To some structural properties of ∞-languages

Ivan Mezník ${ }^{1}$

Abstract

Properties of catenation of sequences of finite (words) and infinite (ω-words) lengths are largely studied in formal language theory. These operations are derived from the mechanism how they are accepted or generated by the corresponding devices. Finite automata accept structures containing only words, ω-automata accept only ω-words. Structures containing both words and ω-words (∞-words) are mostly generated by various types of ∞-automata (∞-machines). The aim of the paper is to investigate algebraic properties of operations on ∞-words generated by $I G k$-automata, where k is to model the depth of memory. It has importance in many applications (shift registers, discrete systems with memory...). It is shown that resulting algebraic structures are of ,"pure" groupoid or partial groupoid type.

Keywords: ∞-words; ∞-language; $\rho_{\mathrm{n}, \mathrm{p}, \mathrm{r}}$-catenation; closure of an ∞ language;
ρ-operation.
Mathematics Subject Classification: 68Q70, 08A55²

[^0]
1. Introduction

The notion of an ∞-language was introduced by Nivat ([10]) as a free-monoid structure containing words finite (,,clasical" languages) and infinite (ω-languages) lengths. The theory of ω-languages has been intensively developed so far, mostly as a generalization of acceptance conditions of various types of automata ([1], [8], [9], [11], [12], [13], [14], [15] among others). Devices capable to accept (or generate) simultaneously words or finite or infinite (ω-words) lengths were described and investigated in [2], [3]. Such devices (k-machines, $I G k$-machines) also provide to implement the depth of memory and possess various applications (shift registers, modelling of phenomena working in a discrete time scale). They also make a lot of properties. In [3] lattice structures were described. The way how they generate words and ω-words motivates to study various types of catenation of words, which is the aim of the paper. The paper is organized as follows. In Section 2 we introduce basic concepts. In Sections 3 and 4 we examine properties of ρ-closure and ρ-operation, respectively.

2. Preliminaries

An alphabet is any finite set (including the empty set) and is denoted by Σ; its elements are called letters. Let ω be the least infinite ordinal and $n, 0 \leq n \leq \omega$ be an ordinal. For $\Sigma \neq \varnothing$ the set of all finite sequences of elements of Σ including the empty sequence λ is denoted by Σ^{*}, the set of all infinite sequences of elements of Σ by Σ^{ω} and the set $\Sigma^{*} \cup \Sigma^{\omega}$ by Σ^{∞}. For $\Sigma=\emptyset$, by definition, $\Sigma^{*}=\Sigma^{\omega}=\Sigma^{\infty}=\emptyset$. The elements of Σ^{*} are words, the elements of Σ^{ω} are ω-words, the elements of Σ^{∞} are ∞-words. Instead of $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \Sigma^{*}, n \geq 1$ and $\left(a_{0}, a_{1}, \ldots\right) \in \Sigma^{\omega}$ we write simply $a_{0} a_{1} \ldots a_{n-1}$ and $a_{0} a_{1} \ldots$. For $w \in \Sigma^{\infty}$, the length of w, denoted by $|w|$ is defined as follows: if $w=$ $a_{0} a_{1} \ldots a_{n-1} \in \Sigma^{*}$ then $|w|=n$, if $w=a_{0} a_{1} \ldots \in \Sigma^{\omega}$ then $|w|=\omega$ and if $w=\lambda$ then $|w|=0$. A subset of Σ^{*} and Σ^{ω} and Σ^{∞} is referred to as a language and an ω-language and an ∞-language (over Σ) respectively. For $L \subseteq \Sigma^{\infty}$ we define $m(l)=\inf \{|w| ; w \in$ $L\}$. Let $w \in \Sigma^{\infty}-\{\lambda\}, 1 \leq m \leq n<1+|w|$; by $w(n)$ we denote the n-th letter of w, by $w[m, n]$ the word $w(m) \ldots w(n)$ and if $|w|=\omega$ by $w[m, \omega]$ the word $w(m) w(m+$ 1).... Instead of $w[1, n]$ we write only $w[n]$. In case $m>n$ we formally put $w[m, n]=$ λ. The usual operation of catenation on Σ^{*} may be extended to Σ^{∞} as a partial operation as follows. Let $w \in \Sigma^{*},|w|=n, w^{\prime} \in \Sigma^{\infty}$; if $w^{\prime} \in \Sigma^{*}$, then $w w^{\prime}$ is defined by catenation on Σ^{*} and if $w^{\prime} \in \Sigma^{\omega}$, then $w w^{\prime}=w(1) w(2) \ldots w(n) w^{\prime}(1) w^{\prime}(2) \ldots$. For $w \in \Sigma^{*}, k \geq$ 1 , the symbol w^{k} denotes the result of k catenations of w and the symbol w^{ω} denotes the result of infinite number of catenations of w; by definition, $w^{0}=\lambda$.

3. Closure of an ∞-language

In this section we define the notion of a ρ-catenation. Subsequently the concept of a ρ-closure is introduced and its closure characterization is derived.
2.1 Definition. Let n, p, r be positive integers and $u \in \Sigma^{\infty}, v \in \Sigma^{\infty}$. For u, v satisfying the property

$$
u[p, p+n-1]=v[r, r+n-1]
$$

we define the operation $\rho_{n, p, r}$ by

$$
\begin{equation*}
\rho_{n, p, r}(u, v)=u[p+n-1] v[r+n,|v|] \tag{2.1}
\end{equation*}
$$

called a $\rho_{n, p, r}$-catenation or only ρ-catenation if n, p, r are given by the context.
Apparently, each $\rho_{n, p, r}$-catenation is a partial operation in Σ^{∞}. In other words, each $\rho_{n, p, r}$-catenation defines a partial groupoid in Σ^{∞}. In this manner (regarding the given $n, p, r)$ the set of partial operations (groupoids) in Σ^{∞} is given. Instead of $\rho_{n, p, r}(u, v)$ we write as customary $u \rho_{n, p, r} v$ or only $u \rho v$, if n, p, r are clear from the context. To simplify the text, by stating $u \rho_{n, p, r} v$ it is supposed that $(u, v) \in \operatorname{Dom}\left(\rho_{n, p, r}\right)$.
2.2 Lemma. Suppose $u \in \Sigma^{\infty}$ and $u \rho_{n, p, r} u$ for some n, p, r. Then it holds $u \rho_{n, p, r} u=u$.

Proof. It is an immediate consequence of Definition 2.1
Remarks. 1° Suppose $u \in \Sigma^{\infty}$ and $n, p, r \leq|u|$. Then there is obviously an infinite number of words $x \in \Sigma^{\infty}$ such that $u \rho_{n, p, r} x=u$ playing the role of the ,identity" element of $\rho_{n, p, r}$-catenation.
2° Operation $\rho_{n, p, r}$ is in general not commutative. For example consider words u, v over $\Sigma=\{a, b\}, u=(a b)^{3}, v=a^{3}$. Applying the previous definition we get $u \rho_{1,3,1} v=$ $a b a^{3}, v \rho_{1,3,1} u=a^{2}(a b)^{3}, u \rho_{1,3,1} v \neq v \rho_{1,3,1} u$.
3° Operation $\rho_{n, p, r}$ is in general not associative. For example consider $\rho_{1,3,2}-$ catenation in $\{a, b\}^{\infty}$ and let $u=(a b)^{4}, v=a^{5}, w=a^{7}$. Construct $\left(u \rho_{1,3,2} v\right) \rho_{1,3,2} w$, $u \rho_{1,3,2}\left(v \rho_{1,3,2} w\right)$. Due to Definition 2.1 we get $\left(u \rho_{1,3,2} v\right) \rho_{1,3,2} w=a b a^{5}$, whereas $u \rho_{1,3,2}\left(v \rho_{1,3,2} w\right)=a b a^{7}$. Of course, some of catenations in the given expressions need not be defined.
2.3 Theorem Let $u \in \Sigma^{\infty}, v \in \Sigma^{\infty}$ and suppose $u \rho_{n, p, r} v, v \rho_{n, r, s} w$ for some $n, p, r, s \geq 1$. Then $u \rho_{n, p, s} w$ and there holds

$$
\begin{equation*}
u \rho_{n, p, s} w=u \rho_{n, p, r}\left(v \rho_{n, r, s} w\right) \tag{2.2}
\end{equation*}
$$

Proof. Suppose that $u \rho_{n, p, r} v, v \rho_{n, r, s} w$ hold for given $n, p, r, s \geq 1$. From Definition 2.1 it follows that $u[p, p+n-1]=v[r, r+n-1]$ and $v[r, r+n-1]=w[s, s+n-$ 1]. Then evidently $u[p, p+n-1]=w[s, s+n-1]$, applying Definition 2.1 we get $u \rho_{n, p, s} w=u[p+n-1] w[s+n,|w|]$ and the first part of the statement is verified.

Rewriting this expression we obtain

$$
\begin{equation*}
u \rho_{n, p, s} w=u[1] \ldots u[p+n-1] w[s+n] w[s+n+1] \ldots w[|w|] . \tag{2.3}
\end{equation*}
$$

Now we costruct the right part of (2.2). By Definition 2.1 we have

$$
v \rho_{n, r, s} w=v[1] \ldots v[r] \ldots v[r+n-1] w[s+n] \ldots w[|w|]
$$

where $v[r, r+n-1]=v[r] \ldots v[r+n-1]=w[s] \ldots w[s+n-1]=w[s, s+n-$ 1] and

$$
\begin{equation*}
u \rho_{n, p, r}\left(v \rho_{n, r, s} w\right)=u[1] \ldots u[p] \ldots u[p+n-1] w[s+n] \ldots w[|w|] . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) the statement (2.2) holds and the proof is completed.
2.4 Theorem Let $u, v \in \Sigma^{\infty}$ and suppose $u \rho_{n, p, r} v$ for fixed $n>1, p \geq 1, r \geq 1$.

Then $u \rho_{m, p, r} v$ for any $m<n$ and it holds

$$
\begin{equation*}
u \rho_{n, p, r} v=u \rho_{m, p, r} v \tag{2.5}
\end{equation*}
$$

Proof. Let $u \rho_{n, p, r} v$ for the given n, p, r. From Definition 2.1 it follows that $u[p, p+n-1]=v[r, r+n-1]$. Since $m<n$, then apparently $u[p, p+m-1]=$ $v[r, r+m-1]$ holds for any $m<n$ as well and thus $u \rho_{m, p, r} v$. Due to (2.1) $u \rho_{n, p, r} v=$ $u[p+n-1] v[r+n,|v|]$. In a detailed version we have

$$
\begin{equation*}
u \rho_{n, p, r} v=u[1] \ldots u[p+n-1] v[r+n] \ldots v[|v|] . \tag{2.6}
\end{equation*}
$$

With a view to $m<n$, (2.6) may be rewritten as
(2.7) $u \rho_{n, p, r} v=u[1] \ldots u[p+m-1] u[p+m] \ldots u[p+n-1] v[r+n] v[r+n+$ 1] $\ldots v[|v|]$.

Now, we construct $u \rho_{m, p, r} v$ for $m<n$. It holds $u[p, p+m-1]=v[r, r+m-1]$ and by (2.1)

$$
\begin{equation*}
u \rho_{m, p, r} v=u[p+m-1] v[r+m,|v|] . \tag{2.8}
\end{equation*}
$$

In detail

$$
\begin{equation*}
u \rho_{m, p, r} v=u[1] \ldots u[p+m-1] v[r+m] \ldots v[|v|] . \tag{2.9}
\end{equation*}
$$

With a view to $m<n$, (2.9) may be rewritten as
(2.10) $u \rho_{m, p, r} v=u[1] \ldots u[p] \ldots u[p+m-1] v[r+m] \ldots v[r+n-1] v[r+$ $n] \ldots v[|v|]$.

Due to (2.7) and (2.10) $u[1] \ldots u[p+m-1]$ and $v[r+n] \ldots v[|v|]$ are common parts. It remains to verify that $v[r+m] \ldots v[r+n-1]=u[p+m] \ldots u[p+n-1]$. Using assumptions of Definition 2.1 we have $u[p, p+n-1]=v[r, r+n-1]$ and thus also $v[r+m] \ldots v[r+n-1]=u[p+m] \ldots u[p+n-1]$. Hence (2.7) and (2.10) are identical words and the proof is completed.
2.5 Definition. Let a $\rho_{n, p, r}$ - catenation be given. Define a relation $R_{n, p, r}$ on Σ^{∞} by

$$
\begin{equation*}
R_{n, p, r}=\left\{u, v \in \Sigma^{\infty} ;(u, v) \in \operatorname{Dom}\left(\rho_{n, p, r}\right)\right\} \subseteq \Sigma^{\infty} \times \Sigma^{\infty} \tag{2.11}
\end{equation*}
$$

2.6 Lemma. The relation $R_{n, p, r}$ is
(i) reflexive,
(ii) not symmetric,
(iii) not antisymmetric,
(iv) not transitive.

Proof. (i) Reflexivity of $R_{n, p, r}$ follows immediately from Lemma 2.2. (ii) Consider $u=a b b b, v=a a b b b$. By Definition 2.1 it holds $u=a b b b \rho_{2,3,3} a a b b b=v$, whereas $v=a a b b b \rho_{2,3,3} a b b b=u$ does not hold, so the relation $R_{n, p, r}$ is not transitive. (iii) Put $u=a b a b a b a b=(a b)^{4}, v=b a b a b a b a b a=(b a)^{5}$. By Definition 2.1 we have $u \rho_{1,2,5} v, v \rho_{1,2,5} u$, but $u \neq v$ and hence the relation $R_{n, p, r}$ is not antisymmetric. (iv) Let $u=a b b b, v=b a b a b a, w=b b b b$. From Definition it follows $u \rho_{1,1,2} v, v \rho_{1,1,2} w$, but $u \rho_{1,1,2} w$ does not hold and the relation $R_{n, p, r}$ is not transitive.
2.5 Definition. Let $L \subseteq \Sigma^{\infty}$ be an ∞-language, $n \geq 1$ integer and $u, v \in \Sigma^{\infty}$. Put

$$
C_{n}^{\rho}(u, v)={ }_{p, r}^{U} u \rho_{n, p, r} v, C_{n}^{\rho}(L)={ }_{u, v}^{U} C_{n}^{\rho}(u, v), C^{\rho}(L)={ }_{n} C_{n}^{\rho}(L) .
$$

The set $C_{n}^{\rho}(L)$ is called the n-th ρ-closure of L and the set $C^{\rho}(L)={ }_{n}^{U} C_{n}^{\rho}(L)$ the ρ closure of L respectively.
2.6 Lemma. Let $L \subseteq \Sigma^{\infty}-\{\lambda\}$ be an ∞-language. Then $L \subseteq C^{\rho}(L)$ holds true.

Proof. Suppose $w \in L$. Trivially $w(1)=w(1)$ and by Definition 2.1 it holds $w \rho_{1,1,1} w=w[1] w[2,|w|]=w$ and hence by Definition $2.5 w \in C_{1}^{\rho}(L)$ and also $w \in$ $C^{\rho}(L)$ and the statement holds true.
2.7 Theorem Let $L \subseteq\left(\Sigma^{\infty}-\{\lambda\}\right)$ be an ∞-language. Then for every $i \geq 1$ there holds

$$
C_{i+1}^{\rho}(L) \subseteq C_{i}^{\rho}(L)
$$

Proof. Let $w \in C_{i+1}^{\rho}(L)$. According to Definition 2.1 there exist $u, v \in \Sigma^{\infty}$ and $i, p, r \geq 1$ with the property $u[p, p+i]=v[r, r+i]$ for which $u \rho_{i+1, p . r} v=u[p+$ $i] v[r+i+1,|v|]=w$ holds. Obviously if $u[p, p+i]=v[r, r+i]$ then also $u[p, p+$ $i-1]=v[r, r+i-1]$ holds. By Definition 2.5 we get $u \rho_{i, p, r} v=u[p+i-1] v[r+$ $i,|v|]=w^{\prime} \in C_{i}^{\rho}(L)$. But apparently w, w^{\prime} are identical words. Hence $w \in C_{i}^{\rho}(L)$ and the statement is valid.

As a consequence of Definition 2.5 and Theorem 2.7 the following Corollary 2.8 holds:
2.8 Corollary Let $L \subseteq\left(\Sigma^{\infty}-\{\lambda\}\right)$ be an ∞-language. Then $C^{\rho}(L)=C_{1}^{\rho}(L)$ holds true.
2.9 Example Let $L=\left\{a b, b a^{k}, a^{\omega} ; k \geq 1\right\} \subseteq\{a, b\}^{\infty}$ be an ∞ - language. To find $C_{n}^{\rho}(L)$ and $C^{\rho}(L)$ applying Definition 2.5 we get the results as follows.
(i) $\quad C_{1}^{\rho}(L): \quad C_{1}^{\rho}(a b, a b)=\{a b\}, C_{1}^{\rho}\left(a b, b a^{k}\right)=\left\{a^{k}, a b a^{k} ; k \geq 1\right\}, C_{1}^{\rho}\left(b a^{k}, a b\right)=$ $\left\{b, b a^{k} b ; k \geq 1\right\}, C_{1}^{\rho}\left(b a^{k}, b a^{k}\right)=\left\{b a^{k} ; k \geq 1\right\}, C_{1}^{\rho}\left(a b, a^{\omega}\right)=\left\{a^{\omega}\right\}, C_{1}^{\rho}\left(a^{\omega}, a b\right)=$ $\left\{a^{k} b ; k \geq 1\right\}, C_{1}^{\rho}\left(a^{\omega}, a^{\omega}\right)=\left\{a^{\omega}\right\}, C_{1}^{\rho}\left(b a^{k}, a^{\omega}\right)=\left\{b a^{\omega}\right\}, C_{1}^{\rho}\left(a^{\omega}, b a^{k}\right)=\left\{a^{k} ; k \geq 1\right\} ;$ therefore $C_{1}^{\rho}(L)=\left\{a b, a^{k}, a b a^{k}, b a^{k} b, b a^{k}, a^{\omega}, a^{k} b, b a^{\omega} ; k \geq 1\right\}$.
(ii) $C_{2}^{\rho}(L): C_{2}^{\rho}(a b, a b)=\{a b\}, C_{2}^{\rho}\left(a b, b a^{k}\right)=\emptyset, C_{2}^{\rho}\left(b a^{k}, a b\right)=\emptyset, C_{2}^{\rho}\left(a^{\omega}, a^{\omega}\right)=$
$\left\{a^{\omega}\right\}, C_{2}^{\rho}\left(b a^{k}, a^{\omega}\right)=\left\{b a^{\omega}\right\}$ for $k \geq 2, C_{2}^{\rho}\left(a^{\omega}, b a^{k}\right)=\left\{a^{k} ; k \geq 2\right\}, C_{2}^{\rho}\left(b a^{k}, b a^{k}\right)=$ $\left\{b a^{k} ; k \geq 1\right\}, C_{2}^{\rho}\left(a b, a^{\omega}\right)=\emptyset, C_{2}^{\rho}\left(a^{\omega}, a b\right)=\varnothing ; \quad$ therefore $\quad C_{2}^{\rho}(L)=$ $\left\{a b, b a^{k}, a^{\omega}, b a^{\omega}, a^{k+1} ; k \geq 1\right\}$.
(iii) $C_{3}^{\rho}(L): C_{3}^{\rho}(a b, a b)=C_{3}^{\rho}\left(a b, b a^{k}\right)=C_{3}^{\rho}\left(b a^{k}, a b\right)=C_{3}^{\rho}\left(a b, a^{\omega}\right)=C_{3}^{\rho}\left(a^{\omega}, a b\right)=$ $\emptyset, C_{3}^{\rho}\left(b a^{k}, b a^{k}\right)=\left\{b a^{k} ; k \geq 2\right\}, C_{3}^{\rho}\left(a^{\omega}, a^{\omega}\right)=\left\{a^{\omega}\right\}, C_{3}^{\rho}\left(b a^{k}, a^{\omega}\right)=\left\{b a^{\omega}\right\}$ for $k \geq$ 3, $C_{3}^{\rho}\left(a^{\omega}, b a^{k}\right)=\left\{a^{k} ; k \geq 3\right\}$; therefore $C_{3}^{\rho}(L)=\left\{b a^{k}, a^{\omega}, b a^{\omega}, a^{k+1} ; k \geq 2\right\}$.
(iv) $C_{n}^{\rho}(L)$ for $n \geq 4: C_{n}^{\rho}(a b, a b)=C_{n}^{\rho}\left(a b, b a^{k}\right)=C_{n}^{\rho}\left(b a^{k}, a b\right)=C_{n}^{\rho}\left(a b, a^{\omega}\right)=$ $C_{n}^{\rho}\left(a^{\omega}, a b\right)=\emptyset, C_{n}^{\rho}\left(b a^{k}, b a^{k}\right)=\left\{b a^{k} ; k \geq n-1\right\}, C_{n}^{\rho}\left(a^{\omega}, a^{\omega}\right)=$ $\left\{a^{\omega}\right\}, C_{n}^{\rho}\left(b a^{k}, a^{\omega}\right)=\left\{b a^{\omega}\right\}$ for $k \geq n-1, C_{n}^{\rho}\left(a^{\omega}, b a^{k}\right)=\left\{a^{k} ; k \geq n-1\right\}$; therefore $C_{n}^{\rho}(L)=\left\{b a^{k}, a^{\omega}, b a^{\omega}, a^{k+1} ; k \geq n-1\right\}$.
Conclusion: $C^{\rho}(L)=\left\{a b, a^{k}, a b a^{k}, b a^{k} b, b a^{k}, a^{\omega}, a^{k} b, b a^{\omega} ; k \geq 1\right\}=C_{1}^{\rho}(L)$.
2.10 Theorem. The set of ρ-closures is not closed under set union.

Proof. We state an counterexample. Consider $L_{1}=\{a b\}, L_{2}=\left\{a^{\omega}\right\}$ over $\{a, b\}^{\infty}$ and put $L=L_{1} \cup L_{2}=\left\{a b, a^{\omega}\right\}$. Applying Definition 2.1 and Corollary 2.8 we get $C^{\rho}\left(L_{1}\right)=$ $C_{1}^{\rho}\left(L_{1}\right)=C^{\rho}(\{a b\})=\{a b\}, C^{\rho}\left(L_{2}\right)=C_{1}^{\rho}\left(L_{2}\right)=C^{\rho}\left(\left\{a^{\omega}\right\}\right)=\left\{a^{\omega}\right\}$. Further, $C^{\rho}(L)=$ $C^{\rho}\left(L_{1} \cup L_{2}\right)=C^{\rho}\left(\left\{a b, a^{\omega}\right\}\right)=\left\{a^{\omega}, a^{k} b ; k \geq 1\right\}$. Obviously $C^{\rho}\left(L_{1} \cup L_{2}\right) \neq C^{\rho}\left(L_{1}\right) \cup$ $\left.C^{\rho} L_{2}\right)$ and the statement is verified.
2.11 Theorem. Let $L_{1}, L_{2} \subseteq \Sigma^{\infty}$. Then $\left.C^{\rho}\left(L_{1}\right) \cup C^{\rho} L_{2}\right) \subseteq C^{\rho}\left(L_{1} \cup L_{2}\right)$.

Proof. With a view to Corollary 2.6 we may consider C_{1}^{ρ} instead of C^{ρ}. Let $w \in$ $C_{1}^{\rho}\left(L_{1}\right) \cup C_{1}^{\rho}\left(L_{2}\right)$. According to Definition 2.3 then (a) there exist $u \in L_{1}, v \in L_{1}$ and positive integers p, r such that $u \rho_{1, p, r} v=w \in C_{1}^{\rho}\left(L_{1}\right)$ or (b) there exist $\bar{u} \in L_{2}, \bar{v} \in L_{2}$ and positive integers \bar{p}, \bar{r} such that $\bar{u} \rho_{1, \bar{p}, \bar{r}} \bar{v}=w \in C_{1}^{\rho}\left(L_{2}\right)$. Assuming (a), the statement there exist $u \in L_{1} \cup L_{2}, v \in L_{1} \cup L_{2}$ and positive integers p, r such that $u \rho_{1, p, r} v=w \in$ $C_{1}^{\rho}\left(L_{1} \cup L_{2}\right)$ is obviously also valid for an arbitrary set L_{2}. Assuming (b), the statement there exist $\bar{u} \in L_{2} \cup L_{1}, \bar{v} \in L_{2} \cup L_{1}$ and positive integers \bar{p}, \bar{r} such that $\bar{u} \rho_{1, \bar{p}, \bar{r}} \bar{v}=w \in$ $C_{1}^{\rho}\left(L_{2} \cup L_{1}\right)$ is valid as well for ab arbitrary set L_{1}. Thus $w \in C_{1}^{\rho}\left(L_{1} \cup L_{2}\right)$ and the proof is completed.
2.12 Theorem. The set of ρ-closures is not closed under set intersection.

Proof. We state an counterexample. Consider $L_{1}=\left\{a^{\omega}, a^{3}, b\right\}, L_{2}=\left\{a^{3}, a b\right\}$ over $\{a, b\}^{\infty}$ and put $L=L_{1} \cap L_{2}=\left\{a^{3}\right\}$. Applying Definition 2.1 and Corollary 2.8 we get $C^{\rho}\left(L_{1}\right)=C_{1}^{\rho}\left(L_{1}\right)=C_{1}^{\rho}\left(\left\{a^{\omega}, a^{3}, b\right\}\right)=\left\{a^{\omega}, b, a^{k} ; k \geq 1\right\}, C^{\rho}\left(L_{2}\right)=C_{1}^{\rho}\left(L_{2}\right)=$ $C_{1}^{\rho}\left(\left\{a^{3}, a b\right\}\right)=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, b, a b, a^{2} b, a^{3} b\right\}, \quad C^{\rho}\left(L_{1}\right) \cap C^{\rho}\left(L_{2}\right)=$ $\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, b\right\}$. Further, $C^{\rho}(L)=C^{\rho}\left(L_{1} \cap L_{2}\right)=C^{\rho}\left(\left\{a^{3}\right\}\right)=\left\{a^{k} ; 1 \leq k \leq 5\right\}$.
Obviously $C^{\rho}\left(L_{1} \cap L_{2}\right) \neq C^{\rho}\left(L_{1}\right) \cap C^{\rho}\left(L_{2}\right)$ and the statement is verified.
2.13 Theorem. Let $L_{1}, L_{2} \subseteq \Sigma^{\infty}$. Then $C^{\rho}\left(L_{1} \cap L_{2}\right) \subseteq C^{\rho}\left(L_{1}\right) \cap C^{\rho}\left(L_{2}\right)$.

Proof. With a view to Corollary 2.6 we may work with C_{1}^{ρ} instead of C^{ρ}. Let $w \in$ $C_{1}^{\rho}\left(L_{1} \cap L_{2}\right)$. According to Definition 2.3 there exist $u \in\left(L_{1} \cap L_{2}\right), v \in\left(L_{1} \cap L_{2}\right)$ and positive integers p, r such that $u \rho_{1, p, r} v=w \in C_{1}^{\rho}\left(L_{1} \cap L_{2}\right)$. Since $u \in\left(L_{1} \cap L_{2}\right), v \in$ $\left(L_{1} \cap L_{2}\right)$, then $w \in C_{1}^{\rho}\left(L_{1}\right)$ and also $w \in C_{1}^{\rho}\left(L_{2}\right)$. Thus $w \in C_{1}^{\rho}\left(L_{1}\right) \cap C_{1}^{\rho}\left(L_{2}\right)$ and the statement holds.
2.14 Example. Using the setting of the counterexample from the proof of Theorem 2.12, we have $C^{\rho}\left(L_{1} \cap L_{2}\right)=C^{\rho}\left(\left\{a^{3}\right\}\right)=\left\{a^{k} ; 1 \leq k \leq 5\right\} \subseteq C^{\rho}\left(L_{1}\right) \cap C^{\rho}\left(L_{2}\right)=$ $\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, b\right\}$ to illustrate Theorem 2.13. Further, we have $\left.C^{\rho}\left(L_{1}\right) \cup C^{\rho} L_{2}\right)=$ $\left\{a^{\omega}, b, a b, a^{2} b, a^{3} b, a^{k} ; k \geq 1\right\} \subseteq C^{\rho}\left(L_{1} \cup L_{2}\right)=\left\{a^{\omega}, a^{k}, a^{k} b, b ; k \geq 1\right\}$ to illustrate Theorem 2.11.

3. Operation $\boldsymbol{\rho}_{\boldsymbol{n}}$

3.1 Definition. Given $L_{1}, L_{2} \subseteq \Sigma^{\infty}$ and $n \geq 1$, an operation ρ_{n} is defined as follows: $\rho_{n}\left(L_{1}, L_{2}\right)=\left\{x u y\right.$; there exists $u \in \Sigma^{n}$ with $x u \in L_{1}$ and $\left.u y \in L_{2}\right\}$.
Clearly, for each n, ρ_{n} is the operation on $2^{\Sigma^{\infty}}$. In this manner the set of operations on $2^{\Sigma^{\infty}}$ is given. Instead of $\rho_{n}\left(L_{1}, L_{2}\right)$ we also write $L_{1} \rho_{n} L_{2}$.
3.2 Theorem. (i) Let $L_{1}, L_{2} \subseteq \Sigma^{\omega}$. Then for all $n \geq 1$ there holds $L_{1} \rho_{n} L_{2}=\emptyset$.
(ii) Given $L_{1}, L_{2} \subseteq \Sigma^{*}$ and let $L_{1} \cup L_{2}$ be a finite set. Then for all $n>$ $\max _{w \in L_{1} \cup L_{2}}|w|$ here holds $L_{1} \rho_{n} L_{2}=\emptyset$.
Proof. Both statements (i), (ii) follow immediately from Definition 3.1.
3.3 Example. (a) Let $L_{1}, L_{2} \subseteq\{a, b\}^{*}, L_{1}=\left\{(a b)^{k} ; k \geq 1\right\}, L_{2}=\left\{a^{k}, b^{k} ; k \geq 1\right\}$. Applying Definition 3.1 we have $L_{1} \rho_{1} L_{2}=\left\{a b^{k},(a b)^{k},(a b)^{k} b^{m} ; k, m \geq 1\right\}$. Similarly, and with accordance to Theorem 3.2(ii) we get $L_{1} \rho_{n} L_{2}=\emptyset$ and $L_{2} \rho_{n} L_{1}=\emptyset$ for any $n \geq 2$. (b) Let $L_{1}, L_{2}, L_{3} \subseteq\{a, b\}^{\infty}, L_{1}=\left\{a^{k}, b ; k \geq 1\right\}, L_{2}=\left\{a^{3}, b^{2}\right\}, L_{3}=\left\{a^{\omega}, a b\right\}$. Applying Definition 3.1 we have $L_{1} \rho_{1} L_{2}=\left\{a^{k}, b^{2} ; k \geq 3\right\}, L_{2} \rho_{1} L_{3}=$ $\left\{a^{\omega}, a^{3} b\right\},\left(L_{1} \rho_{1} L_{2}\right) \rho_{1} L_{3}=\left\{a^{\omega}, a^{k} b ; k \geq 1\right\}, L_{1} \rho_{1}\left(L_{2} \rho_{1} L_{3}\right)=\left\{a^{\omega}, a^{3} b\right\}$.
3.4 Theorem. The operation ρ_{n} is generally
(i) not commutative,
(ii) not associative.

Proof. It follows immediately from the results of Example 3.3.
3.4 Remark. Theorem 3.4 justifies the conclusion that the set $2^{\Sigma^{\infty}}$ with the operation ρ_{n} forms a „pure" groupoid. Also nonexistence of an identity element may be simply verified.

4. Conclusion

In this paper we examined algebraic properties of operations on ∞-words having direct relation to ∞-languages generated by ∞ - automata. It may motivate to consider further types of operations, particularly modeling the depth of memory of such devices.

As a generalization a variant structure of ∞-automata may be considered and the corresponding structures of their ∞-languages studied.

References

[1] J. Chvalina, Š. Hošková-Mayerová, General ω-hyperstructures and certain applications of those, Ratio Mathematica 23, 3-20(2012)
[2] Z. Grodzki, The k-machines, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Vol. XVIII, 7, 541-544(1970)
[3] M. Juráš and I. Mezník, On IG-languages, Mathematics University of Oulu(1992)
[4] W. Kwasowiec, Generable sets, Information and Control 17, 257-264(1970)
[5] M. Linna, On ω-sets associated with context-free languages, Inform. and Control 31, 273-293(1976)
[6] R. McNaughton, Testing and generating infinite sequences by a finite automaton. Inform. and Control 9, 521-530 (1966)
[7] I. Mezník, On a subclass of ∞-regular languages, Theoretical Computer Science 61, 25-32(1988)
[8] I. Mezník, On some structural properties of a subclass of ∞-regular languages, Discrete Applied Mathematics 18, 315-319(1987)
[9] D.E. Muller, Infinite sequences and finite machines, In: IEEE Proc. Fourth Ann. Symp. On Switching Theory and Logical Design, 3-16(1963)
[10] M. Nivat, Infinite words, infinite trees, infinite computations, In: J. W. De Bakker and J. Van Leeuwen, eds., Foundations of Computer Science III (Mathematisch Centrum, Amsterdam), 5-52(1979)
[11] M. Novotný, Sets constructed by acceptors, Inform. and Control 26, 116-133(1974)
[12] Z. Pawlak, Stored program computers. Algorytmy 10, 7-22(1969)
[13] D. Perrin, An introduction to finite automata on infinite words, Lecture Notes in Computer Science 192, 2-17(1984)
[14] A. Skowron, Languages determined by machine systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Vol.XIX, 4, 327-329(1971)
[15] L. Staiger, Finite-state ω-languages, J. of Comp. And Syst. Sci. 27, 434-448(1983)

[^0]: ${ }^{1}$ Institute of Informatics, Faculty of Business and Management, Brno University of Technology, Kolejní 2906/4, 61200 Brno, Czech Republic; meznik @ vutbr.cz.
 ${ }^{2}$ Received on January 23th, 2022. Accepted on June 4th, 2022. Published on June 30th, 2022. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 42 \mathrm{i} 0.721$. ISSN: $1592-7415$. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

