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Abstract

We introduce and study term functions over fuzzy hyperalgebras. We start from
this idea that the set of nonzero fuzzy subsets of a fuzzy hyperalgebra can be
organized naturally as a universal algebra, and constructing the term functions
over this algebra. We present the form of generated subfuzzy hyperalgebra of a
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1 Introduction

Hyperstructure theory was born in 1934 when Marty defined hypergroups, began to
analysis their properties and applied them to groups, relational algebraic functions (see
[15]). Now they are widely studied from theoretical point of view and for their applications
to many subjects of pure and applied properties ([7]). As it is well known, in 1965 Zadeh
([28]) introduced the notion of a set p on a nonempty set X as a function from X to the
unite real interval I = [0, 1] as a fuzzy set. In 1971, Rosenfeld ([25]) introduced fuzzy sets
in the context of group theory and formulated the concept of a fuzzy subgroup of a group.
Since then, many researchers are engaged in extending the concepts of abstract algebra
to the framework of the fuzzy setting ( for instance see [23]).

The study of fuzzy hyperstructure is an interesting research topic of fuzzy sets and
applied to the theory of algebraic hyperstructure. As it is known a hyperoperation assigns
to every pair of elements of H a nonempty subset of H, while a fuzzy hyperoperation
assigns to every pair of elements of H a nonzero fuzzy set on H. Recently, Sen, Ameri
and Chowdhury introduced and analyzed fuzzy semihypergroups in [21]. This idea was
followed by other researchers and extended to other branches of algebraic hyperstructures,
for instance Leoreanu and Davvaz introduced and studied fuzzy hyperring notion in [13],
Chowdhury in [5] studied fuzzy transposition hypergroups and Leoreanu studied fuzzy
hypermodules in [15].

In this paper we follow the idea in [20] and introduced fuzzy hyperalgebras, as the
largest class of fuzzy algebraic system. We introduce and study term functions over
algebra of all nonzero fuzzy subsets of a fuzzy hyperalgebra, as an important tool to
introduce fundamental relation on fuzzy hyperalgebra. Finally, we construct fundamental
relation of fuzzy algebras and investigate its basic properties.

This paper is organized in four sections. In section 2 we gather the definitions and
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basic properties of hyperalgebras and fuzzy sets that we need to develop our paper. In
section 3 we introduce term functions over the algebra of nonzero fuzzy subsets of a fuzzy
hyperalgebra and we obtained some basic results on fuzzy hyperalgebras, in section 4 we

will present the form of the fundamental relation of a fuzzy hyperalgebra.

2 Preliminaries

In this section we present some definitions and simple properties of hyperalgebras from
2] and [3], which will be used in the next sections. In the sequel H is a fixed nonvoid set,
P*(H) is the family of all nonvoid subsets of H, and for a positive integer n we denote
for H™ the set of n-tuples over H (for more see [6] and [7]).
For a positive integer n a n-ary hyperoperation 3 on H is a function 8 : H" — P*(H).
We say that n is the arity of 5. A subset S of H is closed under the n-ary hyperoperation
B if (z1,...,x,) € S™ implies that G(z1,...,2,) € S. A nullary hyperoperation on H is
just an element of P*(H); i.e. a nonvoid subset of H.
A hyperalgebraic system or a hyperalgebra (H, (3; : i € I)) is the set H with together a
collection (f3; | i € I) of hyperoperations on H.
A subset S of a hyperalgebra H=(H, (5; : ¢ € I)) is a subhyperalgebra of H if S is
closed under each hyperoperation f;, for all ¢ € I, that is G;(ay,...,an,) € S, whenever
(a1, ...,a,,) € S™. The type of H is the map from [ into the set N* of nonnegative integers
assigning to each ¢ € I the arity of ;. In this paper we will assume that for every i € I |
the arity of (; is n;.
For n > 0 we extend an n-ary hyperoperation 3 on H to an n-ary operation 3 on P*(H)

by setting for all Ay, ..., A, € P*(H)

B(A1, ... Ay) = J{B(a1, ... an)la; € Ai(i =1, ...,n)}
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It is easy to see that (P*(H), (8, :i € I)) is an algebra of the same type of H.
Definition 2.1. Let H=(H,(3; : i € I)) and H=(H,(3; : i € I)) be two similar
hyperalgebras. A map h from H into H is called a
(1) A homomorphism if for every i € I and all (ay, ..., a,,) € H™ we have that
BB (1, an)) € Balh(an), oo Bl
(17) a good homomorphism if for every i € I and all (ay,...,a,,) € H™ we have that
W(B((ar, - 0n)) = Bilhlar), - h(aw,)),

for more details about homomorphism of hyperalgebras see [12]. Let p be an equiva-

lence relation on H. We can extend p on P*(H) in the following ways:

(i) Let {A, B} C P*(H). We write ApB iff

Ya € A,3b € B, such that apb  and Vb € B,da € A, such that apb.

(ii) we write ApB iff Va € A,Vb € B we have apb.
Definition 2.2. If H=(H,(f; : i € I)) be a hyperalgebra and p be an equivalence
relation on H. Then p is called regular (resp. strongly regular) if for every ¢ € I, and for
all ay, ...,ap,, b1, ..., b,, € H the following implication holds:

a1pby, ..., ap, pbp, = Bi(ay, ..., an, ) pBi(b1, ..., by,)
(resp. aipby, ..., an,pby, = Bi(ar, ..., an,)pBi(b1, ..., by,))-
Definition 2.3. Recall that for a nonempty set H, a fuzzy subset p of H is a function
e H—[0,1].

If w; is a collection of fuzzy subsets of H, then we define the fuzzy subset ﬂ,uz- by:

(ﬂ pi)(x) = /\{Mz(x)}7 Vo H.

i€l i€l
Definition 2.4. Let p be an equivalence relation on a hyperalgebra (H, (3; : i € I)) and

el

w1 and v be two fuzzy subsets on H. We say that upv if the following two conditions hold:
(i) pla)>0=3be H: vb)>0, and apb

(i1) v(z) >0 = 3Jye H:uly) >0, and zpy.
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3 Fuzzy Hyperalgebra and Term Functions

Definition 3.1. A fuzzy n-ary hyperoperation f™ on S'is amap " : Sx..xS — F*(9),
which associated a nonzero fuzzy subset f"(as,...,a,) with any n-tuple (ai,...,a,) of
elements of S. The couple (S, f™) is called a fuzzy n-ary hypergroupoid. A fuzzy nullary
hyperoperation on S is just an element of F*(S); i.e. a nonzero fuzzy subset of S.
Definition 3.2. Let H be a nonempty set and for every ¢ € I, ; be a fuzzy n;-ary
hyperoperation on H. Then H=(H,(3; : i € I)) is called fuzzy hyperalgebra, where
(n; : 4 € I) is the type of this fuzzy hyperalgebra.

Definition 3.3. If yy, ..., 4, be n; nonzero fuzzy subsets of a fuzzy hyperalgebra H=(H, (5; :

i€l)), we define for all t € H
Bipn, ooy pn)() = \/ (p1 (1) /\ /\Mn(iﬁ'n) /\@;(xb ooy T ) (1))
Finally, if Ay, ..., A,,, are nonempty subsets of H, for all t € H

Br(Ay, . A ) () = Vo Belar, . an,)(1)).

If A is a nonempty subset of H, then we denote the characteristic function of A by x4.
Note that, if f: H; — H, is a map and a € Hy, then f(xa) = Xf(a)-

Example 3.4.

(1) A fuzzy hypergroupoid is a fuzzy hyperalgebra of type (2), that is a set H together
with a fuzzy hyperoperation o. A fuzzy hypergroupoid (H, o), which is associative, that

iszo(yoz)=(xoy)oz, forall x,y,z € H is called fuzzy hypersemigroup[22]. In this
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case for any p € F*(H), we define (a o p)(r) = \/((a ot)(r) A u(t)) and (pnoa)(r) =

\/ (u(t) A (toa)(r)) for all r € H.

teH
(17) A fuzzy hypergroup is a fuzzy hypersemigroup such that for all z € H we have

xoH = H ox = xg (fuzzy reproduction axiom)(for more details see [22]).
(1ii) A fuzzy hyperring R=(R, ®, ®) ([13]) is a fuzzy hyperalgebra of type (2,2), which in
that the following axioms hold:

1) a®d(b®dc)=(a®b)@c forallabceR;

\]

) t®R=R®x=xg for all x € R;

w

) a®b=b®a for all a,b € R;

4) a®©boc)=(a®b ®c foralla,bce R,

5 a@(bdc)=(a0b)®(adc)and (adb) ©c=(a®c)® (boc) forall a,b,ce R.
Example 3.5. Let H=(H, (f; : i € I)) be a hyperalgebra and p be a nonzero fuzzy
subset of H. Define the following fuzzy n-ary hyperoperations on H, for every i € I and

for all (ayq,...,a,,) € H™;

wla) N\ - A\ p(an,) t € fBla,...,an,)

0 otherwise

ﬁ:(a’h '“’am)(t) =

and letting

51‘O<a17'-'7ani) :X{al ,,,,, an; }-
Evidently H°=(H, (87 :i € I)), H°=(H, (55 : i € I)) are fuzzy hyperalgebras.
Theorem 3.6. Let H=(H, (§; : i € I)) be a fuzzy hyperalgebra, then for every ¢ € I and

every ap, ..., a,, € H we have [3;(Xq,, "'7Xani) = Bi(ay, ..., an,).
Definition 3.7. Let H=(H, (5; : i € I)) be a fuzzy hyperalgebra . A nonempty subset S

of H is called a subfuzzy hyperalgebra if for Vi € I,Vay, ..., a,, € S, the following condition
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hold:
Bi(ay, ..., an;)(xz) > 0 then z € S.

We denote by S(U) the set of the subfuzzy hyperalgebras of H.
Definition 3.8. Consider the fuzzy hyperalgebra H=(H, (f; : i € I)) and ¢ # X C H
be nonempty. Clearly, (X) =({B: B € S(H)| X C B} with the fuzzy hyperoperations
of H form a subfuzzy hyperalgebra of H called the subfuzzy hyperalgebra of H generated
by the subset X . Evidently if X is a subfuzzy hyperalgebra for H then (X) = X.
Theorem 3.9. Let H=(H, (; : i € I)) be a fuzzy hyperalgebra and ¢ # X C H. We
consider Xg = X and for any k£ € N,

Xip1 =XpU{a€e H|Jiel,n € Ny, ...,x,, € Xy; Bi(x1, ..., x,,)(a) > 0}.

Then (X) = | J X;.
keN
Proof. Let M = U Xk, and Vi € I, consider ty,...,t,, € M and [;(t1,....t,,)(x) > 0.
keN
From X, C X; C ... C X, C ... it follows the existence of m € N such that ¢4, ...,¢,, € X,,,
which implies, according to the definition of X,,,; that + € X,,;;. Thus x € M and

M = U X} is a subfuzzy hyperalgebra. From X = X, C M, by definition of the
keN

generated subfuzzy hyperalgebra, it results (X) C (M) = M. To prove the inverse inclu-
sion we will show by induction on k£ € N that X, C (X) for any £ € N, and we have
Xo = X C (X). We suppose that X C (X). From (X) € S(H) and the definition
Xk4+1 we can deduce that X1 C (X). Hence M C (X). The two inclusion lead us to

M = (X).00
Let H=(H, (; : © € I)) be a fuzzy hyperalgebra then, the set of the nonzero fuzzy

subsets of H denoted by F*(H), can be organized as a universal algebra with the opera-

tions;
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for every i € I, puy, ..., in, € F*(H) and t € H. We denote this algebra by F*(H).

In [13] Gratzer presents the algebra of the term functions of a universal algebra. If we
consider an algebra B=(B, (§; : i € I)) we call n—ary term functions on B (n € N) those
and only those functions from B™ into B, which can be obtained by applying (i) and (ii)
from bellow for finitely many times:

() the functions e}’ : B — B, €21, ...,on) = x;, i = 1,...,n are n—ary term functions
on B;

(12) if p1, ..., pn, are n—ary term functions on B, then (;(py, ..., pn,) : B" — B,

Bi(P1y ooy Py ) (X1 ooy @) = Bi(p1(T1,y ooy Ty ooy Dy (T, o0y ) 18 also a n—ary term function
on B.

We can observe that (ii) organize the set of n—ary term functions over B (P™(B)) as a
universal algebra, denoted by B™(B).

If H is a fuzzy hyperalgebra then for any n € N, we can construct the algebra of n—ary
term functions on F*(H), denoted by B™ (F*(H)) = (P™(F*(H)), (3 : i € I)).
Theorem 3.10. A necessary and sufficient condition for F*(B) to be a subalgebra of
F*(U) is that B is to be a subfuzzy hyperalgebra for U.

Proof. Obvious.l

The next result immediately follows from Theorem 3.10.

Corollary 3.11. (i) Let H=(H,(5; : ¢ € I)) be a fuzzy hyperalgebra and B a sub-
fuzzy hyperalgebra of H, and p € P™(F*(H)),(n € N). If uy,...,pu, € F*(B) , then
P15 s pin) € F*(B).

(i1) Let H= (H,(0; : i € I)) be a fuzzy hyperalgebra and B a subfuzzy hyperalgebra of
H, and p € P™(F*(H)),(n € N). If 21, ...,2, € B, then p(Xay, - Xa,) € F*(B).0
Theorem 3.12. Let H=(H, (5; : i € I)) be a fuzzy hyperalgebra and ¢ # X C H.

Then a € (X) if and only if In € N, Ip € P™(F*(H)), and Iy, ..., 7, € X, such that
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p(X:EU Xy Xxn)(a> > 0.
Proof. We denote

M={ae H|3IneN,3peP"FM), 31, ...00 € X : p(Xay,.--Xa,)(a) > 0}.

For any z € X we have ej(x,)(z) = xo(x) = 1, thus z € X and hence X C M. Also
from Corollary 3.11 (ii), it follows that p(xu,, ..., Xz,,) € F*((X)), therefore M C (X).
We will prove now that M is subfuzzy hyperalgebra of H. For any ¢ € I, if ¢4, ...,c,, € M
and B;(cq, ..., ¢n,)(x) > 0, we must show that z € M. For ¢y,...,c,, € M, it means
that there exist m, € N,pp € Pmk(f*(H)),x’f,...,xfnk € X,k € {1,...,n;}, such that
Pr(Xat ""Xx’ﬁnk)(ck> > 0, Vk € {1,...,n;}. According to the Corollary 8.2 from [12], for
any n—ary term function p over F*(H) and for m > n there exists an m—ary term
function ¢ over F*(H), such that p(uy, ..., tin) = q(t41, -y fm), for all py, ..., i, € F*(H);
this allows us to consider instead of pi, ..., p,, the term functions ¢y, ..., gy, all with the
same arity m = my + ... + m,, and the elements yi, ...,y € X (which are the elements
1 1

Ty ooy Ty ooy T oy ), such that gu( Xy, - Xy ) (ce) > 0,Vk € {1, ..., n;}. But we have

Biladr(Xyns -+ X ) -+ @ (X -+ X)) () =
\/ (@1 (X5 -0 X )(@1) A woo Ay (X -5 X ) (@) A Bi@ns oo ) (),
and for (ay,...,an,) = (c1,...,¢n;) We have (5;(q1, s @n;) Xyrs -r Xy )) () > 0 . On the
other hands we have (g1, ..., gn,) € P (F*(H)),(m € N) , 91, ..., ym € X which implies
that © € M. Therefore, M = (X)) and this complete the proof.[]
Remark 3.13. If H has a fuzzy nullary hyperoperation then
< ¢>={a€ H|3Ipe€ P (F*(H)), such that pu(a) > 0}.

Recall that if H=(H, (5; : i € I)) and B=(B, (; : i € I)) are fuzzy hyperalgebras with

the same type, then a map h: H — B is called a good homomorphism if for any i € I we
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have ;

h(Gi(ai,...,an,)) = Bi(h(ar), ..., h(an,)),Vay, ..., a,, € H.

An equivalence relation on H ¢ is said to be an ideal if for any ¢ € I we have:

Bi(x1, ..., xn;)(a) >0 and zpeyp(k € {1,..,n;}) = Fbe H: Bi(y1, ..., Yn;)(b) >0 and apb.

For example the fuzzy regular relations on a fuzzy hypersemigroup are ideal equiva-
lence. (for more details see [13, 21])
Definition 3.14. Let H=(H, (0; : i € I)) be a fuzzy hyperalgebra and ¢ an equivalence
relation on H. Then H/¢p can be described as a fuzzy hyperalgebra H/p with the fuzzy

hyperoperations:

Bilp(x1)s s p(@n))(P(@n 1)) =\ Bilyrs oY) Yi)-

TrPYk

Theorem 3.15. Let h: H — B be a good homomorphism of fuzzy hyperalgebras H and
B. Then the relation ¢ = {(x,y) € H|h(xz) = h(y)} is an ideal relation on H. Conversely,
if ¢ is an ideal relation on H, then p = p, : H — H/p is homomorphism (which is not
strong).

Proof. Straightforward.lJ

Remark 3.16. Let H and B be fuzzy hyperalgebras of the same type and h be a
homomorphism from H into B. We will construct the algebras F*(H) and F*(B). The
homomorphism h induces a mapping b’ : F*(H) — F*(B) by h'(n) = h(p), for any
we F*(H).

Let us consider H a set and F*(H) the set of its nonzero fuzzy subsets. Let ¢ be an

equivalence on H and let us consider the relation 3 on F*(H) as follows:
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pov < Yae H:pu(a) >0 = Jbe H:v(b) >0 and apband

Voe H: v(b)>0 = dacH:pula)>0 and apb.

It is immediate that @ is an equivalence relation on F*(H). The next result immediately
follows.

Theorem 3.17. An equivalence relation ¢ on a fuzzy hyperalgebra H is ideal if and only
if ¥ is a congruence relation on F*(H).

Proof. Let us suppose that ¢ is an ideal equivalence on H and let us consider ¢ € [
and g, vy € F*(H) nonzero and pypuy, k € {1,...,n;} . Then for any a € H such that
Bi(tt1y oy fin;) (@) > 0, we have

Bilprs )@ =\ (@) A A g (2,) A Bi(@, 1) (a).

Thus there exists (z1,...,x,,) € H™, such that p(zx) > 0 for £ € {1,...,n;} and
Bi(z1, ..., xp,)(a) > 0. From the definition @ and hence there exists (y1, ..., yn,) € H™, such
that v (yr) > 0 for k € {1,...,n;} and x,pyy, and sice ¢ is an ideal and G;(z1, ..., z,,)(a) >
0, there exists b € H, such that 5;(yi,...,yn,)(b) > 0 and apb. Analogously, it can be
proved that for all b € H, such that 5;(yi, ..., yn,)(b) > 0, there exists a € H, such that
Bi(x1, ..., xn,;)(a) > 0 and apdb. Hence, it is proved that ¥ is a congruence on F*(H).
Conversely, let us take i € I and a,xp,yp € H, k € {1,...,n;} such that z,py, and
Bi(x1, ..., xn,;)(a) > 0. Obviously, x., @xy,, Vk € {1, ...,n;}, and because ¥ is a congruence
on F*(IH) We can write 3i(Xay, s Xan, JPBi(Xyrs > Xum, )> hence Bi(x1, ..., 20, )OBi(Y1, -5 Yn, ),
which leads us to the existence b € H, such that 5;(yi, ..., yn,)(b) > 0 and apb. This com-
plete the proof.[]

Corollary 3.18. (i) If H=(H,(8; : i € I)) is a fuzzy hyperalgebra, ¢ is an ideal equiv-

alence relation on H and p € P™(F*(H)) If for any nonzero, pu, v, such that @y
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ke {1,..,n}, then p(uy, ..., tn)Pp(V1, ooy Vn).

(1) Let H=(H, (8; : i € I)) be a fuzzy hyperalgebra, ¢ an ideal equivalence relation on H.

If xppyp, k € {1,...,n},p € P(”)(}"*(H)) . Tk, Y € H. Then have p(Xay, s Xan )PP(Xy1s s Xyn )-

Let h be a homomorphism from H into B and take ¢ = {(z,y) € H? | h(z) = h(y)}.
Then we have p = {(u,v) € (F*(H))?> | /(1) = W(v)}. Obviously, ¢ is an ideal of H if
and only if P is congruence on F*(H).

Theorem 3.19. The map h is a homomorphism ofthe universal algebras F*(H) and
F*(B) if and only if A is a good homomorphism between H and B.

Proof. Straightforward.[]

The next result immediately follows from Theorem 3.12.

Corollary 3.20. (i) Let H=(H, (§; : i € I)) and B=(B, (8; : i € I)) be fuzzy hyperalge-
bras of the same type, h : H — B a homomorphism and p € P"™(F*(H)). Then for all
fi1, oy fin € F*(H) we have B (p(pa; .., pin)) = p(h'(p1), -, W (1))

(i7) Let H=(H, (5; : i € I)) and B=(B, (; : i € I)) be fuzzy hyperalgebras of the same

type, h : H — B a homomorphism and p € P™(F*(H)). Then for all ai,...,a, € H, we

have 7'(p(Xa,, -+ Xan)) = P(M'(Xar ), -+, B (Xa, ) -H

4 Fundamental Relation of Fuzzy Hyperalgebra

As it is known that if R is an strongly regular equivalence relation on a given hyper-
group (resp. hypergroupoid, semihypergroup) H, then we can define a binary operation
® on the quotient set H/R, the set of all equivalence classes of H with respect to R, such

that (H/R,®) consists a group (resp. groupoid, semigroup). In fact the relation 3* is the
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smallest equivalences relation such that the quotient H/3* is a group (resp. groupoid,
semigroup) and it is called fundamental relation of H. The equivalence relation 3* was
studied on hypergroups by many authors( for more details see [6]). As the fundamental
relation plays an important role in the theory of algebraic hyperstructure it extended to
other classes of algebraic hyperstructure, such as hyperrings, hypermodules, hypervec-
torspaces( for more details see [25], [26] and [27]). In [20] Pelea introduced and studied
the fundamental relation of a multialgebra based on term functions. In the sequel we
extend fundamental relation on fuzzy hyperalgebras and investigate its basic properties.
Let B=(B, (f; : i € I)) be an universal algebra. If we add to the set of the operations of
B the nullary operations corresponding to the elements of B, the n—ary term functions of
this new algebra are called the n—ary polynomial functions of B. The n—ary polynomial
functions P™"(B) of B form a universal algebra with the operations (5; : i € I), denoted
by P™)(B), P (B)=(P"(B), (5; : i € I)).

Let H=(H,(B; : i € I)) be a fuzzy hyperalgebra. For any n € N, we can construct
the algebra P (F*(H)) of n—ary polynomial functions on F*(H), ( P™(F*(H)) =
(P"(F*(H)), (8; : i € I))) . Consider the subalgebra 775_?) (F*(H)) of P™ (F*(H)) obtained
by adding to the operations (5; : i € I) of F*(H) only the nullary operations associated
to the characteristic functions of the elements of H. Thus the elements of Pg) (F*(H))
(n € N) are those and only those functions from (F*(H))" into F™*(H) which can obtained
by applying (i), (i7), (zii) from bellow for finitely many times:

(¢) the functions C7 : (F*(H))" — F*(H), defined by setting C7 (i1, .., fin) = Xa, for all
Wiy -y fin € F*(H) are elements of Pg)(f*(H)), for every a € H;

(17) the functions el : (F*(H))" — F*(H), €1, ..., ttn) = i, for all pq, ..., u, € F*(H),
i=1,...,n are elements of Pg)(F*(H));

(3i) if py, ..., pn, are elements of 77%1)(.7:*(]1-]1)), and ¢ € I then G;(p1,...,pn,) : (F*(H))" —
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F*(H), defined by setting for all p1, ..., i, € F*(H), (Bi(p1y s Dny) ) (11 oovy i) =

Bi (D1 (415 oy 1) s ooy Doy (f11, s ) 15 also an element of P4 (F*(H)).

In the continue, we will use only polynomial functions from Pg_?) (F*(H)). Thus we will
drop the subscript with no danger of confusion.

Definition 4.1. Let a be the relation defined on H for x,y € H set zay follows:

zay <= p(Xays - Xa,)(®) > 0and p(Xays s Xa, ) (y) > 0, for some p e P"(F*(H)),aq,...,a, € H.

It is clear that « is symmetric. Because for any a € H, el(x,)(a) > 0, the relation a is
also reflexive. We take a* to be the transitive closure of . Then «o* is an equivalence
relation on H.
Lemma 4.2. If f € PY(F*(H)) and a,b € H satisfy aa*b then f(xa)ﬁf(xb).
Proof. By the definition of o* : a = y1aysax...ay,, = b for some m € N and s, ..., y_1 €
H. Let f(xy,)(w;) > 0,7 =1,...,m. Consider 1 < j < m. Clearly y;joy,+1 means that
P (Xars s Xan)(3) > 0 and py(Xays - Xar) (451) > 0, for some n, € N,p; € P (F*(H)),
ai,...,an, € H. Define the nj—ary hyperoperation ¢; on F*(H) by setting

0 (Xars -+ Xan,) = \/{f(Xt) : Pj(Xas s Xa, )(8) > 0} for all @, ..., z,; € H. Clearly

q; € P (F*(H)) and for @ € H; q;(Xays -+ Xa, ) () = \V fOe) ().

Pj(Xal 77777 Xlln)(z)>0
From p;(Xays - Xan)(¥5) > 0 and pj(Xay, s Xan ) (Yj+1) > 0 we get

0 < fOx,)(45) < g5 (Xars -+ Xan)(w;)  and
0< f(ij+1)(uj+1) < d; (Xam '--7Xan)(uj+1)
proving w;aujq. Thus wja*u,. Since f(xq)(w1) = f(xy)(u1) > 0 and f(xp)(um) =

JF(Xym ) (wm) > 0 were arbitrary, we obtain f(x.)a* f(xs).0

Remark 4.3. For a given fuzzy hyperalgebra H and equivalence relation p on H, the set

H/p can be considered as a hyperalgebra with the hyperoperations
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61(:0((11)7 "'7p<ani)) = {p(2> | Bi(blv 7bnz)<z> > O7bk € p(ak)7Vk € {17 7n2}} (1)

for all i € I.
Lemma 4.4. Let p be an equivalence relation on H such that H/p be an universal algebra

. Then for any n € N, p € P"(F*(H)) and ay, ..., a, € H the following gold:

P(Xays 5 Xap ) (@) >0 and p(Xays s Xa,)([y) >0 = xpy.

Proof. We will prove this statement by induction over the steps of construction of an
n—ary polynomial function( for n € N arbitrary).

If p=Cy, from CF (Xays -+ Xan ) (@) > 0 and C7 (Xay, -+ Xan)(y) > 0 we deduce that
r =1y = a, thus xpy.

If p=cel withi € {1,...,n}, from €'(Xay; -, Xa,,)(®) > 0 and €' (Xays s Xan ) (y) > 0 we
deduce that © = y = a;, , and hence xpy.

We suppose that the statement holds for the n—ary polynomial functions py, ..., p,, and

we will prove it for the n—ary polynomial function Sg(p1, ..., pn, ). If

0 < Br(Pry s Py ) (Xans -+ Xan) () = B(P1r(Xars -+ Xan )5 -+ Py (Xar s -+ Xan ) (T) =

\/ (P1(Xays s Xan) (1) A oo A Dny (Xags -5 Xan ) (@) A Br(@1, .oy T, ) ()
and if we set y instead of x, above statement is true. Thus there exist
Ty ooy Tpps Y1y ooy Yny, € H, such that p;(Xay, - Xan) (2i) > 0 and p;(Xays -5 Xan ) (%) > 0,
fori e {1,....,n} and Gi(x1, ..., xpn, ) (x) > 0 and Bi(y1, ..., Yn, ) (y) > 0. Obviously, x;py; for
all i € {1,...,nx} and according to (1) and by the hypothesis we obtain that p(z) = p(y),
i.e., zpy, as desired.[]
The next result immediately follows from previous two lemmas.
Theorem 4.5. The relation o* is the smallest equivalence relation on fuzzy hyperalgebra

H such that H/p is an universal algebra.
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We call H/p, fundamental universal algebra of fuzzy hyperalgebra H such that H/p.
Proof. At the first, we show that H/p is a universal algebra. For this we take any
x,y € H, such that a*(z), a*(y) € Bp(a*(a1),...,a*(ay,)) for k € I and ay, ...,a,, € H.
This means that there exist x1, ..., T, , Y1, ..., Yn, € H, such that G(z1, ..., z,,)(z) > 0 and
Br(Y1y -y Un,, ) (y) > 0 and z;0*a;ay; for all @ € {1, ...,y }.

Applying Lemma 4.2 to the unary polynomial functions

Bi(z, O e O ), GO 20O s O )y Bi(CR e Gl L2),

K Xynk—l,

we obtain the following relations:

6i(X:B17 ceey ank )§5(Xy17 Xzoy s ink)

ﬁi (Xyn sz? R3] Xl’nk )aﬁz(Xyl 9 X227 X:):g-"a Xxnk)

ﬂ’i(Xym Xyza ceey Xxnkfl)mﬁi(Xyn Xy27 ceey Xy',Lk)?

which leads us to za*y (from definition o), i.e. a*(x) = a*(y). Clearly, 5; in (1) is an
operation on H/a*, for any ¢ € I, and H/a* is a universal algebra. Now we prove that
a* is smallest. If p is an arbitrary equivalence relation on H such that H/p is a universal
algebra, we can show that a* C p. If zay then there exist n € N, p € P*"(F*(H)) and
ai,...,a, € H for which p(Xa,, s Xa,) (@) > 0 and p(Xa,, -, Xa,)(y) > 0, and hence by
Lemma 4.4 we have xpy, hence o« C p, which implies a* C p.[J
Remark 4.6. For a given fuzzy hyperalgebra H and equivalence relation o on H. Let
us define the operations of the universal algebra H/a* as follows :

Bi(a*(a), ..., (ay,;)) = {a*(b) | Bi(ai, ..., an,)(b) > 0}.
Moreover, we can write

BGi(a*(ay), ...,a*(an,)) = a*(b)  Bi(ai,...,an,)(b) > 0.
Example 4.7. Let H=(H, o) be a fuzzy hypersemigroup, i.e. a fuzzy hyperalgebra with

one binary fuzzy hyperoperation o, which is associative, that is x o (yo z) = (x o y) o z,
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for all z,y,z € H ( for more details see [21]). Let F*(H)=(F*(H),o) be the universal
algebra with one binary operation defined as follows:

(pov)(r) =\ w@)Avy)A(zoy)(r) ¥V pmrveF (H)reH
r,yeH
By distributivity of the lattice ([0, 1], V, A) and associativity of o in H, we will prove that

the operation o in F*(H) is associative. So for every u,v,n € F*(H) and r € H we have

(ovyon)(r)=\/ [(nov)(@) Anly) Az oy)(r)] =

z,yeH

\V 1OV wlp) Avig) Apog)(x) Any) Az oy)(r)] =

z,yeH p,qeH

\ (1) Avig) An(y) A\ (pog)(@) A (zoy)(r)] =

\/ (p) A () An(y) A\ (pox)(r) Agoy)(z)] =

V 1) Apox)(r) A\ vla) Any) Algoy)()] =

\/ (o) A (o 2)(r) A (v 0 m)(a)] = (0 (v o m)(1).

Consider now the universal algebra of polynomial functions of (F*(H),o). The images

of the elements of this algebra are the sums of nonzero fuzzy subsets of H. Thus we can

define @ on H by:
acb <= 3z, ...z, € Hn € N): (Xgy ©... 0 Xa,,)(@) > 0 and (x4, © ... © Xz, )(b) > 0.

Consider the quotient set H/a* with the hyperoperation

a*(a)oa*(b) = {a*(c) | (' 0b')(c) >0, da*a, ba*b}.

Really o is an operation, because o* is the fundamental relation on H. Also

a*(x)oa*(y)oa’(z)) = a*(x)oa®(k) = a*(l), where (yoz)(k) >0 and (zok)(l)> 0.

Therefore, 0 < (w0 (yo2)(l) = ((woy)o2)() = \/[(@oy)p) A (poz)1)]. Thus

peEH
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there exists p € H, such that o*(l) = a*(p) o a*(2) = (a*(x) o a*(y)) o a*(z), that the
operation o in H/a* is associative. Moreover, if H=(H, o) be a fuzzy hypergroup, that is
xoH = Hox = xp, for every x € H, since for every o*(a),a*(b) € H/a*, there exist
a*(t),a*(s) € H/a*, such that, a*(a) o a*(t) = a*(b) and o*(s) o a*(a) = a*(b), it is
concluded that H/a*=(H/a*, o) is a group.

Example 4.8. Let R=(R,®,®) be a fuzzy hyperring. This means that (R,®) is a
commutative fuzzy hypergroup, (R, ®) is a fuzzy hypersemigroup and for all z,y,z € R
satisfies: 2O (y®z) = (zQY)®(zGz) and (xPyY) Oz = (x©2) B (y® z) ( for more details
see [13]). Let F*(R)=(F*(R),®,®) be the universal algebra with two binary operations

defined as follows:

(pov)(r) =\ @) Aviy) Az y)r)],

z,yeH

(mov)r) =\ @) Avly) Aoy,

z,yeH

for all u,v € F*(R), r € R. Obviously, the operation @ in F*(R) is commutative, and &
and ® in F*(R) are associative. By distributivity of the lattice [0, 1] and distributivity ®
with respect to @ in R, we will prove that the operation ® in F*(R) is distributive with
respect to the operation &, too.

For every p,v, eta € F*(R) and r € R we have:

(o wen)(r) =\ @) A ey Az oy)r)] =

V @) A () vl(s) Zy;éi) ANs@t)(y) Az oy)r)] =
xi;R[ V (u(;ite/\RV(S) AnE) A (s @) (y) Az O y)(r)] =
w:y\G/R S[Le(i) Av(s) An) A\ (@ @y)(r) Als @ ) (y)] =
rﬁsv\:/:[u(w) Av(s) An(t) A (ye\ZR(ﬂf ©s)p) Az O8)(@) A (p@g)(r)] =
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V 1V (@) Ant) (@ 0 )(g) Au(z) Av(s) Az @ s)(p) A(p©g)(r))] =

z,s,teER p,qeER

VIOV u@) Ay Aot @) A\ wlz) Av(s) Az s)p)Ap o)) =

V [ 0m@ A 1o n)E) A @ ar)] = (10 0) & (1o n)r).

And analogously, (u®v) ©@n = (L ©n) ® (v ©®n). Now we can construct the universal
algebra (with two binary operations) of the polynomial functions of 7*(R) for any n € N.
The images of the elements of this algebra are the sums of products of nonzero fuzzy
subsets of R. Thus we can define o on R by;
aah <= ;5 € Ry e {1,...k;},je{l,.. I}, kj,l e N:
(@1 (D11 Xar,))(@) > 0 and (B (O 1Xa,))(B) > 0.

Consider the quotient set R/a* withe two following hyperoperations :

a*(a) ® a*(b) = {a*(c) | (d ®V)(c) > 0,d a*a,b'a*b}, and

a*(a) © a*(b) = {a*(c) | (d ©®V)(c) > 0,d'a*a, b/ a*b}
Actually @ and ® are operations, because o is the fundamental relation on R. By con-
sidering the previous example, obviously (R/a*, @) is a commutative group. We verify
the distributivity of ® with respect to @ for the universal algebra R/a*=(R/a*, &, ®).
We have
a*(a) © (a*(b) ® a*(c)) = a*(a) ©® a*(d) = a*(e), where (b& ¢)(d) > 0 and (e ® d)(e) > 0

0<(@o@®c)(e)=\(a@p)(e)A(b®c)(p). Thus

0<((a®b)@(aGc)) (Z) = \/ (a®b)(x) A(a®c)(y) A(x®y)(e). Therefore, there exist
£, € R such that a*(¢) = a*(2) + a*(y) = (o () +a*(5)) @ (a*(a) ®a*(¢)). and hence it
was proved that a*(a) ® (o*(b) ® a*(c)) = (o*(a) + a*(b)) ® (a*(a) ® a*(c)). Analogously,
we can prove that (o (b) @ a*(c)) ® a*(a)) = (a*(b) ® a*(a)) ® (a*(¢) ® *(a)). Thus it

concluded that R/a*=(R/a*, &, ®) is a ring, as desired.[

Conclusion
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We introduced and studied term functions over fuzzy hyperalgebras, as the largest
class of fuzzy algebraic systems. We use the idea that the set of nonzero fuzzy subsets of
a fuzzy hyperalgebra can be organized naturally as a universal algebra, and constructed
the term functions over this algebra. We gave the form of generated subfuzzy hyperalgebra
of a given fuzzy hyperalgebra as a generalization of universal algebras and multialgebras.
Finally, we characterized the form of the fundamental relation of a fuzzy hyperalgebra, to
construct the fundamental universal algebra corresponding to a given fuzzy hyperalgebra,
and this result guarantee that that fundamental relation on any fuzzy algebraic hyper-

structures, such as fuzzy hypergroups, fuzzy hyperrings, fuzzy hypermodules,... exists.
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