tidy) of the
line Iy is additionally a point of the line l,g. So, the lines Iy, lag
intersect and then:

adNbc#d foralla,b,c,deV .m

4. On a Hy-group of finite order
Now, we define a new hyperoperation (°¢) on V as follows :
Definition 6. Forevery x,yeV, °:VxV — P'(V) , such that

_|x if x=y
IV -t i xy
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Every line of the set V contains p"+1 points. The hyperoperation (°)
is weak commutative, since the lines l-{x} and lx-{y} are having
p"+1-2 = p"-1 points in common, so

(xey) N (yox) £ for every x,yeV.

Proposition 7. For every noncolliner x,y,zeV,
[x2(yoz)| = p™" > |(xoy)oz| = p™-p" +1
Proof. Since the line y°z does not contain the point y, we get that

lyez| = p". The point x creates p" points with each of the p" points of
the line yoz (the point x is not participating according to the

hyperoperation (°)). So, |x(y°z)|= p"-p" = p*".

On the other hand, the line xey consists of p" points. Each of these
points creates p" points each time together with the point z, but since
the point z appears p" times, we get

|(xey)ez| = p™-p" - p"+1 = p™-p" +1.
Since p is prime and nelN, easily follows that [xe(yez)| >
|(xey)ez|.m

Proposition 8. The hyperstructure (V, °) is an Hy-group.
Proof. Indeed, for every xeV

x°V = U(xOV):(XOX)U( U (xov))zxu( U (lxv—{x})jZV

velV velV —{x} vel —{x}
since every line Iy, always contains the point veV.
On the other hand, for every xeV

Vax = Yoon =0 o U oon)exo U @ -h]=v

velV velV —{x} vel —{x}

Indeed, having the fact that every line of V contains at least 3 points,
for every line l,x—{v}=vex there exists at least one point v'el,x—{v},
that ve Iy {Vv'} =Vv'°x. So,

x°V =Vex =V forevery xeV.
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The hyperoperation (°) is weak associative, since for every X,y,zeV
xo(yez) Dx°z>z and (x°y)z>Oy°z>Z

But, we shall go further on, proving that the inclusion on the right
parenthesis is valid, i.e (x°y)°z < x°(y°z).

From the proposition 7 we get that |xe(yoz)|= p™", since the p"+1
points of the line I,y are not contained into the set x°(y°z).

Similarly, the set (x°y)°z does not contain the points of the line Iy,
since

(xey)ez =(lxy— {x})°z =(x1°2 ) U(X2°z ) L...... U (xp”_1 °z ) U(y°z ),
where Xg, Xp,....... X €lyy.

Also, the set (x°y)°z does not contain the points of the line Iy, since
xey=lxy— {x}.

As the lines Iy, and Iy, intersect at the point X, they don’t have any
other points in common. That means that the p®"-p" +1 points of the
set (xey)°z (proposition 7), are also points of the set x°(y°z).

So, we proved that (x°y)ez c x°(y°z), which, generally, means that

(xey)ez N xe(yez) # & for every X,y,ZeV. m

Remark 9. For the Hy-group (V,°), since yexey VX,yeV, the V/B* is
a singleton.

Since, yexey for every X,yeV, we get the following proposition:

Proposition 10. Every element of the H,-commutative group (V,e) is
simultaneously a right zero and a left unit element.

Example 11. By means of the marks of a Galois Field, we shall now
give a concrete representation of a finite 2-dimensional projective
geometry.

We denote a point of the geometry by the ordered set of coordinates
(Mo, M1, H2). The po, pu, 1 are marks of the GF[2%] defined by means
of the function x?+x+1. At least one of po, i, p2 is different from
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zero. Let us denote the marks of the GF[2?] by 0, 1, a, b, then we
have the following tables :

= T OoOlD
|| T |O|T

OO0 |0O|o

O |, O

Ol | |T|T

T (kL O+
T | —L|IOIOo

DT |O|F|F

R OT|o D

T |, O]| -

The ordered set of marks po, 1, po may be chosen by (2%)**! = 64
ways, but since the symbol (0, 0, 0) is excepted, it may be chosen by
64-1=63 ways. So, there exist 63 points. In this totality, each point is
represented by 3 ways (3 sets of symbols, since there are 3 nonzero
marks in the field). Then the number of points defined is 63 + 3 = 21.

This representation of the finite 2-dimensional projective geometry by
means of the marks of the GF[2?], constitute the projective geometry
PG(2, 29).

The 21 points of PG(2, 2°) = V will be denoted by letters in
accordance with the following scheme :

A(001) B(010) C(011) D(0la) E(0lb) F(100) G(101)
H(10a) I(10b) J(110) K(111) L(1la) M(1lb) N(la0)
O(lal) P(laa) Q(lab) R(1b0) S(1bl) T(lba) U(lbb)

Now, for the line containing the two distinct points A(001) and
B(010) we take the set of points :

(n0+v0,u0+v1,ul+v0)

where p and v run independently over the marks of the GF[2?]
subjected to the condition that p and v shall not be simultaneously
zero.

Then the number of possible combinations of the p and v is (2%)%—
1 = 15. For each of these combinations, the corresponding symbol
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denotes a point. But the same point is represented by 3 of these
combinations of p and v, due to the factor of proportionality involved
in the definition of points. So, we get the following scheme:

A:  (001) , (00a) , (OOb)
B:  (010) , (0a0) , (ObO)
C:  (011) , (0aa) , (Obb)
D: (0la), (Obl) , (0ab)
E:  (0lb) , (Oba) , (0al)

Therefore, a line so defined, contains the 15 + 3 = 5 points A,B,C,D,E.
It is obvious that any two points on the line may be used in this way to
define the same line.

The 21 lines are those given in the following scheme and the letters in
a given column denoting a line:

A A A A A B B B B CTCTCCD D D D E E E E
B F J N R F G H | F G H | F G H | F G H |1
c 6 K os J KL MK J ML L M J K ML K J
DHL P TN OU P O QU PIOQQNUOU Q®PUONUONW G QF@©P
E I M Q U R §$ T U U T S R S R U T T U R S
Let us take the noncolliner points A, B, F, then
Ae(B°F) = A°{F, J,N, R} =
={F,G H I,J,K,LLMN,O,P,QR,S, T, U}
(AOB)OF = {B’ Co Da E}OF = {F7 J7 N: R: K9 P: U9 L: Qa ’ Ma 07 T}

Then, it follows that (A°B)°F < A°(B¢F).

Also, for the hyperoperation (-) we proved that |x-(y:z)|= |(x'y)z| =
p™ +p" +1 and since the set V = PG(2, 2°) consists of 21 points, it
follows that

x(yz)= (xy)z=V forevery x,y,zeV.

5. On a dual Hy-ring of finite order

Working on dual H,-rings (H,+,-), one needs to prove not only the
weak distributivity of (-) with respect to (+) but also the weak
distributivity of (+) with respect to (-).
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Since the set V is now equipped with the hyperoperations (-) and (°)
mentioned above, the next propositions 12 to 19 serve the above
purpose.

Similarly, as in proposition 2, we can prove that:

Proposition 12. For every noncollinear X,y,zeV
|(ey)(x2)| = [(ez)y(yz)| = p™ +p" +1

Following a similar procedure, as in proposition 3 and according to
the propositions 2 and 12, we get the next proposition:

Proposition 13. For every Xx,y,zeV
x(yz)=(xy)(xz) and (xy)z=(x2z)(yz)

Proposition 14. For every noncolliner x,y,zeV,

Ix(yoz)| = p?"+1 and |(x'y)o(xz)|= p™+p" +1
Proof. First we consider the set x:(y°z). Since the point y does not

belong to the line yoz, we get that |yoz| = p". Also, for every weyez

we get that |x-w|=p" +1. Since the point x appears p" times in the set
x*(y°z), we have
[x(yoz)| =(p" +1) p" - p" +1 = p™" +1.
Consider now the set (x'y)e(x-z). Each of the lines xvy and xz
contains p" +1 points, having in common only the point X, since the
points x,y,z are noncollinear. Then, we get the following:
i) x°x = x, by definition.
i) Due to the hyperoperation (°), the point xex-y together
with the rest p" points of the line x-z create the p" points
of the line x-z.
iii) Due to the hyperoperation (°), the point yex-y together
with the p" +1 points of the line x-z, create (p" +1)-2 = p"
-1 points each time. Indeed, the point y does not participate
(by definition) and the point wex-z (which appears due to
the hyperoperation yew), already exists due to the
hyperoperation x°w of the case (ii).
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iv) Also, the point ye(x-y)e(x-z). Indeed, since there exists
W' ex-y such that yew'ox (where Xxex-z).

So, from the above 4 cases we get that:
|Cey)e(xz)| = 1+ p +(p" -1)(p" +1)+1 =™ +p" +1.m
In a similar way, we get the following proposition:

Proposition 15. For every noncolliner x,y,zeV
|(xey)z|=p™"+1 and |(x'z)°(y-z)|= p*" +p" +1

Proposition 16. For every noncolliner x,y,zeV,
|xe(y-z)| = | (xey)-(xez)| = p*" +p"
Proof. First, consider the set x°(y-z). The line y-z consists of p" +1
points. The point X (due to the hyperoperation (°)) together with the
points of the line y-z creates each time (p" +1) p" = p?" +p" points,
since X is not participating.
Consider now, the set (x°y):(x°z). Each of the lines x°y and x°z
contains p" different points, since the point X is not participating.
Then, we get the following:
i) The point yexey (due to the hyperoperation (+)), together
with every wexez creates p" +1 points each time, but
since the point y appears p" times we get that the number

of points in this case is (p" +1) p" - p" +1 = p™ +1.
i) The point W' e(x°y)-{y} (due to the hyperoperation (-)),
together with the point wexez creates each time the point
w', since the point w already exists from case (i). The
number of those w”’s is p"-1.
Then, the set (xcy):(x°z) consists of (p?" +1)+(p"™-1) = p?" +p" points.
As we mentioned, x is the only point which is not participating.m

Similarly, we get the following two propositions:

Proposition 17. For every noncolliner Xx,y,zeV
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|(xy)ezl=p* and [(xoz)(yoz)|= p?"+p" +1

Proposition 18. For every noncollinear X,y,zeV
|(xey)e(xez)| =p™" and  |(xoz)(yoz)| = p*" +p" +1

Following a similar procedure as above and according to the
proposition 18 we get the next proposition:

Proposition 19. For every Xx,y,zeV
xo(y°7) = (xey)(x°z) and  (x°y)°z < (x°2)°(y°7)

Proposition 20. The hyperstructure (V,=,=), where ==e{-,°}, is a
dual Hy-ring.

Proof. There are four hyperstructures: (V,-,") , (V,°,°), (V,°), (V,,").
The hyperoperations (-), (°) (by propositions 3 and 8 respectively) are
satisfying the reproduction axiom.

The hyperoperation (-) (by proposition 3) is associative and the
hyperoperation () (by proposition 8) is weak associative.

Now, for the distributivity or the weak distributivity of (=) with respect
to (=) we have the following cases:

By proposition 13:

x(yz) = (xy)(xz) and (xy)z=(x2z)(yz) foreveryX,y,zeV.
By proposition 19:
xo(yez) = (x°y)e(xez) and (x°y)ez N (x°z)o(y°z)#J V X,y,zeV.

Following a similar procedure as for the distributivity of the above
hyperoperations and taking into account the propositions 16, 17, 18,
19 we get that:

xo(y'z)=(x°y):(x°z) for every X,y,zeV.
On the right side, (x'y)°z < (x°z):(y°z) is valid, which means that
(x'y)ez N (xez)-(yez)=<D forevery x,y,zeV.
Also, x:(y°z) < (x-y)°(x-z), which means that
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x(y°z) N (x-y)e(x'z) = forevery x,y,zeV.

Finally, on the right hand side (x°y)-z < (x'z)°(y-z), which means that
(x°y)z N (xz)o(y'z) #& forevery x,y,zeV.

So, the hyperstructure (V,s,=), where =,=c{-,°}, is a dual Hy-ring.m
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