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Abstract

We introduce and study term functions over fuzzy hyperalgebras. We start from

this idea that the set of nonzero fuzzy subsets of a fuzzy hyperalgebra can be

organized naturally as a universal algebra, and constructing the term functions

over this algebra. We present the form of generated subfuzzy hyperalgebra of a

given fuzzy hyperalgebra as a generalization of universal algebras and multialgebras.

Finally, we characterize the form of the fundamental relation of a fuzzy hyperalgebra.
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1 Introduction

Hyperstructure theory was born in 1934 when Marty defined hypergroups, began to

analysis their properties and applied them to groups, relational algebraic functions (see

[15]). Now they are widely studied from theoretical point of view and for their applications

to many subjects of pure and applied properties ([7]). As it is well known, in 1965 Zadeh

([28]) introduced the notion of a set µ on a nonempty set X as a function from X to the

unite real interval I = [0, 1] as a fuzzy set. In 1971, Rosenfeld ([25]) introduced fuzzy sets

in the context of group theory and formulated the concept of a fuzzy subgroup of a group.

Since then, many researchers are engaged in extending the concepts of abstract algebra

to the framework of the fuzzy setting ( for instance see [23]).

The study of fuzzy hyperstructure is an interesting research topic of fuzzy sets and

applied to the theory of algebraic hyperstructure. As it is known a hyperoperation assigns

to every pair of elements of H a nonempty subset of H, while a fuzzy hyperoperation

assigns to every pair of elements of H a nonzero fuzzy set on H. Recently, Sen, Ameri

and Chowdhury introduced and analyzed fuzzy semihypergroups in [21]. This idea was

followed by other researchers and extended to other branches of algebraic hyperstructures,

for instance Leoreanu and Davvaz introduced and studied fuzzy hyperring notion in [13],

Chowdhury in [5] studied fuzzy transposition hypergroups and Leoreanu studied fuzzy

hypermodules in [15].

In this paper we follow the idea in [20] and introduced fuzzy hyperalgebras, as the

largest class of fuzzy algebraic system. We introduce and study term functions over

algebra of all nonzero fuzzy subsets of a fuzzy hyperalgebra, as an important tool to

introduce fundamental relation on fuzzy hyperalgebra. Finally, we construct fundamental

relation of fuzzy algebras and investigate its basic properties.

This paper is organized in four sections. In section 2 we gather the definitions and
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basic properties of hyperalgebras and fuzzy sets that we need to develop our paper. In

section 3 we introduce term functions over the algebra of nonzero fuzzy subsets of a fuzzy

hyperalgebra and we obtained some basic results on fuzzy hyperalgebras, in section 4 we

will present the form of the fundamental relation of a fuzzy hyperalgebra.

2 Preliminaries

In this section we present some definitions and simple properties of hyperalgebras from

[2] and [3], which will be used in the next sections. In the sequel H is a fixed nonvoid set,

P ∗(H) is the family of all nonvoid subsets of H, and for a positive integer n we denote

for Hn the set of n-tuples over H (for more see [6] and [7]).

For a positive integer n a n-ary hyperoperation β on H is a function β : Hn → P ∗(H).

We say that n is the arity of β. A subset S of H is closed under the n-ary hyperoperation

β if (x1, . . . , xn) ∈ Sn implies that β(x1, . . . , xn) ⊆ S. A nullary hyperoperation on H is

just an element of P ∗(H); i.e. a nonvoid subset of H.

A hyperalgebraic system or a hyperalgebra 〈H, (βi : i ∈ I)〉 is the set H with together a

collection (βi | i ∈ I) of hyperoperations on H.

A subset S of a hyperalgebra H=〈H, (βi : i ∈ I)〉 is a subhyperalgebra of H if S is

closed under each hyperoperation βi, for all i ∈ I, that is βi(a1, ..., ani
) ⊆ S, whenever

(a1, ..., ani
) ∈ Sni . The type of H is the map from I into the set N∗ of nonnegative integers

assigning to each i ∈ I the arity of βi. In this paper we will assume that for every i ∈ I ,

the arity of βi is ni.

For n > 0 we extend an n-ary hyperoperation β on H to an n-ary operation β on P ∗(H)

by setting for all A1, ..., An ∈ P ∗(H)

β(A1, ..., An) =
⋃
{β(a1, ..., an)|ai ∈ Ai(i = 1, ..., n)}
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It is easy to see that 〈P ∗(H), (βi : i ∈ I)〉 is an algebra of the same type of H.

Definition 2.1. Let H=〈H, (βi : i ∈ I)〉 and H=〈H, (βi : i ∈ I)〉 be two similar

hyperalgebras. A map h from H into H is called a

(i) A homomorphism if for every i ∈ I and all (a1, ..., ani
) ∈ Hni we have that

h(βi((a1, ..., ani
)) ⊆ βi(h(a1), ..., h(ani

));

(ii) a good homomorphism if for every i ∈ I and all (a1, ..., ani
) ∈ Hni we have that

h(βi((a1, ..., ani
)) = βi(h(a1), ..., h(ani

)),

for more details about homomorphism of hyperalgebras see [12]. Let ρ be an equiva-

lence relation on H. We can extend ρ on P ∗(H) in the following ways:

(i) Let {A, B} ⊆ P ∗(H). We write AρB iff

∀a ∈ A,∃b ∈ B, such that aρb and ∀b ∈ B, ∃a ∈ A, such that aρb.

(ii) we write AρB iff ∀a ∈ A,∀b ∈ B we have aρb.

Definition 2.2. If H=〈H, (βi : i ∈ I)〉 be a hyperalgebra and ρ be an equivalence

relation on H. Then ρ is called regular (resp. strongly regular) if for every i ∈ I, and for

all a1, ..., ani
, b1, ..., bni

∈ H the following implication holds:

a1ρb1, ..., ani
ρbni

⇒ βi(a1, ..., ani
)ρβi(b1, ..., bni

)

(resp. a1ρb1, ..., ani
ρbni

⇒ βi(a1, ..., ani
)ρβi(b1, ..., bni

)).

Definition 2.3. Recall that for a nonempty set H, a fuzzy subset µ of H is a function

µ : H → [0, 1].

If µi is a collection of fuzzy subsets of H, then we define the fuzzy subset
⋂
i∈I

µi by:

(
⋂
i∈I

µi)(x) =
∧
i∈I

{µi(x)}, ∀x ∈ H.

Definition 2.4. Let ρ be an equivalence relation on a hyperalgebra 〈H, (βi : i ∈ I)〉 and

µ and υ be two fuzzy subsets on H. We say that µρυ if the following two conditions hold:

(i) µ(a) > 0 ⇒ ∃b ∈ H : υ(b) > 0 , and aρb

(ii) υ(x) > 0 ⇒ ∃y ∈ H : µ(y) > 0, and xρy.
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3 Fuzzy Hyperalgebra and Term Functions

Definition 3.1. A fuzzy n-ary hyperoperation fn on S is a map fn : S×...×S −→ F ∗(S),

which associated a nonzero fuzzy subset fn(a1, ..., an) with any n-tuple (a1, ..., an) of

elements of S. The couple 〈S, fn〉 is called a fuzzy n-ary hypergroupoid. A fuzzy nullary

hyperoperation on S is just an element of F ∗(S); i.e. a nonzero fuzzy subset of S.

Definition 3.2. Let H be a nonempty set and for every i ∈ I, βi be a fuzzy ni-ary

hyperoperation on H. Then H=〈H, (βi : i ∈ I)〉 is called fuzzy hyperalgebra, where

(ni : i ∈ I) is the type of this fuzzy hyperalgebra.

Definition 3.3. If µ1, ..., µni
be ni nonzero fuzzy subsets of a fuzzy hyperalgebra H=〈H, (βi :

i ∈ I)〉 , we define for all t ∈ H

βi(µ1, ..., µni
)(t) =

∨
(x1,...,xni )∈Hni

(µ1(x1)
∧

...
∧

µni
(xni

)
∧

βi(x1, ..., xni
)(t))

Finally, if A1, ..., Ank
are nonempty subsets of H, for all t ∈ H

βk(A1, ..., Ank
)(t) =

∨
(a1,...,ank

)∈Hnk

(βk(a1, ..., ank
)(t)).

If A is a nonempty subset of H, then we denote the characteristic function of A by χA.

Note that, if f : H1 −→ H2 is a map and a ∈ H1, then f(χa) = χf(a).

Example 3.4.

(i) A fuzzy hypergroupoid is a fuzzy hyperalgebra of type (2), that is a set H together

with a fuzzy hyperoperation ◦. A fuzzy hypergroupoid 〈H, ◦〉, which is associative, that

is x ◦ (y ◦ z) = (x ◦ y) ◦ z, for all x, y, z ∈ H is called fuzzy hypersemigroup[22]. In this
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case for any µ ∈ F ∗(H), we define (a ◦ µ)(r) =
∨
t∈H

((a ◦ t)(r) ∧ µ(t)) and (µ ◦ a)(r) =∨
t∈H

(µ(t) ∧ (t ◦ a)(r)) for all r ∈ H.

(ii) A fuzzy hypergroup is a fuzzy hypersemigroup such that for all x ∈ H we have

x ◦H = H ◦ x = χH (fuzzy reproduction axiom)(for more details see [22]).

(iii) A fuzzy hyperring R=〈R,⊕,�〉 ([13]) is a fuzzy hyperalgebra of type (2, 2), which in

that the following axioms hold:

1) a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ R;

2) x⊕R = R⊕ x = χR for all x ∈ R;

3) a⊕ b = b⊕ a for all a, b ∈ R;

4) a� (b� c) = (a� b)� c for all a, b, c ∈ R;

5) a� (b⊕ c) = (a� b)⊕ (a� c) and (a⊕ b)� c = (a� c)⊕ (b� c) for all a, b, c ∈ R.

Example 3.5. Let H=〈H, (βi : i ∈ I)〉 be a hyperalgebra and µ be a nonzero fuzzy

subset of H. Define the following fuzzy n-ary hyperoperations on H, for every i ∈ I and

for all (a1, ..., ani
) ∈ Hni ;

β�
i (a1, ..., ani

)(t) =

 µ(a1)
∧

...
∧

µ(ani
) t ∈ β(a1, ..., ani

)

0 otherwise

and letting

β◦
i (a1, ..., ani

) = χ{a1,...,ani}.

Evidently H�=〈H, (β�
i : i ∈ I)〉, H◦=〈H, (β◦

i : i ∈ I)〉 are fuzzy hyperalgebras.

Theorem 3.6. Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra, then for every i ∈ I and

every a1, ..., ani
∈ H we have βi(χa1 , ..., χani

) = βi(a1, ..., ani
).

Definition 3.7. Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra . A nonempty subset S

of H is called a subfuzzy hyperalgebra if for ∀i ∈ I, ∀a1, ..., ani
∈ S, the following condition
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hold:

βi(a1, ..., ani
)(x) > 0 then x ∈ S.

We denote by S(U) the set of the subfuzzy hyperalgebras of H.

Definition 3.8. Consider the fuzzy hyperalgebra H=〈H, (βi : i ∈ I)〉 and φ 6= X ⊆ H

be nonempty. Clearly, 〈X〉 =
⋂
{B : B ∈ S(H)| X ⊆ B} with the fuzzy hyperoperations

of H form a subfuzzy hyperalgebra of H called the subfuzzy hyperalgebra of H generated

by the subset X . Evidently if X is a subfuzzy hyperalgebra for H then 〈X〉 = X.

Theorem 3.9. Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra and φ 6= X ⊆ H. We

consider X0 = X and for any k ∈ N,

Xk+1 = Xk ∪ {a ∈ H | ∃i ∈ I, ni ∈ N, x1, ..., xni
∈ Xk; βi(x1, ..., xni

)(a) > 0}.

Then 〈X〉 =
⋃
k∈N

Xk.

Proof. Let M =
⋃
k∈N

Xk, and ∀i ∈ I, consider t1, ..., tni
∈ M and βi(t1, ..., tni

)(x) > 0.

From X0 ⊆ X1 ⊆ ... ⊆ Xk ⊆ ... it follows the existence of m ∈ N such that t1, ..., tni
∈ Xm,

which implies, according to the definition of Xm+1 that x ∈ Xm+1. Thus x ∈ M and

M =
⋃
k∈N

Xk is a subfuzzy hyperalgebra. From X = X0 ⊆ M , by definition of the

generated subfuzzy hyperalgebra, it results 〈X〉 ⊆ 〈M〉 = M. To prove the inverse inclu-

sion we will show by induction on k ∈ N that Xk ⊆ 〈X〉 for any k ∈ N, and we have

X0 = X ⊆ 〈X〉. We suppose that Xk ⊆ 〈X〉. From 〈X〉 ∈ S(H) and the definition

Xk+1 we can deduce that Xk+1 ⊆ 〈X〉. Hence M ⊆ 〈X〉. The two inclusion lead us to

M = 〈X〉.�

Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra then, the set of the nonzero fuzzy

subsets of H denoted by F ∗(H), can be organized as a universal algebra with the opera-

tions;

βi(µ1, ..., µni
)(t) =

∨
(x1,...,xni )∈Hni

(µ1(x1)
∧

...
∧

µni
(xni

)
∧

βi(x1, ..., xni
)(t))
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for every i ∈ I, µ1, ..., µni
∈ F ∗(H) and t ∈ H. We denote this algebra by F∗(H).

In [13] Gratzer presents the algebra of the term functions of a universal algebra. If we

consider an algebra B=〈B, (βi : i ∈ I)〉 we call n−ary term functions on B (n ∈ N) those

and only those functions from Bn into B, which can be obtained by applying (i) and (ii)

from bellow for finitely many times:

(i) the functions en
i : Bn → B, en

i (x1, ..., xn) = xi, i = 1, ..., n are n−ary term functions

on B;

(ii) if p1, ..., pni
are n−ary term functions on B, then βi(p1, ..., pni

) : Bn → B,

βi(p1, ..., pni
)(x1, ..., xn) = βi(p1(x1, ..., xn), ..., pni

(x1, ..., xn)) is also a n−ary term function

on B.

We can observe that (ii) organize the set of n−ary term functions over B (P (n)(B)) as a

universal algebra, denoted by B(n)(B).

If H is a fuzzy hyperalgebra then for any n ∈ N, we can construct the algebra of n−ary

term functions on F∗(H), denoted by B(n)(F∗(H)) = 〈P (n)(F∗(H)), (βi : i ∈ I)〉.

Theorem 3.10. A necessary and sufficient condition for F∗(B) to be a subalgebra of

F∗(U) is that B is to be a subfuzzy hyperalgebra for U.

Proof. Obvious.�

The next result immediately follows from Theorem 3.10.

Corollary 3.11. (i) Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra and B a sub-

fuzzy hyperalgebra of H, and p ∈ P (n)(F∗(H)),(n ∈ N). If µ1, ..., µn ∈ F ∗(B) , then

p(µ1, ..., µn) ∈ F ∗(B).

(ii) Let H= 〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra and B a subfuzzy hyperalgebra of

H, and p ∈ P (n)(F∗(H)),(n ∈ N). If x1, ..., xn ∈ B, then p(χx1 , ..., χxn) ∈ F ∗(B).�

Theorem 3.12. Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra and φ 6= X ⊆ H.

Then a ∈ 〈X〉 if and only if ∃n ∈ N, ∃p ∈ P (n)(F∗(H)), and ∃x1, ..., xn ∈ X, such that
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p(χx1 , ..., χxn)(a) > 0.

Proof. We denote

M = {a ∈ H | ∃n ∈ N, ∃p ∈ P (n)(F∗(H)), ∃x1, ..., xn ∈ X : p(χx1 , ...χxn)(a) > 0}.

For any x ∈ X we have e1
1(χx)(x) = χx(x) = 1, thus x ∈ X and hence X ⊆ M . Also

from Corollary 3.11 (ii), it follows that p(χx1 , ..., χxn) ∈ F∗(〈X〉), therefore M ⊆ 〈X〉.

We will prove now that M is subfuzzy hyperalgebra of H. For any i ∈ I, if c1, ..., cni
∈ M

and βi(c1, ..., cni
)(x) > 0, we must show that x ∈ M. For c1, ..., cni

∈ M , it means

that there exist mk ∈ N, pk ∈ Pmk(F∗(H)), xk
1, ..., x

k
mk

∈ X, k ∈ {1, ..., ni}, such that

pk(χxk
1
, ..., χxk

mk
)(ck) > 0, ∀k ∈ {1, ..., ni}. According to the Corollary 8.2 from [12], for

any n−ary term function p over F∗(H) and for m ≥ n there exists an m−ary term

function q over F∗(H), such that p(µ1, ..., µn) = q(µ1, ..., µm), for all µ1, ..., µm ∈ F ∗(H);

this allows us to consider instead of p1, ..., pni
the term functions q1, ..., qni

all with the

same arity m = m1 + ... + mni
and the elements y1, ..., ym ∈ X (which are the elements

x1
1, ..., x

1
m1

, ..., xni
1 , ..., xni

mni
), such that qk(χy1 , ..., χym)(ck) > 0,∀k ∈ {1, ..., ni}. But we have

βi(q1(χy1 , ..., χym), ..., qni
(χy1 , ..., χym))(x) =∨

(a1,...,ani )∈Hni

(q1(χy1 , ..., χym)(a1) ∧ ... ∧ qni
(χy1 , ..., χym)(ani

) ∧ βi(a1, ..., ani
)(x)),

and for (a1, ..., ani
) = (c1, ..., cni

) we have (βi(q1, ..., qni
)(χy1 , ..., χym))(x) > 0 . On the

other hands we have βi(q1, ..., qni
) ∈ P (m)(F∗(H)), (m ∈ N) , y1, ..., ym ∈ X which implies

that x ∈ M. Therefore, M = 〈X〉 and this complete the proof.�

Remark 3.13. If H has a fuzzy nullary hyperoperation then

< φ >= {a ∈ H | ∃µ ∈ P 0(F∗(H)), such that µ(a) > 0}.

Recall that if H=〈H, (βi : i ∈ I)〉 and B=〈B, (βi : i ∈ I)〉 are fuzzy hyperalgebras with

the same type, then a map h : H → B is called a good homomorphism if for any i ∈ I we
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have ;

h(βi(a1, ..., ani
)) = βi(h(a1), ..., h(ani

)),∀a1, ..., ani
∈ H.

An equivalence relation on H ϕ is said to be an ideal if for any i ∈ I we have:

βi(x1, ..., xni
)(a) > 0 and xkϕyk(k ∈ {1, ..., ni}) ⇒ ∃b ∈ H : βi(y1, ..., yni

)(b) > 0 and aϕb.

For example the fuzzy regular relations on a fuzzy hypersemigroup are ideal equiva-

lence. (for more details see [13, 21])

Definition 3.14. Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra and ϕ an equivalence

relation on H. Then H/ϕ can be described as a fuzzy hyperalgebra H/ϕ with the fuzzy

hyperoperations:

βi(ϕ(x1), ..., ϕ(xni
))(ϕ(xni+1)) =

∨
xkϕyk

βi(y1, ..., yni
)(yni+1).

Theorem 3.15. Let h : H → B be a good homomorphism of fuzzy hyperalgebras H and

B. Then the relation ϕ = {(x, y) ∈ H|h(x) = h(y)} is an ideal relation on H. Conversely,

if ϕ is an ideal relation on H, then p = pϕ : H → H/ϕ is homomorphism (which is not

strong).

Proof. Straightforward.�

Remark 3.16. Let H and B be fuzzy hyperalgebras of the same type and h be a

homomorphism from H into B. We will construct the algebras F∗(H) and F∗(B). The

homomorphism h induces a mapping h′ : F∗(H) → F∗(B) by h′(µ) = h(µ), for any

µ ∈ F ∗(H).

Let us consider H a set and F ∗(H) the set of its nonzero fuzzy subsets. Let ϕ be an

equivalence on H and let us consider the relation ϕ on F ∗(H) as follows:
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µϕν ⇔ ∀a ∈ H : µ(a) > 0 ⇒ ∃b ∈ H : ν(b) > 0 and aϕb and

∀b ∈ H : ν(b) > 0 ⇒ ∃a ∈ H : µ(a) > 0 and aϕb.

It is immediate that ϕ is an equivalence relation on F ∗(H). The next result immediately

follows.

Theorem 3.17. An equivalence relation ϕ on a fuzzy hyperalgebra H is ideal if and only

if ϕ is a congruence relation on F∗(H).

Proof. Let us suppose that ϕ is an ideal equivalence on H and let us consider i ∈ I

and µk, νk ∈ F ∗(H) nonzero and µkϕνk, k ∈ {1, ..., ni} . Then for any a ∈ H such that

βi(µ1, ..., µni
)(a) > 0, we have

βi(µ1, ..., µni
)(a) =

∨
(x1,...,xni )∈Hni

µ1(x1) ∧ ... ∧ µni
(xni

) ∧ βi(x1, ..., xni
)(a).

Thus there exists (x1, ..., xni
) ∈ Hni , such that µk(xk) > 0 for k ∈ {1, ..., ni} and

βi(x1, ..., xni
)(a) > 0. From the definition ϕ and hence there exists (y1, ..., yni

) ∈ Hni , such

that νk(yk) > 0 for k ∈ {1, ..., ni} and xkϕyk, and sice ϕ is an ideal and βi(x1, ..., xni
)(a) >

0, there exists b ∈ H, such that βi(y1, ..., yni
)(b) > 0 and aϕb. Analogously, it can be

proved that for all b ∈ H, such that βi(y1, ..., yni
)(b) > 0, there exists a ∈ H, such that

βi(x1, ..., xni
)(a) > 0 and aϕb. Hence, it is proved that ϕ is a congruence on F∗(H).

Conversely, let us take i ∈ I and a, xk, yk ∈ H, k ∈ {1, ..., ni} such that xkϕyk and

βi(x1, ..., xni
)(a) > 0. Obviously, χxk

ϕχyk
, ∀k ∈ {1, ..., ni}, and because ϕ is a congruence

on F∗(H) We can write βi(χx1 , ..., χxni
)ϕβi(χy1 , ..., χyni

), hence βi(x1, ..., xni
)ϕβi(y1, ..., yni

),

which leads us to the existence b ∈ H, such that βi(y1, ..., yni
)(b) > 0 and aϕb. This com-

plete the proof.�

Corollary 3.18. (i) If H=〈H, (βi : i ∈ I)〉 is a fuzzy hyperalgebra, ϕ is an ideal equiv-

alence relation on H and p ∈ P (n)(F∗(H)) If for any nonzero, µk, νk, such that µkϕνk
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k ∈ {1, ..., n}, then p(µ1, ..., µn)ϕp(ν1, ..., νn).

(ii) Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra, ϕ an ideal equivalence relation on H.

If xkϕyk, k ∈ {1, ..., n}, p ∈ P (n)(F∗(H)) , xk, yk ∈ H. Then have p(χx1 , ..., χxn)ϕp(χy1 , ..., χyn).

Let h be a homomorphism from H into B and take ϕ = {(x, y) ∈ H2 | h(x) = h(y)}.

Then we have ϕ = {(µ, ν) ∈ (F ∗(H))2 | h′(µ) = h′(ν)}. Obviously, ϕ is an ideal of H if

and only if ϕ is congruence on F∗(H).

Theorem 3.19. The map h is a homomorphism ofthe universal algebras F∗(H) and

F∗(B) if and only if h is a good homomorphism between H and B.

Proof. Straightforward.�

The next result immediately follows from Theorem 3.12.

Corollary 3.20. (i) Let H=〈H, (βi : i ∈ I)〉 and B=〈B, (βi : i ∈ I)〉 be fuzzy hyperalge-

bras of the same type, h : H → B a homomorphism and p ∈ P (n)(F∗(H)). Then for all

µ1, ..., µn ∈ F ∗(H) we have h′(p(µ1, ..., µn)) = p(h′(µ1), ..., h
′(µn)).

(ii) Let H=〈H, (βi : i ∈ I)〉 and B=〈B, (βi : i ∈ I)〉 be fuzzy hyperalgebras of the same

type, h : H → B a homomorphism and p ∈ P (n)(F∗(H)). Then for all a1, ..., an ∈ H, we

have h′(p(χa1 , ..., χan)) = p(h′(χa1), ..., h
′(χan)).�

4 Fundamental Relation of Fuzzy Hyperalgebra

As it is known that if R is an strongly regular equivalence relation on a given hyper-

group (resp. hypergroupoid, semihypergroup) H, then we can define a binary operation

⊗ on the quotient set H/R, the set of all equivalence classes of H with respect to R, such

that (H/R,⊗) consists a group (resp. groupoid, semigroup). In fact the relation β∗ is the
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smallest equivalences relation such that the quotient H/β∗ is a group (resp. groupoid,

semigroup) and it is called fundamental relation of H. The equivalence relation β∗ was

studied on hypergroups by many authors( for more details see [6]). As the fundamental

relation plays an important role in the theory of algebraic hyperstructure it extended to

other classes of algebraic hyperstructure, such as hyperrings, hypermodules, hypervec-

torspaces( for more details see [25], [26] and [27]). In [20] Pelea introduced and studied

the fundamental relation of a multialgebra based on term functions. In the sequel we

extend fundamental relation on fuzzy hyperalgebras and investigate its basic properties.

Let B=〈B, (βi : i ∈ I)〉 be an universal algebra. If we add to the set of the operations of

B the nullary operations corresponding to the elements of B, the n−ary term functions of

this new algebra are called the n−ary polynomial functions of B. The n−ary polynomial

functions P n(B) of B form a universal algebra with the operations (βi : i ∈ I), denoted

by P(n)(B), P(n)(B)=〈P n(B), (βi : i ∈ I)〉.

Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra. For any n ∈ N, we can construct

the algebra P(n)(F∗(H)) of n−ary polynomial functions on F∗(H), ( P(n)(F∗(H)) =

〈P n(F∗(H)), (βi : i ∈ I)〉) . Consider the subalgebra P(n)
H (F∗(H)) of P(n)(F∗(H)) obtained

by adding to the operations (βi : i ∈ I) of F∗(H) only the nullary operations associated

to the characteristic functions of the elements of H. Thus the elements of P(n)
H (F∗(H))

(n ∈ N) are those and only those functions from (F ∗(H))n into F ∗(H) which can obtained

by applying (i), (ii), (iii) from bellow for finitely many times:

(i) the functions Cn
χa

: (F ∗(H))n → F ∗(H), defined by setting Cn
χa

(µ1, ..., µn) = χa, for all

µ1, ..., µn ∈ F ∗(H) are elements of P(n)
H (F∗(H)), for every a ∈ H;

(ii) the functions en
i : (F ∗(H))n → F ∗(H), en

i (µ1, ..., µn) = µi, for all µ1, ..., µn ∈ F ∗(H),

i = 1, ..., n are elements of P(n)
H (F∗(H));

(iii) if p1, ..., pni
are elements of P(n)

H (F∗(H)), and i ∈ I then βi(p1, ..., pni
) : (F ∗(H))n →
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F ∗(H), defined by setting for all µ1, ..., µn ∈ F ∗(H), (βi(p1, ..., pni
))(µ1, ..., µn) =

βi(p1(µ1, ..., µn), ..., pni
(µ1, ..., µn)) is also an element of P(n)

H (F∗(H)).

In the continue, we will use only polynomial functions from P(n)
H (F∗(H)). Thus we will

drop the subscript with no danger of confusion.

Definition 4.1. Let α be the relation defined on H for x, y ∈ H set xαy follows:

xαy ⇐⇒ p(χa1 , ..., χan)(x) > 0and p(χa1 , ..., χan)(y) > 0, for some p ∈ P n(F∗(H)), a1, ..., an ∈ H.

It is clear that α is symmetric. Because for any a ∈ H, e1
1(χa)(a) > 0, the relation α is

also reflexive. We take α∗ to be the transitive closure of α. Then α∗ is an equivalence

relation on H.

Lemma 4.2. If f ∈ P 1(F∗(H)) and a, b ∈ H satisfy aα∗b then f(χa)α∗f(χb).

Proof. By the definition of α∗ : a = y1αy2α...αym = b for some m ∈ N and y2, ..., ym−1 ∈

H. Let f(χyi
)(ui) > 0, i = 1, ...,m. Consider 1 ≤ j < m. Clearly yjαyj+1 means that

pj(χa1 , ..., χan)(yj) > 0 and pj(χa1 , ..., χan)(yj+1) > 0, for some nj ∈ N, pj ∈ P nj(F∗(H)),

a1, ..., an ∈ H. Define the nj−ary hyperoperation qj on F ∗(H) by setting

qj(χx1 , ..., χxnj
) =

∨
{f(χt) : pj(χx1 , ..., χxnj

)(t) > 0} for all x1, ..., xnj
∈ H. Clearly

qj ∈ P nj(F∗(H)) and for x ∈ H; qj(χa1 , ..., χan)(x) =
∨

pj(χa1 ,...,χan )(z)>0

f(χz)(x).

From pj(χa1 , ..., χan)(yj) > 0 and pj(χa1 , ..., χan)(yj+1) > 0 we get

0 < f(χyj
)(uj) ≤ qj(χa1 , ..., χan)(uj) and

0 < f(χyj+1
)(uj+1) ≤ qj(χa1 , ..., χan)(uj+1)

proving ujαuj+1. Thus u1α
∗um. Since f(χa)(u1) = f(χy1)(u1) > 0 and f(χb)(um) =

f(χym)(um) > 0 were arbitrary, we obtain f(χa)α∗f(χb).�

Remark 4.3. For a given fuzzy hyperalgebra H and equivalence relation ρ on H, the set

H/ρ can be considered as a hyperalgebra with the hyperoperations
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βi(ρ(a1), ..., ρ(ani
)) = {ρ(z) | βi(b1, ..., bni

)(z) > 0, bk ∈ ρ(ak),∀k ∈ {1, ..., ni}} (1)

for all i ∈ I.

Lemma 4.4. Let ρ be an equivalence relation on H such that H/ρ be an universal algebra

. Then for any n ∈ N, p ∈ P n(F∗(H)) and a1, ..., an ∈ H the following gold:

p(χa1 , ..., χan)(x) > 0 and p(χa1 , ..., χan)(y) > 0 =⇒ xρy.

Proof. We will prove this statement by induction over the steps of construction of an

n−ary polynomial function( for n ∈ N arbitrary).

If p = Cn
χa

, from Cn
χa

(χa1 , ..., χan)(x) > 0 and Cn
χa

(χa1 , ..., χan)(y) > 0 we deduce that

x = y = a, thus xρy.

If p = en
i with i ∈ {1, ..., n}, from en

i (χa1 , ..., χan)(x) > 0 and en
i (χa1 , ..., χan)(y) > 0 we

deduce that x = y = ai, , and hence xρy.

We suppose that the statement holds for the n−ary polynomial functions p1, ..., pnk
and

we will prove it for the n−ary polynomial function βk(p1, ..., pnk
). If

0 < βk(p1, ..., pnk
)(χa1 , ..., χan)(x) = βk(p1(χa1 , ..., χan), ..., pnk

(χa1 , ..., χan))(x) =∨
(x1,...,xnk

)∈Hnk

(p1(χa1 , ..., χan)(x1) ∧ ... ∧ pnk
(χa1 , ..., χan)(xnk

) ∧ βk(x1, ..., xnk
)(x))

and if we set y instead of x, above statement is true. Thus there exist

x1, ..., xnk
, y1, ..., ynk

∈ H, such that pi(χa1 , ..., χan)(xi) > 0 and pi(χa1 , ..., χan)(yi) > 0,

for i ∈ {1, ..., nk} and βk(x1, ..., xnk
)(x) > 0 and βk(y1, ..., ynk

)(y) > 0. Obviously, xiρyi for

all i ∈ {1, ..., nk} and according to (1) and by the hypothesis we obtain that ρ(x) = ρ(y),

i.e., xρy, as desired.�

The next result immediately follows from previous two lemmas.

Theorem 4.5. The relation α∗ is the smallest equivalence relation on fuzzy hyperalgebra

H such that H/ρ is an universal algebra.
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We call H/ρ, fundamental universal algebra of fuzzy hyperalgebra H such that H/ρ.

Proof. At the first, we show that H/ρ is a universal algebra. For this we take any

x, y ∈ H, such that α∗(x), α∗(y) ∈ βk(α
∗(a1), ..., α

∗(ank
)) for k ∈ I and a1, ..., ank

∈ H.

This means that there exist x1, ..., xnk
, y1, ..., ynk

∈ H, such that βk(x1, ..., xnk
)(x) > 0 and

βk(y1, ..., ynk
)(y) > 0 and xiα

∗aiα
∗yi for all i ∈ {1, ..., nk}.

Applying Lemma 4.2 to the unary polynomial functions

βi(z, C
n
χx2

, ..., Cn
χxnk

), βi(C
n
χy1

, z, Cn
χx3

, ..., Cn
χxnk

), ..., , βi(C
n
χy1

, ..., Cn
χynk−1

, z),

we obtain the following relations:

βi(χx1 , ..., χxnk
)α∗β(χy1 , χx2 , ..., χxnk

)

βi(χy1 , χx2 , ..., χxnk
)α∗βi(χy1 , χ22 , χx3 ..., χxnk

)

...

βi(χy1 , χy2 , ..., χxnk−1)α
∗βi(χy1 , χy2 , ..., χynk

),

which leads us to xα∗y (from definition α∗), i.e. α∗(x) = α∗(y). Clearly, βi in (1) is an

operation on H/α∗, for any i ∈ I, and H/α∗ is a universal algebra. Now we prove that

α∗ is smallest. If ρ is an arbitrary equivalence relation on H such that H/ρ is a universal

algebra, we can show that α∗ ⊆ ρ. If xαy then there exist n ∈ N, p ∈ P n(F∗(H)) and

a1, ..., an ∈ H for which p(χa1 , ..., χan)(x) > 0 and p(χa1 , ..., χan)(y) > 0, and hence by

Lemma 4.4 we have xρy, hence α ⊆ ρ, which implies α∗ ⊆ ρ.�

Remark 4.6. For a given fuzzy hyperalgebra H and equivalence relation α∗ on H. Let

us define the operations of the universal algebra H/α∗ as follows :

βi(α
∗(a1), ..., α

∗(ani
)) = {α∗(b) | βi(a1, ..., ani

)(b) > 0}.

Moreover, we can write

βi(α
∗(a1), ..., α

∗(ani
)) = α∗(b) βi(a1, ..., ani

)(b) > 0.

Example 4.7. Let H=〈H, ◦〉 be a fuzzy hypersemigroup, i.e. a fuzzy hyperalgebra with

one binary fuzzy hyperoperation ◦, which is associative, that is x ◦ (y ◦ z) = (x ◦ y) ◦ z,
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for all x, y, z ∈ H ( for more details see [21]). Let F∗(H)=〈F ∗(H), ◦〉 be the universal

algebra with one binary operation defined as follows:

(µ ◦ ν)(r) =
∨

x,y∈H

µ(x) ∧ ν(y) ∧ (x ◦ y)(r) ∀ µ, ν ∈ F ∗(H),r ∈ H.

By distributivity of the lattice ([0, 1],∨,∧) and associativity of ◦ in H, we will prove that

the operation ◦ in F∗(H) is associative. So for every µ, ν, η ∈ F ∗(H) and r ∈ H we have

((µ ◦ ν) ◦ η)(r) =
∨

x,y∈H

[(µ ◦ ν)(x) ∧ η(y) ∧ (x ◦ y)(r)] =∨
x,y∈H

[(
∨

p,q∈H

µ(p) ∧ ν(q) ∧ (p ◦ q)(x)) ∧ η(y) ∧ (x ◦ y)(r)] =∨
p,q,y∈H

[µ(p) ∧ ν(q) ∧ η(y) ∧ (
∨
x∈H

(p ◦ q)(x) ∧ (x ◦ y)(r))] =∨
p,q,y∈H

[µ(p) ∧ ν(q) ∧ η(y) ∧ (
∨
x∈H

(p ◦ x)(r) ∧ (q ◦ y)(x))] =

∨
p,x∈H

[µ(p) ∧ (p ◦ x)(r) ∧ (
∨

q,y∈H

ν(q) ∧ η(y) ∧ (q ◦ y)(x))] =∨
p,x∈H

[µ(p) ∧ (p ◦ x)(r) ∧ (ν ◦ η)(x)] = (µ ◦ (ν ◦ η))(r).

Consider now the universal algebra of polynomial functions of 〈F ∗(H), ◦〉. The images

of the elements of this algebra are the sums of nonzero fuzzy subsets of H. Thus we can

define α on H by:

aαb ⇐⇒ ∃x1, ..., xn ∈ H(n ∈ N): (χx1 ◦ ... ◦ χxn)(a) > 0 and (χx1 ◦ ... ◦ χxn)(b) > 0.

Consider the quotient set H/α∗ with the hyperoperation

α∗(a) ◦ α∗(b) = {α∗(c) | (a′ ◦ b′)(c) > 0, a′α∗a, b′α∗b}.

Really ◦ is an operation, because α∗ is the fundamental relation on H. Also

α∗(x) ◦α∗(y) ◦α∗(z)) = α∗(x) ◦α∗(k) = α∗(l), where (y ◦ z)(k) > 0 and (x ◦ k)(l) > 0.

Therefore, 0 < (x ◦ (y ◦ z))(l) = ((x ◦ y) ◦ z)(l) =
∨
p∈H

[(x ◦ y)(p) ∧ (p ◦ z)(l)]. Thus
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there exists p ∈ H, such that α∗(l) = α∗(p) ◦ α∗(z) = (α∗(x) ◦ α∗(y)) ◦ α∗(z), that the

operation ◦ in H/α∗ is associative. Moreover, if H=〈H, ◦〉 be a fuzzy hypergroup, that is

x ◦ H = H ◦ x = χH , for every x ∈ H, since for every α∗(a), α∗(b) ∈ H/α∗, there exist

α∗(t), α∗(s) ∈ H/α∗, such that, α∗(a) ◦ α∗(t) = α∗(b) and α∗(s) ◦ α∗(a) = α∗(b), it is

concluded that H/α∗=〈H/α∗, ◦〉 is a group.

Example 4.8. Let R=〈R,⊕,�〉 be a fuzzy hyperring. This means that 〈R,⊕〉 is a

commutative fuzzy hypergroup, 〈R,�〉 is a fuzzy hypersemigroup and for all x, y, z ∈ R

satisfies: x�(y⊕z) = (x�y)⊕(x�z) and (x⊕y)�z = (x�z)⊕(y�z) ( for more details

see [13]). Let F∗(R)=〈F ∗(R),⊕,�〉 be the universal algebra with two binary operations

defined as follows:

(µ⊕ ν)(r) =
∨

x,y∈H

[µ(x) ∧ ν(y) ∧ (x⊕ y)(r)],

(µ� ν)(r) =
∨

x,y∈H

[µ(x) ∧ ν(y) ∧ (x� y)(r)],

for all µ, ν ∈ F ∗(R), r ∈ R. Obviously, the operation ⊕ in F ∗(R) is commutative, and ⊕

and � in F ∗(R) are associative. By distributivity of the lattice [0, 1] and distributivity �

with respect to ⊕ in R, we will prove that the operation � in F ∗(R) is distributive with

respect to the operation ⊕, too.

For every µ, ν, eta ∈ F ∗(R) and r ∈ R we have:

(µ� (ν ⊕ η))(r) =
∨

x,y∈R

[µ(x) ∧ (ν ⊕ η)(y) ∧ (x� y)(r)] =∨
x,y∈R

[µ(x) ∧ (
∨

s,t∈R

ν(s) ∧ η(t) ∧ (s⊕ t)(y)) ∧ (x� y)(r)] =∨
x,y∈R

[
∨

s,t∈R

(µ(x) ∧ ν(s) ∧ η(t) ∧ (s⊕ t)(y) ∧ (x� y)(r))] =∨
x,s,t∈R

[µ(x) ∧ ν(s) ∧ η(t) ∧ (
∨
y∈R

(x� y)(r) ∧ (s⊕ t)(y))] =∨
x,s,t∈R

[µ(x) ∧ ν(s) ∧ η(t) ∧ (
∨

p,q∈R

(x� s)(p) ∧ (x� t)(q) ∧ (p⊕ q)(r))] =
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∨
x,s,t∈R

[
∨

p,q∈R

(µ(x) ∧ η(t) ∧ (x� t)(q) ∧ µ(x) ∧ ν(s) ∧ (x� s)(p) ∧ (p⊕ q)(r))] =∨
p,q∈R

[(
∨

x,t∈R

µ(x) ∧ η(t) ∧ (x� t)(q)) ∧ (
∨

x,s∈R

µ(x) ∧ ν(s) ∧ (x� s)(p)) ∧ (p⊕ q)(r)] =∨
p,q∈R

[(µ� η)(q) ∧ (µ� ν)(p) ∧ (p⊕ q)(r)] = ((µ� ν)⊕ (µ� η))(r).

And analogously, (µ ⊕ ν) � η = (µ � η) ⊕ (ν � η). Now we can construct the universal

algebra (with two binary operations) of the polynomial functions of F∗(R) for any n ∈ N.

The images of the elements of this algebra are the sums of products of nonzero fuzzy

subsets of R. Thus we can define α on R by;

aαb ⇐⇒ ∃xij ∈ R, i ∈ {1, ..., kj}, j ∈ {1, ..., l}, kj, l ∈ N:

(⊕l
j=1(�

kj

i=1χxij
))(a) > 0 and (⊕l

j=1(�
kj

i=1χxij
))(b) > 0.

Consider the quotient set R/α∗ withe two following hyperoperations :

α∗(a)⊕ α∗(b) = {α∗(c) | (a′ ⊕ b′)(c) > 0, a′α∗a, b′α∗b}, and

α∗(a)� α∗(b) = {α∗(c) | (a′ � b′)(c) > 0, a′α∗a, b′α∗b}

Actually ⊕ and � are operations, because α∗ is the fundamental relation on R. By con-

sidering the previous example, obviously 〈R/α∗,⊕〉 is a commutative group. We verify

the distributivity of � with respect to ⊕ for the universal algebra R/α∗=〈R/α∗,⊕,�〉.

We have

α∗(a)� (α∗(b)⊕ α∗(c)) = α∗(a)� α∗(d) = α∗(e), where (b⊕ c)(d) > 0 and (a� d)(e) > 0

0 < (a� (b⊕ c))(e) =
∨
p∈R

(a� p)(e) ∧ (b⊕ c)(p). Thus

0 < ((a� b)⊕ (a� c))(e) =
∨

x,y∈R

(a� b)(x)∧ (a� c)(y)∧ (x⊕ y)(e). Therefore, there exist

x, y ∈ R such that α∗(e) = α∗(x)+α∗(y) = (α∗(a)+α∗(b))⊕ (α∗(a)�α∗(c)), and hence it

was proved that α∗(a)� (α∗(b)⊕α∗(c)) = (α∗(a) +α∗(b))⊕ (α∗(a)�α∗(c)). Analogously,

we can prove that (α∗(b) ⊕ α∗(c)) � α∗(a)) = (α∗(b) � α∗(a)) ⊕ (α∗(c) � α∗(a)). Thus it

concluded that R/α∗=〈R/α∗,⊕,�〉 is a ring, as desired.�

Conclusion
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We introduced and studied term functions over fuzzy hyperalgebras, as the largest

class of fuzzy algebraic systems. We use the idea that the set of nonzero fuzzy subsets of

a fuzzy hyperalgebra can be organized naturally as a universal algebra, and constructed

the term functions over this algebra. We gave the form of generated subfuzzy hyperalgebra

of a given fuzzy hyperalgebra as a generalization of universal algebras and multialgebras.

Finally, we characterized the form of the fundamental relation of a fuzzy hyperalgebra, to

construct the fundamental universal algebra corresponding to a given fuzzy hyperalgebra,

and this result guarantee that that fundamental relation on any fuzzy algebraic hyper-

structures, such as fuzzy hypergroups, fuzzy hyperrings, fuzzy hypermodules,... exists.
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