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1 Introduction

MV-algebras were introduced by Chang Chang [1958] as an algebraic counter-
part of infinite valued logic. There are many papers on MV-algebras. Also, many
algebraic structures are defined, which extend the notion of MV-algebras. Quan-
tum computation logics M. L. Dalla Chiara and Leporini [2005] received more
attention in recent years, which are new forms of quantum logics G. Cattaneo and
Leporini [2004]. These logics determine the meaning of a sentence with a mixture
of quregisters M. L. Dalla Chiara and Greechie [2013]. Corresponding to quan-
tum computational, Ledda, Konig, Paoli and Giuntini introduced the notion of
quasi-MV algebras in A. Ledda and Giuntini [2006], which are generalizations of
MV-algebras. The element 0 in a quasi-MV algebra is not necessarily a neutral el-
ement of the operation ⊕. Since then, many authors continued to study quasi-MV
algebras. For example, Ledda etc. studied some properties of quasi-MV alge-
bras and

√
′ quasi-MV algebras F. Bou and Freytes [2008], F. Paoli and Freytes

[2009]; Chen introduced pseudo-quasi-MV algebras which are non-commutative
generalizations of quasi-MV algebras Liu and Chen [2016].

EMV-algebras (extended MV-algebras) Dvurečenskij and Zahiri [2019] are
also generalizations of MV-algebras. An EMV-algebra does not necessarily have
a top element. Dvurečenskij and Zahiri gave some properties of EMV-algebras.
The notions of ideals, congruences and filters in EMV-algebras were also intro-
duced and the relationships between them were investigated. One of the main
results is that every EMV-algebra can be embedded into an EMV-algebra with a
top element. Liu presented EBL-algebras in Liu [2020], which extended the no-
tion of BL-algebras. The author gave some properties of EBL-algebras. Also, the
concepts of ideals, congruences and filters were introduced and the relationships
between them were studied.

Inspired by Dvurečenskij and Zahiri [2019], we shall give the definition of
Equasi-MV algebras. In these algebras, 0 is not necessarily the neutral element
and the complement element of 0 does not necessarily exist. The structure of this
paper is as follows. In Sect.2, we give some definitions and results of quasi-MV
algebras. In Sect.3, we introduce Equasi-MV algebras and present some examples
of Equasi-MV algebras. In Sect.4, we define ideals and ideal congruences in
Equasi-MV algebras. And we study the relationships between them. In Sect.5,
we introduce the notions of filters and prime ideals. Moreover, every Equasi-MV
algebra has at least one maximal ideal.
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2 Preliminaries

In this section, we will give some notions and results on quasi-MV algebras,
which will be used in the following.

A quasi-MV algebra A. Ledda and Giuntini [2006] is an algebra A=〈A,⊕,′, 0, 1〉
of type 〈2, 1, 0, 0〉 satisfying the following conditions:

QMV1) x⊕ (y ⊕ z) = (x⊕ z)⊕ y;
QMV2) x′′ = x;

QMV3) x⊕ 1 = 1;

QMV4) (x′ ⊕ y)′ ⊕ y = (y′ ⊕ x)′ ⊕ x;
QMV5) (x⊕ 0)′ = x′ ⊕ 0;

QMV6) (x⊕ y)⊕ 0 = x⊕ y;
QMV7) 0′ = 1.

In any quasi-MV algebra A, we can define the following operations:
x⊗ y = (x′ ⊕ y′)′; x d y = x⊕ (x′ ⊗ y); x e y = x⊗ (x′ ⊕ y).

It is obvious that xd y = (xd y)⊕ 0 and xe y = (xe y)⊕ 0. Moreover, we can
also define an binary relation 6 on A as follows: x 6 y iff x e y = x ⊕ 0. The
relation 6 is a preordering of A, but not a partial ordering.

Lemma 2.1. [A. Ledda and Giuntini, 2006, Lemma 8] Let A be a quasi-MV
algebra. For all x, y, z ∈ A, the following statements are equivalent.

(i) x 6 y;
(ii) x′ ⊕ y = 1;
(iii) x d y = y ⊕ 0.

In the following, we give some properties of quasi-MV algebras, including a
few properties of preordering 6 and the operations e and d.

Lemma 2.2. [A. Ledda and Giuntini, 2006, Lemma 11] Let A be a quasi-MV
algebra. For all x, y, z, w ∈ A:
(i) x⊕0 6 y⊕0, y⊕0 6 x⊕0 imply x⊕0 = y⊕0; (vi) x 6 x⊕0 and x⊕0 6 x;

(ii) x 6 y and z 6 w imply x⊕z 6 y⊕w; (vii) x⊗y 6 z iff x 6 y′⊕z;
(iii) x 6 y and z 6 w imply x⊗z 6 y⊗w; (viii) if x 6 y, then y′ 6 x′;

(iv) x 6 y and z 6 w imply xez 6y ew; (ix) 0 6 x, x 6 1.

(v) x 6 y and z 6 w imply xdz 6 ydw;

Lemma 2.3. [A. Ledda and Giuntini, 2006, Lemma 12] Let A be a quasi-MV
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algebra. For all x, y, z ∈ A:
(i) xey = yex; (vii) x⊗(ydz) = (x⊗y)d(x⊗z);
(ii) xdy = ydx; (viii) xe(yez) = (xey)ez;

(iii) xey 6 x, y and x, y 6 xdy; (ix) xd(ydz) = (xdy)dz;

(iv) if x 6 y, z, then x 6y ez; (x) x 6 xex and xex 6 x;

(v) if x, y 6 z, then xdy 6 z; (xi) (xey)′ = x′dy′ and (xdy)′ = x′ey′.

(vi) x⊕(yez) = (x⊕y)e(x⊕z);

The following lemma gives the distributivity between e and d on quasi-MV
algebras.

Lemma 2.4. Let A be a quasi-MV algebra. For all x, y, z ∈ A,
(i) (x d y) e z = (x e z) d (y e z);
(ii) (x e y) d z = (x d z) e (y d z);
(iii) x e (y ⊕ z) 6 (x e y)⊕ (x e z);
(iv) (x d y)⊗ (x d z) 6 x d (y ⊗ z).

Proof. (i) For any x, y ∈ A, we have x, y 6 xdy and so xez, yez 6 (xdy)ez
by Lemma 2.2 (iv). It follows from Lemma 2.3 (v) that (xez)d(yez)6(xdy)ez.
Conversely, we have

(x d y) e z = (x d y)⊗ ((x d y)′ ⊕ z)
= (x d y)⊗ ((x′ ⊕ z) e (y′ ⊕ z)) (Lemma 2.3 (xi) and (vi))
6 (x⊗ (x′ ⊕ z)) d (y ⊗ (y′ ⊕ z)) (Lemma 2.3 (vii) and (iii))
= (x e z) d (y e z).

Then ((x e z) d (y e z)) ⊕ 0 6 ((x d y) e z) ⊕ 0 and ((x d y) e z) ⊕ 0 6
((xe z)d (y e z))⊕ 0. Note that ((xe z)d (y e z))⊕ 0 = (xe z)d (y e z) and
((x d y) e z)⊕ 0 = (x d y) e z. It follows that (x e z) d (y e z) = (x d y) e z
by Lemma 2.2 (i).

Similarly, we can prove (ii).
(iii) For any x, y, z ∈ A, since x 6 x⊕ 0 6 x⊕ y, we have
(x e y)⊕ (x e z) = ((x e y)⊕ x) e ((x e y)⊕ z) (Lemma 2.3 (vi))

= (x⊕ x) e (y ⊕ x) e (x⊕ z) e (y ⊕ z)
> x e x e x e (y ⊕ z)
= (x⊕ 0) e x e (y ⊕ z) (Lemma 2.3 (x))
= (x⊕ 0) e (y ⊕ z).

Note that (x⊕0)e(y⊕z) = xe(y⊕z). It follows that xe(y⊕z) 6 (xey)⊕(xez).
(iv) For any x, y, z ∈ A, it follows from (x ⊗ y)′ ⊕ y = x′ ⊕ y′ ⊕ y = 1 that
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x⊗ y 6 y. Then we have
(x d y)⊗ (x d z) = ((x d y)⊗ x) d ((x d y)⊗ z) (Lemma 2.3 (vii))

= (x⊗ x) d (y ⊗ x) d (x⊗ z) d (y ⊗ z)
6 x d x d x d (y ⊗ z)
= (x⊕ 0) d x d (y ⊗ z) (Lemma 2.3 (x))
= (x⊕ 0) d (y ⊗ z).

Note that (x ⊕ 0) d (y ⊗ z) = x d (y ⊗ z). It follows that (x d y) ⊗ (x d z) 6
x d (y ⊗ z).2

Let A be a quasi-MV algebra and a ∈ A. If a ⊕ a = a, we call a to be
idempotent. We use I(A) to denote the set of all idempotent elements of A. For
a ∈ A, we call a regular if a⊕ 0 = a. We denote the set of all regular elements of
A byR(A).

Lemma 2.5. Let A be a quasi-MV algebra. For any x ∈ A, a ∈ I(A), we have
(i) x⊕ a = x d a;
(ii) x⊗ a = x e a.

Proof. (i) For any x ∈ A and a ∈ I(A), we have x, a 6 x ⊕ a. Then
x d a 6 x⊕ a by Lemma 2.3 (v). Conversely,
(x⊕ a)⊗ (x d a)′ = (x⊕ a)⊗ (x′ e a′) (Lemma 2.3 (xi))

6 ((x⊕ a)⊗ x′) e ((x⊕ a)⊗ a′) (Lemma 2.2(iii) and 2.3(iv))
= (a e x′) e (x e a′)

= (a e a′) e (x e x′)

= 0 e (x e x′) = 0.
This means that (x⊕ a)′ ⊕ (x d a) = 1. It follows that x⊕ a 6 x d a.

(ii) By (i), we have x′ ⊕ a′=x′ d a′, that is (x′ ⊕ a′)′ = (x′ d a′)′ = x e a. It
follows that x e a = x⊗ a.2

The application of the above lemma will be reflected in the following proof
process.

Example 2.1. [A. Ledda and Giuntini, 2006, Example 3] The Diamond is the 4-
element quasi-MV algebra, where the operations ⊕ and ′ are defined as following
tables:

⊕ 0 a b 1
0 0 b b 1
a b 1 1 1
b b 1 1 1
1 1 1 1 1

′

0 1
a a
b b
1 0

Remark that a⊕a = 1, but aea = (a′⊕ (a′⊕a)′)′ = (a⊕ (a⊕a)′)′ = b 6= 1.
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3 Equasi-MV algebras
In the section, we shall define the notion of extended quasi-MV algebras,

which are generalizations of quasi-MV algebras. Some basic properties of these
algebras are presented.

Definition 3.1. A extended quasi-MV algebra (abbreviated as Equasi-MV alge-
bra) is an algebra A=〈A,⊕, 0〉, if the following conditions are satisfied:

EQMV1) 〈A,⊕, 0〉 is a commutative preordered semigroup and (x⊕ y)⊕ 0 =
x⊕ y for all x, y ∈ A;

EQMV2) for each x ∈ A, there is b ∈ I(A) such that x 6 b, and the element
λb(x) = min{z ∈ [0, b] : z ⊕ x = b}

exists in A for all x ∈ [0, b] such that 〈[0, b],⊕, λb, 0, b〉 is a quasi-MV algebra.

Note that for any x, y ∈ A, there exist a, b ∈ I(A) such that x 6 a and y 6 b.
Then there exists c ∈ I(A) such that a, b 6 c. In fact, take c = a⊕b. It is obvious
that a, b 6 a⊕ b and a⊕ b ∈ I(A). Therefore, an Equasi-MV algebra has enough
idempotent elements. That is, for all x ∈ A, there is a ∈ I(A) such that x 6 a.

Let A be an Equasi-MV algebra. For all n ∈ N and x ∈ A, we define
0.x = 0, 1.x = x, · · · , (n+ 1).x = n.x⊕ x.

An Equasi-MV algebra 〈A,⊕, 0〉 is called a proper Equasi-MV algebra if 0
has no complement element.

Example 3.1. If 〈A,⊕,′ , 0, 1〉 is a quasi-MV algebra, then 〈A,⊕, 0〉 is an Equasi-
MV algebra. Also, if 〈A,∨,∧,⊕, 0〉 is an EMV-algebra, it is obvious that 〈A,⊕, 0〉
is an Equasi-MV algebra.

Example 3.2. Let 〈A,⊕,′ , 0, 1〉 be a quasi-MV algebra and 〈B,∨,∧,⊕, 0〉 be an
EMV-algebra. We define that the operation on the algebraA×B is point by point.
That is, for any 〈x1, x2〉, 〈y1, y2〉 ∈ A×B,

〈x1, x2〉 ⊕ 〈y1, y2〉 = 〈x1 ⊕ y1, x2 ⊕ y2〉.
And the least element ofA×B is 0 = 〈0, 0〉. For any x ∈ B, there exists b ∈ I(B)
such that x 6 b. Then for any 〈x1, x2〉 ∈ A × B, there exists 〈1, b〉 ∈ I(A) ×
I(B). It suffices to show that 〈[〈0, 0〉, 〈1, b〉],⊕, λ〈1,b〉, 〈0, 0〉, 〈1, b〉〉 is a quasi-MV
algebra. We define λ〈1,b〉(〈x1, x2〉) = 〈(x1)′, λb(x2)〉, for all 〈x1, x2〉 ∈ A×B. As
a result, A×B is an Equasi-MV algebra.

Example 3.3. Let e be a smallest idempotent of an Equasi-MV algebra A. Then
an Equasi-MV algebra is the algebra S=〈A× A,⊕S, 0S〉, where:

(i) 0S = 〈0, e
2
〉;

(ii) xS ⊕S yS = 〈x1 ⊕ y1, e2〉, for all xS = 〈x1, x2〉 and yS = 〈y1, y2〉.
For any a ∈ I(A), we define aS = 〈a, e

2
〉. Then aS = aS ⊕ aS ∈ I(S). Now

we show that 〈[0S, aS],⊕S, λaS , 0S, aS〉 is a quasi-MV algebra, where λaS(xS) =

84



On extended quasi-MV algebras

〈λa(x1), x2〉 and a ∈ I(A). It is easy to show that λaS(xS) is the least element
such that xS ⊕ zS = aS for all xS ∈ [0S, aS].

It is clear that λaSλaS(xS) = λaS〈λa(x1), x2〉 = 〈x1, x2〉 = xS . And λaS(xS⊕S
0S) = λaS〈x1 ⊕ 0, e

2
〉 = 〈λa(x1) ⊕ 0, e

2
〉, λaS(xS) ⊕ 0S = 〈λa(x1), x2〉 ⊕ 0S =

〈λa(x1)⊕ 0, e
2
〉. What’s more, λaS(0S) = 〈λa(0), e2〉 = 〈a,

e
2
〉 = aS .

Example 3.4. Let 〈A,∨,∧, 0〉 be a generalized Boolean algebra Conrad and Dar-
nel [1997]. For any x, y ∈ [0, b], where ⊕ = ∨ and λb(x) is the unique relative
complement of x in [0, b]. Then 〈A,⊕, 0〉 is an EMV-algebra by Example 3.2 (2)
in Dvurečenskij and Zahiri [2019]. Hence, 〈A,⊕, 0〉 is an Equasi-MV algebra.

Example 3.5. Let 〈A,⊕,′ , 0, 1〉 be a quasi-MV algebra and 〈B,∨,∧, 0〉 be a gen-
eralized Boolean algebra. It is easy to show that A×B is an Equasi-MV algebra.

Proof. The operation ⊕ on A × B is defined pointwise. For all 〈x, y〉 ∈
A × B, there exist a ∈ I(A) and b ∈ I(B) such that 〈x, y〉 6 〈a, b〉 and
〈[〈0, 0〉, 〈a, b〉],⊕, λ〈a,b〉, 〈0, 0〉, 〈a, b〉〉 is a quasi-MV algebra.

Let’s give a specific description of the above example. Let the Diamond (Ex-
ample 2.6) be the 4-element quasi-MV algebra A and M = 〈M,∨,∧, 0〉 be the
generalized Boolean algebra Conrad and Darnel [1997], where M is the set of
components of any positive element N+ and the least element 0 := ∅. That is,
M = {N : N ⊆ N+}. Then every element N in M is idempotent. It is easily
shown that A×M with the pointwise operation is an Equasi-MV algebra. 2

Example 3.6. Let S = 〈[0, 1]× [0, 1],⊕,′ , 0, 1〉 be a standard quasi-MV algebra
A. Ledda and Giuntini [2006, Example 5]. Let A = S⊕ S⊕ S⊕ · · · . Then A is
an Equasi-MV algebra.

Proof. Obviously, 〈A,⊕, 0〉 is a commutative preordered semigroup and (x⊕
y) ⊕ 0 = x ⊕ y for all x, y ∈ A. For any x, y ∈ A. Suppose x = (xi), y = (yi).
If xi 6= 0 or yi 6= 0, there exists ui ∈ I(A) such that xi, yi 6 ui for all i > 1.
If xi = yi = 0, take ui = 0. We have an idempotent u = (ui) ∈ A such that
x, y 6 u and 〈[0, u],⊕, λu, 0, u〉 is a quasi-MV algebra. 2

Remark 3.1. Let A be an Equasi-MV algebra. For all x, y ∈ A, there exists
b ∈ I(A) such that x, y ∈ [0, b]. In the quasi-MV algebra 〈[0, b],⊕, λb, 0, b〉, we
denote

x db y = λb(λb(x)⊕ y)⊕ y, x eb y = λb(λb(x)⊕ λb(λb(x)⊕ y)).

Proposition 3.1. Let A be an Equasi-MV algebra and a, b ∈ I(A) such that
a 6 b. For each x ∈ [0, a], we have

(i) λb(a) is an idempotent, and λa(a)=0;
(ii) λa(x)⊕ 0 = λb(x) e a;
(iii) λb(x)⊕ 0 = λa(x)⊕ λb(a);
(iv) λa(x) 6 λb(x).
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Proof. Since 〈[0, b],⊕, λb, 0, b〉 is a quasi-MV algebra and a ∈ I(A), by
Lemma 2.5 (i) we get that x⊕ a = x d a for all x ∈ [0, b].

(i) Since 〈[0, b],⊕, λb, 0, b〉 is a quasi-MV algebra, λb(a) is also an idempotent
element by Lemma 26 in A. Ledda and Giuntini [2006]. It is obvious λa(a) = 0
in the quasi-MV algebra 〈[0, a],⊕, λa, 0, a〉.

(ii) For all x ∈ [0, a], we have
(λb(x) e a)⊕ (x⊕ 0) = (λb(x)⊕ (x⊕ 0)) e (a⊕ (x⊕ 0)) (Lemma 2.3 (vi))

= b e a = a.
It follows that λa(x) ⊕ 0 = λa(x ⊕ 0) 6 λb(x) e a in the quasi-MV algebra
〈[0, b],⊕, λb, 0, b〉. Conversely, since b = a ⊕ λb(a) = x ⊕ (λa(x) ⊕ λb(a)), we
get λb(x) 6 λa(x) ⊕ λb(a). Since λb(a) is an idempotent, by Lemma 2.5 (i) we
have λa(x)⊕ λb(a) = λa(x) d λb(a). Hence, λb(x) 6 λa(x) d λb(a). Thus

λb(x) e a 6 (λa(x) d λb(a)) e a (Lemma 2.2 (iv))
= λa(x)⊕ 0 (Lemma 2.4 (i)).

Summary of the above results, we get that λa(x)⊕ 0 = λb(x) e a.
(iii) By (ii) we have
λa(x)⊕ λb(a) = (λa(x)⊕ 0)⊕ λb(a)

= (λb(x) e a)⊕ λb(a)
= λb(x) d λb(a) (Lemma 2.3 (vi) and Lemma 2.5 (i)).

It follows from x 6 a that λb(a) 6 λb(x). Then λb(x) d λb(a) = λb(x) ⊕ 0.
Therefore, λb(x)⊕ 0 = λa(x)⊕ λb(a).

(iv) It follows from (ii) or (iii).2
The following statement shows that da and ea on [0, a] are coincide with d

and e on A, respectively.

Proposition 3.2. Let A be an Equasi-MV algebra. For all x, y ∈ A, there exist
a, b ∈ I(A) such that x, y ∈ [0, a] and x, y ∈ [0, b]. Then we have

(i) x ea y = x eb y;
(ii) x da y = x db y.

Proof. (i) By Definition 3.1, for all a, b ∈ I(A), there exists c ∈ I(A) such
that a, b 6 c. Then we have
x dc y = x⊕ λc(x⊕ λc(y)⊕ 0)

= x⊕ λc(x⊕ λa(y)⊕ λc(a)) (Proposition 3.1 (iii))
= x⊕ (λc(x⊕ λa(y))⊗c a) (the definition of ⊗c)
= x⊕ (λc(x⊕ λa(y)) e a) (Lemma 2.5 (ii))
= x⊕ ((λa(x⊕ λa(y)) d λc(a)) e a) (Proposition 3.1(iii), Lemma 2.5(i))
= x⊕ (λa(x⊕ λa(y)) e a) (Lemma 2.4 (i))
= x⊕ (λa(x⊕ λa(y))⊕ 0) = x da y.
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Similarly, we can show that x dc y = x db y. Hence, x da y = x db y.
(ii) We also have
xecy = λc(λc(x)⊕λc(λc(x)⊕y))

= λc(λc(x)⊕λc(λa(x)⊕y⊕λc(a))) (Proposition 3.1 (iii))
= λc(λc(x)⊕(λc(λa(x)⊕y)⊗ca)) (definition of ⊗c)
= λc(λc(x)⊕((λa(λa(x)⊕y)⊕λc(a))⊗c a)) (Proposition 3.1 (iii))
= λc(λc(x)⊕((λa(λa(x)⊕y)⊕λc(a))ea)) (Lemma 2.5 (i))
= λc(λc(x)⊕(λa(λa(x)⊕y)ea)) ( Lemma 2.4 (i))
= λc(λc(x)⊕λa(λa(x)⊕y))
= λc(λa(x)⊕λa(λa(x)⊕y)⊕λc(a)) (Proposition 3.1 (iii))
= λc(λa(x)⊕λa(λa(x)⊕y))⊗ca (definition of ⊗c)
= (λa(λa(x)⊕λa(λa(x)⊕y))⊕λc(a))⊗ca (Proposition 3.1 (iii))
= λa(λa(x)⊕λa(λa(x)⊕y))ea
= xeay.

Similarly, we can show that x ec y = x eb y and so x ea y = x eb y.2

Definition 3.2. Let A be an Equasi-MV algebra and x, y ∈ [0, a] where a ∈
I(A). A preordering 6a on the quasi-MV algebra 〈[0, a],⊕, λa, 0, a〉 defined as
follows:

x 6a y ⇐⇒ x ea y = x⊕ 0.

By Proposition 3.2, for any x, y 6 a, b, where a, b ∈ I(A), we have x 6a

y ⇐⇒ x 6 y ⇐⇒ x 6b y. Then we can also define a preordering 6 on A by
x 6 y ⇐⇒ x e y = x⊕ 0, where x e y = x ea y.

Lemma 3.1. Let A be an Equasi-MV algebra. For all x, y ∈ A, the operation
⊗: A × A → A defined by x ⊗ y = λa(λa(x) ⊕ λa(y)), where a ∈ I(A) and
x, y 6 a. Then

(i) the well-defined binary operation ⊗ on A is not determined by the choice
of a and is also order preserving and associative.

(ii) if x, y ∈ A, x 6 y, then y⊗λa(x) = y⊗λb(x) and y⊕0 = x⊕(y⊗λa(x))
for all a, b ∈ I(A) and x, y 6 a, b.

(iii) if x, y ∈ [0, a] and a ∈ I(A), then x ⊗ λa(y) = x ⊗ λa(x e y) and
x⊕ 0 = (x e y)⊕ (x⊗ λa(y)).

(iv) an element a ∈ A is idempotent iff a⊗ a = a.

Proof. (i) Let x, y ∈ A and a, b ∈ I(A) such that x, y 6 a, b. We claim that
λa(λa(x)⊕λa(y)) = λb(λb(x)⊕λb(y)). Indeed, there exists an element c ∈ I(A)
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such that a, b 6 c. Then
λc(λc(x)⊕ λc(y)) = λc(λa(x)⊕ λc(a)⊕ λa(y)⊕ λc(a)) (Proposition 3.1 (iii))

= λc(λa(x)⊕ λa(y))⊗c λc(λc(a)) (Propsition 3.1 (i))
= λc(λa(x)⊕ λa(y)) e a (Lemma 2.5 (ii))
= (λa(λa(x)⊕ λa(y))⊕ λc(a)) e a (Lemma 3.1 (iii))
= (λa(λa(x)⊕ λa(y)) d λc(a)) e a (Lemma 2.5 (i))
= λa(λa(x)⊕ λa(y)) e a
= λa(λa(x)⊕ λa(y)).

Similarly, we have λc(λc(x)⊕ λc(y)) = λb(λb(x)⊕ λb(y)).
Let x, y, z ∈ A. There exists c ∈ I(A) such that x, y, z 6 c. It follows from

the definition of ⊗ that x⊗ y, y ⊗ z ∈ [0, c]. Then
(x⊗ y)⊗ z = λc(λc(x⊗ y)⊕ λc(z))

= λc((λc(x)⊕ λc(y))⊕ λc(z))
= λc(λc(x)⊕ (λc(y)⊕ λc(z)))
= λc(λc(x)⊕ λc(y ⊗ z)) = x⊗ (y ⊗ z).

This proves that ⊗ is associative. It is easy to prove that ⊗ is order preserving.

(ii) Let x 6 y and x, y 6 a, b, where a, b ∈ I(A). There exists c ∈ I(A) such
that a, b 6 c. By Proposition 3.1, we have

y ⊗ λa(x) = λc(λc(y)⊕ λc(λa(x)))
= λc(λc(y)⊕ λc(λa(x))⊕ 0)

= λc(λc(y)⊕ λc(λa(x)⊕ 0))

= y ⊗ (λa(x)⊕ 0).
Then

y ⊗ λc(x) = y ⊗ (λc(x)⊕ 0)

= y ⊗ (λa(x)⊕ λc(a))
= y ⊗ (λa(x) d λc(a)) (Lemma 2.5 (i))
= (y ⊗ λa(x)) d (y ⊗ λc(a)) (Lemma 2.3 (vii)).

Since λc(a) 6 λc(y), we have y⊗λc(a) 6 y⊗λc(y) = 0, where y 6 a 6 c. This
implies y ⊗ λc(x) = y ⊗ λa(x). Similarly, we have y ⊗ λc(x) = y ⊗ λb(x). It
follows that y ⊗ λa(x) = y ⊗ λb(x).

In the quasi-MV algebra 〈[0, a],⊕, λa, 0, a〉, we have
x⊕ (y ⊗ λa(x)) = x⊕ λa(λa(y)⊕ x) = x d y = y ⊕ 0.

(iii) Let x, y 6 a and a ∈ I(A). We have
x⊗ λa(x e y) = x⊗ (λa(x) d λa(y))

= (x⊗ λa(x)) d (x⊗ λa(y)) (Lemma 2.3 (vii))
= x⊗ λa(y).
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(x e y)⊕ (x⊗ λa(y)) = (x e y)⊕ (x⊗ λa(x e y))
= (x e y)⊕ λa(λa(x)⊕ (x e y))

= x⊕ λa(x⊕ λa(x e y)) (QMV 4)
= x⊕ λa(x⊕ λa(x)⊕ λa(λa(x)⊕ y))
= x⊕ 0.

(iv) =⇒: Suppose a, b ∈ I(A) with a 6 b. We have λb(a)⊕λb(a) = λb(a) by
Proposition 3.1 (i). In the quasi-MV algebra 〈[0, b],⊕, λb, 0, b〉, we have a ⊗ a =
λb(λb(a)⊕ λb(a)) = λb(λb(a)) = a.
⇐=: For each a ∈ A, there exists b ∈ I(A) such that a 6 b. Suppose

a⊗a = a. We have λb(λb(a)⊕λb(a)) = a. Then λb(λb(λb(a)⊕λb(a))) = λb(a).
It follows from λb(a) ⊕ λb(a) = λb(a) that λb(a) ∈ I(A). By Proposition 3.1
(i), we have λb(λb(a)) ⊕ λb(λb(a)) = λb(λb(a)). That is a ⊕ a = a. It implies
a ∈ I(A). 2

Theorem 3.1. Let A be an Equasi-MV algebra. Then 〈R(A),dR,eR,⊕R, 0R〉 is
an EMV-subalgebra of A.

Proof. It is obvious thatR(A) is closed under the operations dR,eR,⊕R, 0R.
For all x, y ∈ R(A), there exists a ∈ I(A) such that x, y 6 a. Then [0, a]∩R(A)
is an MV-algebra of [0, a] by Lemma 15 in A. Ledda and Giuntini [2006]. This
means thatR(A) is an EMV-subalgebra of A. 2

4 Ideals and congruences
In this section, we give the notions of ideals and ideal congruences of Equasi-

MV algebras. We also give an equivalent definition of ideals. Moreover, there is
a one-to-one correspondence between the set of all ideals and the set of all ideal
congruences.

Definition 4.1. Let A be an Equasi-MV algebra. An equivalence relation θ on A
is called a congruence, if the following conditions hold:

(i) θ is compatible with ⊕;
(ii) for all b ∈ I(A), θ ∩ ([0, b] × [0, b]) is a congruence on the quasi-MV

algebra 〈[0, b],⊕, λb, 0, b〉.

The set of all congruences on A represented by Con(A).

Definition 4.2. Let A1,A2 be two Equasi-MV algebras. We call a map f :
A1 −→ A2 to be an Equasi-MV homomorphism, if it satisfies the following state-
ments:

(i) f(x⊕ y) = f(x)⊕ f(y) and f(0) = 0, for all x, y ∈ A1;
(ii) for all x, y ∈ [0, a] and a ∈ I(A1), f(λa(x)) = λf(a)(f(x)).
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Example 4.1. Let f : A1 → A2 be an Equasi-MV homomorphism. We can define
θ = {(x, y) ∈ A1 × A1 : f(x) = f(y)}, then θ is a congruence.

Let A be an Equasi-MV algebra and θ be a congruence on A. We denote
A/θ = {x/θ : x ∈ A}, where x/θ = {y ∈ A : 〈x, y〉 ∈ θ}.

We define operations e, d, ⊕ on A/θ as follows: for any x, y ∈ A,
x/θ e y/θ = (x e y)/θ, x/θ d y/θ = (x d y)/θ, x/θ ⊕ y/θ = (x⊕ y)/θ.
Suppose x/θ 6 y/θ. Then (x e y)/θ > x/θ. For all z ∈ A, we have

x/θ ⊕ z/θ = (x⊕ z)/θ
6 ((x e y)⊕ z)/θ
6 (y ⊕ z)/θ
= y/θ ⊕ z/θ.

This proves that 〈A/θ,⊕, 0/θ〉 is a commutative preordered semigroup and (x/θ⊕
y/θ)⊕ 0/θ = x/θ ⊕ y/θ.

For all x ∈ A, there exists a ∈ I(A) such that x 6 a. It is easily shown that
a/θ is an idempotent element and x/θ 6 a/θ. Since A is an Equasi-MV algebra,
we have that 〈[0, a],⊕, λa, 0, a〉 is a quasi-MV algebra. And let θa = θ ∩ ([0, a]×
[0, a]) be an ideal congruence on 〈[0, a],⊕, λa, 0, a〉. For any x/θa ∈ [0/θa, a/θa],
we define λa/θa(x/θa) = λa(x)/θa. Then [0/θa, a/θa] is a quasi-MV algebra.

Now we show that 〈[0/θ, a/θ],⊕, λa/θ, 0/θ, a/θ〉 is a quasi-MV algebra. For
all x/θ ∈ [0/θ, a/θ], there exists y/θ ∈ [0/θ, a/θ] such that x/θ ⊕ y/θ = a/θ. It
follows that 〈x ⊕ y, a〉 ∈ θ. And since x, y 6 a, we have 〈x ⊕ y, a〉 ∈ θa. That
is, x/θa ⊕ y/θa = a/θa. Thus y/θa > λa(x)/θa and so y/θ > λa(x)/θ. This
implies that λa/θ(x/θ) exists and equals to λa(x)/θ. It can be easily shown that
〈[0/θ, a/θ],⊕, λa/θ, 0/θ, a/θ〉 is a quasi-MV algebra. Thus, 〈A/θ,⊕, 0/θ〉 is an
Equasi-MV algebra.

And the map π : 〈A,⊕, 0〉 −→ 〈A/θ,⊕, 0/θ〉 defined by x 7−→ x/θ is an
Equasi-MV homomorphism from A onto A/θ.

Definition 4.3. Let A be an Equasi-MV algebra and I be a nonempty subset of
A. We call I to be an ideal of A if the following conditions hold:

(I1) 0 ∈ I;
(I2) for all x, y ∈ I , then x⊕ y ∈ I;
(I3) x ∈ I and y 6 x imply y ∈ I .

If I is an ideal of A and x ∈ A, we have x ∈ I iff x⊕ 0 ∈ I by (I3).

Definition 4.4. Let A be an Equasi-MV algebra and I be a nonempty subset of
A. If the following statements hold, I is a weak ideal of A:

(W1) 0 ∈ I;
(W2) for all x, y ∈ I , then x⊕ y ∈ I;
(W3) x ∈ I and y ∈ A imply x⊗ y ∈ I .
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Lemma 4.1. Let I be an ideal of an Equasi-MV algebra A. Then I is a weak
ideal.

Proof. Let I be an ideal of A and x ∈ I . If y ∈ A with y 6 x, there exists
b ∈ I(A) such that x, y 6 b. Then we have

(x⊗ y) e x = λb(λb(x)⊕ λb(y)) e x
= λb(λb(x)⊕ λb(y)⊕ λb(λb(x)⊕ λb(y)⊕ x))
= λb(λb(x)⊕ λb(y)⊕ λb(b)) = x⊗ y.

It follows that x⊗ y 6 x. Thus x⊗ y ∈ I and so I is a weak ideal of A.2
The converse of Lemma 4.1 is not true. For example, {0} is a weak ideal, but

not an ideal.

Proposition 4.1. Let I be a nonempty subset of an Equasi-MV algebra A and 0 ∈
I . Then I is an ideal iff for all x, y ∈ A, a ∈ I(A) with x, y 6 a, λa(x)⊗ y ∈ I
and x ∈ I implies y ∈ I .

Proof. =⇒: Let I be an ideal of A. For all x, y ∈ A and a ∈ I(A) with
x, y 6 a, if λa(x)⊗ y ∈ I and x ∈ I , we have (λa(x)⊗ y)⊕ x ∈ I . Since

λa(y)⊕ ((λa(x)⊗ y)⊕ x) = λa(y)⊕ (λa(x⊕ λa(y))⊕ x)
= λa(y)⊕ (λa(λa(x)⊕ y)⊕ y) (QMV4)
= λa(y)⊕ y ⊕ λa(λa(x)⊕ y)
= a,

we have y 6 (λa(x)⊗ y)⊕ x ∈ I and y ∈ I .
⇐=: For any x, y ∈ I and a ∈ I(A) with x 6 y and x, y 6 a, we have

λa(x)⊗ y = 0 ∈ I . Hence, y ∈ I is obtained from propositional conditions. And
then

λa(x)⊗ (x⊕ y) = λa(x⊕ λa(x⊕ y))
= λa(x) e y

6 y ∈ I.
Then λa(x)⊗ (x⊕ y) ∈ I . It follows from x ∈ I that x⊕ y ∈ I .2

Definition 4.5. Let A be an Equasi-MV algebra. We define a binary relation 4
as follows: for all x, y ∈ A,

x 4 y iff x e y = x.

The binary relation 4 satisfies antisymmetry and transitivity, but when x is a
regular element, it satisfies reflexivity.

Lemma 4.2. Let A be an Equasi-MV algebra and x, y ∈ A. Then
x 4 y iff x 6 y and x ∈ R(A).
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Proof. If x 4 y, we have x e y = x and x e y = (x e y) ⊕ 0 = x ⊕ 0. It
follows that x 6 y and x ⊕ 0 = x. Thus x ∈ R(A). Conversely, if x 6 y and
x ∈ R(A), we have x e y = x⊕ 0 = x and so x 4 y.2

Lemma 4.3. Let A be an Equasi-MV algebra and J ⊆ A. Then the following
statements are equivalent:

(i) J is a weak ideal of A;
(ii) (1) if x, y ∈ J , then x⊕ y ∈ J; (2) if x ∈ J , y 4 x, then y ∈ J .

Proof. (i)=⇒(ii): Suppose x ∈ J and y 4 x. There exists b ∈ I(A) such that
x 6 b. Then x⊗ (λb(x)⊕ y) = x e y ∈ J . Since y 4 x, we have x e y = y ∈ J .

(ii)⇐=(i): For any x ∈ J , y ∈ A, there exists b ∈ I(A) such that x, y 6 b.
Since x⊗y 6 x and x⊗y ∈ R(A) by Lemma 4.2, we have x⊗y 4 x. Therefore,
x⊗ y ∈ J .2

Let A be an Equasi-MV algebra and H be a subset of A. The ideal generated
by H is the smallest ideal of A containing H , denoted by 〈H〉.

Lemma 4.4. Let A be an Equasi-MV algebra and H ⊆ A, then
(i) 〈H〉={x∈A : there exist h1,· · ·, hn∈H,n ∈ Nsuch that x6h1⊕· · ·⊕hn};
(ii) 〈0〉 is the smallest ideal of A;
(iii) If I is an ideal of A and x ∈ A, we have

〈I ∪ {x}〉 = {z ∈ A : z 6 a⊕ n.x for some a ∈ I and n ∈ N}.

Proof. (i) We writeM={x∈A : there existh1, · · ·, hn∈H,n∈N such that x6
h1⊕· · ·⊕hn}. Then M is an ideal of A. Now we show that M is the smallest ideal
of A containing H . Suppose M ′ is an ideal of A containing H . For any x ∈ M ,
there exist h1, · · · , hn ∈ H such that x 6 h1 ⊕ · · · ⊕ hn. As H ⊆ M ′, we get
x ∈M ′ and so M ⊆M ′.

(ii) By (i) we obvious get the result.2

Definition 4.6. An ideal I of an Equasi-MV algebra A is maximal if for all x ∈
A \ I , 〈I ∪ {x}〉 = A.

Definition 4.7. Let A be an Equasi-MV algebra and θ be a congruence on A. θ
is an ideal congruence if for all x, y ∈ A, (x⊕ 0)θ(y ⊕ 0)⇒ xθy.

Example 4.2. Let A be an Equasi-MV algebra and x, y ∈ A. A binary relation χ
defined as follows: xχy iff x 6 y and y 6 x.

It is easy to show that χ is compatible with ⊕. We now show that for all b ∈
I(A), χ∩([0, b]×[0, b]) is congruence on the quasi-MV algebra 〈[0, b],⊕, λb, 0, b〉.
Suppose 〈x, y〉 ∈ χ ∩ ([0, b] × [0, b]). It follows from 〈x, y〉 ∈ χ that x 6 y and
y 6 x. Hence, λb(y) 6 λb(x) and λb(x) 6 λb(y). Therefore, 〈λb(x), λb(y)〉 ∈
χ ∩ ([0, b] × [0, b]). That is, χ is a congruence on A. As a result, χ is an ideal
congruence.
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Definition 4.8. Let A be an Equasi-MV algebra, I be an ideal of A and θ be an
ideal congruence on A. We define two relations f(J) on A×A and g(θ) on A as
follows:
〈x, y〉 ∈ f(J) iff there exists b ∈ I(A) such that x⊗ λb(y), y ⊗ λb(x) ∈ J ;
g(θ) = 0/θ = {x ∈ A : xθ0}.

Theorem 4.1. Let A be an Equasi-MV algebra, J be an ideal of A and θ be an
ideal congruence on A.

(i) f(J) is an ideal congruence on A;
(ii) g(θ) is an ideal of A;
(iii) J = g(f(J));
(iv) θ = f(g(θ)).

Proof. (i) Obviously, f(J) is a congruence on A. Now we show that f(J) is
an ideal congruence. Let 〈x⊕ 0, y ⊕ 0〉 ∈ f(J). There exists b ∈ I(A) such that
x, y 6 b. Then λb(x ⊕ 0) ⊗ (y ⊕ 0), λb(y ⊕ 0) ⊗ (x ⊕ 0) ∈ J . It follows that
λb(x)⊗y=λb(x⊕0)⊗(y⊕0) ∈ J . Similarly, λb(y)⊗x ∈ J . Thus, 〈x, y〉 ∈ f(J).
Therefore, f(J) is an ideal congruence on A.

(ii) Suppose 〈x, 0〉 ∈ θ and y 6 x. We have 〈λb(x), b〉 ∈ θ. That implies
〈λb(x)⊕ y, b〉 ∈ θ and so 〈x⊗ (λb(x)⊕ y), x⊗ b〉 ∈ θ. That is, 〈xe y, x⊕ 0〉 ∈ θ.
It follows from y 6 x that x e y = y ⊕ 0. Thus, 〈y ⊕ 0, x⊕ 0〉 ∈ θ. Since θ is an
ideal congruence on A, we have 〈y, x〉 ∈ θ. This together with 〈0, x〉 ∈ θ implies
that 〈y, 0〉 ∈ θ and so y ∈ g(θ). Therefore, g(θ) is an ideal of A.

(iii) It is easily seen that g(f(J)) = {x ∈ A : x ⊕ 0 ∈ J}. For all x ∈ A, we
have x ∈ J iff x⊕ 0 ∈ J . Thus g(f(J)) = {x ∈ A : x ∈ J}.

(iv) For any x, y ∈ A, if 〈x, y〉 ∈ f(g(θ)), there exists b ∈ I(A) such that
x, y 6 b, 〈λb(x)⊗y, 0〉 ∈ θ and 〈λb(y)⊗x, 0〉 ∈ θ. Then 〈(λb(x)⊗y)⊕x, 0⊕x〉 ∈
θ. By (λb(x) ⊗ y) ⊕ x = x d y, we get 〈x d y, 0 ⊕ x〉 ∈ θ. Similarly, we have
〈x d y, 0 ⊕ y〉 ∈ θ. Thus, 〈0 ⊕ x, 0 ⊕ y〉 ∈ θ. Since θ is an ideal congruence on
A, we have 〈x, y〉 ∈ θ. Therefore, f(g(θ)) ⊆ θ.

Conversely, if 〈x, y〉 ∈ θ, there exists b ∈ I(A) such that x, y 6 b and so
〈y ⊗ λb(x), x ⊗ λb(x)〉 ∈ θ. This together with x ⊗ λb(x) = 0 implies 〈y ⊗
λb(x), 0〉 ∈ θ. Similarly, 〈x ⊗ λb(y), 0〉 ∈ θ. Thus, 〈x, y〉 ∈ f(g(θ)). Therefore,
θ ⊆ f(g(θ)).2

Let I be an ideal of an Equasi-MV algebra A. The relation θI is defined as
follows: for all x, y ∈ A,
(x, y)∈θI ⇐⇒ ∃b ∈ I(A) withx, y 6 bsuch that λb(λb(x)⊕y), λb(λb(y)⊕x) ∈ I.

Proposition 4.2. Let A be an Equasi-MV algebra. If I is an ideal of A, the
relation θI is an ideal congruence on A.

Proof. Let I be an ideal ofA. Suppose 〈x, y〉, 〈y, z〉 ∈ θI . We have λb(λb(x)⊕
y), λb(λb(y)⊕x) ∈ I and λb(λb(z)⊕ y), λb(λb(y)⊕ z) ∈ I where b ∈ I(A) such
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that x, y, z 6 b. Since I is an ideal ofA, we have λb(λb(x)⊕y)⊕λb(λb(y)⊕z) ∈ I
and λb(λb(y) ⊕ x) ⊕ λb(λb(z) ⊕ y) ∈ I . And (λb(x) ⊕ z) ⊕ (λb(λb(x) ⊕ y) ⊕
λb(λb(y)⊕z)) = b. It follows that λb(λb(x)⊕z) ∈ I . Similarly, λb(λb(z)⊕x) ∈ I .
Then 〈x, z〉 ∈ θI . The reflexivity and symmetry is clear.

It is easy to prove that θI is compatible with ⊕. For all u ∈ I(A) such that
x, y, z 6 u. Now, we show that θIu = θI ∩ ([0, u]× [0, u]) is a congruence on the
quasi-MV algebra 〈[0, u],⊕, λu, 0, u〉. Suppose 〈x, y〉 ∈ θIu , we have λu(λu(x)⊕
y), λu(λu(y)⊕ x) ∈ I ∩ ([0, u]× [0, u]). Then

(λu(x⊕ z)⊕ (y ⊕ z))⊕ λu(λu(x)⊕ y)
=λu(x⊕ z)⊕ x⊕ z ⊕ λu(λu(y)⊕ x)
=λu(λu(x)⊕ λu(z))⊕ λu(z)⊕ z ⊕ λu(λu(y)⊕ x)
=u.

It follows that λu(λu(x⊕z)⊕(y⊕z)) 6 λu(λu(x)⊕y) ∈ θI . Then λu(λu(x⊕z)⊕
(y⊕z)) ∈ θI . Similarly, λu(λu(y⊕z)⊕ (x⊕z)) ∈ θI . Thus, 〈x⊕z, y⊕z〉 ∈ θIu .
And 〈λu(x), λu(z)〉 ∈ θIu is obvious. Therefore, θI is a congruence on A.

For each 〈x ⊕ 0, y ⊕ 0〉 ∈ θI , we have λb(λb(x ⊕ 0) ⊕ (y ⊕ 0)), λb(λb(y ⊕
0) ⊕ (x ⊕ 0)) ∈ I . That is, λb(λb(x) ⊕ y), λb(λb(y) ⊕ x) ∈ I . Thus 〈x, y〉 ∈ θI .
Therefore, θI is an ideal congruence.2

Theorem 4.2. Let A be an Equasi-MV algebra. There is a one-to-one correspon-
dence between the set of all ideals and the set of all ideal congruences.

Proof. Let I be an ideal of A and θI be an ideal congruence induced by I .
Now we show that I = 0/θI . Since 0 ∈ I , we have 〈x, 0〉 ∈ θI , for all x ∈ I .
It follows that x ∈ 0/θI . Conversely, suppose x ∈ 0/θI . There exists a ∈ I(A)
such that x 6 a. By Proposition 4.1, since λa(x) ⊗ 0 ∈ I and 0 ∈ I , we have
x ∈ I . Hence, I = 0/θI .

Let θ be an ideal congruence on A. Let I = 0/θ. Suppose 〈x, y〉 ∈ θI .
There exists a ∈ I(A) such that x, y 6 a and λb(λb(x) ⊕ y), λb(λb(y) ⊕ x) ∈
I = 0/θ. That is, 〈λb(λb(x) ⊕ y), 0〉 ∈ θ and 〈λb(λb(y) ⊕ x), 0〉 ∈ θ. Hence,
〈λb(λb(x) ⊕ y) ⊕ y, 0 ⊕ y〉 ∈ θ and 〈λb(λb(y) ⊕ x) ⊕ x, 0 ⊕ x〉 ∈ θ. Since
λb(λb(x)⊕ y)⊕ y = λb(λb(y)⊕ x)⊕ x, we have 〈x⊕ 0, y⊕ 0〉 ∈ θ. And since θ
is an ideal congruence on A, we have 〈x, y〉 ∈ θ.

Conversely, let 〈x, y〉 ∈ θ. There exists a ∈ I(A) such that x, y 6 a. Then
〈λa(x), λa(y)〉 ∈ θ and 〈λa(x)⊗ y, λa(y)⊗ y〉 ∈ θ. Since λa(y)⊗ y = 0, we have
λa(x) ⊗ y ∈ 0/θ. Similarly, λa(y) ⊗ x ∈ 0/θ. That is, 〈x, y〉 ∈ θI . Therefore,
θ = θI .2

Theorem 4.3. Let A be an Equasi-MV algebra. Then f(I) ◦ f(J) = f(J) ◦ f(I)
is vaild, where I and J are ideals of A.
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Proof. Suppose f(I), f(J) ∈ ConI(A) and 〈x, y〉 ∈ f(I)◦f(J) for x, y ∈ A.
So there exists z ∈ A such that 〈x, z〉 ∈ f(I) and 〈z, y〉 ∈ f(J). There exists
b ∈ I(A) such that x, y, z 6 b. Let p be a ternary term defined as follows:

pb(x, y, z) = (x⊗ (λb(y)⊕ (y e z))) d (z ⊗ (λb(y)⊕ (y e x))).
Then

(x⊗ (λb(z)⊕ (z e y))) d (y ⊗ (λb(z)⊕ (z e x))) f(I) pb(z, z, y) = y ⊕ 0
and
(x⊗ (λb(z)⊕ (z e y))) d (y ⊗ (λb(z)⊕ (z e x))) f(J) pb(x, y, y) = x⊕ 0.

Let
(x⊗ (λb(z)⊕ (z e y))) d (y ⊗ (λb(z)⊕ (y e x))) = t,

where t 6 b ∈ I(A). It follows from 〈t, y⊕ 0〉 ∈ f(I) and 〈t, x⊕ 0〉 ∈ f(J) that
(y ⊕ 0)⊗ λb(t), λb(y ⊕ 0)⊗ t ∈ I;
(x⊕ 0)⊗ λb(t), λb(x⊕ 0)⊗ t ∈ J.

Now, y⊗λb(t) 6 (y⊕0)⊗λb(t) ∈ I , x⊗λb(t) 6 (x⊕0)⊗λb(t) ∈ J . Similarly,
λb(y)⊗ t 6 λb(y⊕0)⊗ t ∈ I , λb(x)⊗ t 6 λb(x⊕0)⊗ t ∈ J . Thus, 〈t, y〉 ∈ f(I)
and 〈t, x〉 ∈ f(J). That is, 〈x, y〉 ∈ f(J) ◦ f(I).2

Lemma 4.5. If A is an Equasi-MV algebra, the lattice ConI(A) of ideal congru-
ences on A is a sublattice of Con(A).

Proof. Let I , J be two ideals of A. It is easy to prove that f(I ∩ J) =
f(I) ∩ f(J). Now we show that f(I ∨ J) = f(I) ∨ f(J).

Since g(f(I ∨ J)) = I ∨ J and g(f(I)) ∨ g(f(J)) = I ∨ J , we claim that
g(f(I) ∨ f(J)) = g(f(I)) ∨ g(f(J)). Let x ∈ g(f(I)) ∨ g(f(J)) such that
x 6 y ⊕ z where y ∈ g(f(I)) and z ∈ g(f(J)). Then we get 〈y, 0〉 ∈ f(I),
〈z, 0〉 ∈ f(J) and 〈y, z〉 ∈ f(I)◦f(J) = f(I)∨f(J). It follows that 〈z⊕0, 0〉 ∈
f(J), 〈y⊕z, z⊕0〉 ∈ f(I) and 〈y⊕z, 0〉 ∈ f(I)◦f(J) = f(I)∨f(J). And then
x 6 y ⊕ z ∈ g(f(I) ∨ f(J)). Therefore, g(f(I)) ∨ g(f(J) ⊆ g(f(I) ∨ f(J)).

Conversely, for any x ∈ g(f(I) ∨ f(J)), we have 〈x, 0〉 ∈ f(I) ∨ f(J) =
f(I) ◦ f(J). Then there exist z ∈ A and b ∈ I(A) such that 〈x, z〉 ∈ f(I) and
〈z, 0〉 ∈ f(J). And 〈x⊗λb(z), 0〉 ∈ f(I), 〈z, 0〉 ∈ f(J). Then x 6 (x⊗λb(z))⊕
z. Since x⊗ λb(z) ∈ g(f(I)) and z ∈ g(f(J)), we have x ∈ g(f(I)) ∨ g(f(J)).
Thus, g(f(I) ∨ f(J)) ⊆ g(f(I)) ∨ g(f(J)).2

Theorem 4.4. ConI(A) is distributive.

Proof. By Theorem 4.2, we only need to prove that the lattice of ideals on A
is distributive. Suppose I, J,K are ideals on A and x ∈ I ∩ (J ∨K). Then x ∈ I
and x 6 y ⊕ z, for some y ∈ J , z ∈ K. Hence, x 6 (x e y)⊕ (x e z). It follows
from x e y ∈ I ∩ J , x e z ∈ I ∩K that x ∈ (I ∩ J) ∨ (I ∩K).2
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5 Filters and prime ideals
In this section, we introduce the notions of filters and prime ideals of Equasi-

MV algebras. Moreover, we study some properties of them. We prove that every
Equasi-MV algebra has at least one maximal ideal. Also, we get prime theorem
on Equasi-MV algebras.

Definition 5.1. Let 〈A,⊕, 0〉 be an Equasi-MV algebra and F be a nonempty
subset of A. F is called a filter if the following conditions are satisfied:

(i) for all x, y ∈ A, if x 6 y and x ∈ F , then y ∈ F ;
(ii) for all x, y ∈ F , then x⊗ y ∈ F .

Definition 5.2. We call a filter F is proper if F 6= A. A proper filter F is maximal,
if for all x ∈ A \ F , 〈F ∪ {x}〉 = A.

Let A be an Equasi-MV algebra. For x ∈ A and n ∈ N, we define
x1 = x, · · · , xn = xn−1 ⊗ x, n > 2.

Proposition 5.1. Let A be an Equasi-MV algebra and F be a filter of A. Then
IF is an ideal of A, where

IF := {λa(x) : x ∈ F, ∃a ∈ I(A), x 6 a}.

Proof. For all x ∈ A, we have
x ∈ IF ⇐⇒ ∃a ∈ I(A) s.t. x 6 a, λa(x) ∈ F.

It is obvious that 0 ∈ IF . Suppose x, y ∈ IF . There exist a, b ∈ I(A) such that
x 6 a and y 6 b. It follows λa(x), λb(y) ∈ F . Let c ∈ I(A) such that a, b 6 c.
Then λc(x), λc(y) ∈ F by Proposition 3.1 (iv). That implies λc(x)⊗ λc(y) ∈ F .
Since λc(x), λc(y) 6 c and λc(x)⊗ λc(y) = λc(x⊕ y), we have x⊕ y ∈ IF .

Suppose x, y ∈ A with x ∈ IF and y 6 x. There exists a ∈ I(A) such that
x 6 a and λa(x) ∈ F . Since x, y ∈ [0, a] and y 6 x, we have λa(x) 6 λa(y). It
implies λa(y) ∈ F and y ∈ IF . 2

In the following, we give an equivalent condition of maximal filters.

Proposition 5.2. Let A be an Equasi-MV algebra and F be a proper filter of A.
(i) For all x ∈ A, 〈F ∪ {x}〉 = {z ∈ A : z > y ⊗ xn,∃n ∈ N, y ∈ F};
(ii) F is a maximal filter iff for all x /∈ F , there exist n ∈ N and b ∈ I(A)

with x 6 b such that λb(xn) ∈ F .

Proof. (i) It is obvious.
(ii) Let F be a maximal filter and x /∈ F . We have 0 ∈ 〈F ∪ {x}〉 by (i) and

so there exist n ∈ N and y ∈ F such that 0 = y⊗ xn. There exists b ∈ I(A) such
that x, y 6 b. Then b = λb(y ⊗ xn) = λb(y)⊕ λb(xn), it follows that y 6 λb(x

n)
and λb(xn) ∈ F . Conversely, for any x ∈ A \ F , there exist n ∈ N, b ∈ I(A)
such that λb(xn) ∈ F . Then 0 = λb(x

n)⊗ xn and 0 ∈ 〈F ∪ {x}〉. It follows that
〈F ∪ {x}〉 = A and F is a maximal filter.2
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Lemma 5.1. Let F be a proper filter of an Equasi-MV algebra A.
(i) If a ∈ F ∩ I(A), we have a /∈ IF .
(ii) If a ∈ F ∩ I(A), then for all b ∈ I(A) with a < b, we have λb(a) ∈ IF .
(iii) If F is a maximal filter of A, then for all a ∈ I(A), a /∈ IF implies a ∈ F .
(iv) If J is a maximal ideal of A, then
∀a ∈ I(A) \ J =⇒ λb(a) ∈ J, where b ∈ I(A) and a < b. (∗)

(v) If J is an ideal of A satisfying (∗), then FJ is a filter of A, where
FJ := {λa(x) : x ∈ J, a ∈ I(A) \ J, x < a}.

Proof. (i) Suppose a ∈ F ∩ I(A) and a ∈ IF . There exists b ∈ I(A) such
that a 6 b and λb(a) ∈ F . It follows from λb(a), a ∈ F that 0 = a⊗ λb(a) ∈ F ,
which is a contradiction.

(ii) It is obvious.
(iii) Let a ∈ I(A) and a /∈ IF . For all b ∈ I(A) with a 6 b, we have

λb(a) /∈ F by Proposition 5.1. Suppose a /∈ F . Since F is a maximal filter, we
have 〈F ∪ {a}〉 = A. By Proposition 5.2, there exist n ∈ N and x ∈ F such that
0 = x ⊗ an. We have u ∈ I(A) such that x, a 6 u and 0 = x ⊗ an = x ⊗u an.
Since a ∈ I(A), we get an = a and so u = λu(x) ⊕ λu(a). It follows that
x 6 λu(a) and λu(a) ∈ F , which is a contradiction.

(iv) Suppose a ∈ I(A) and a /∈ J . For any b ∈ I(A) and a < b, we have
λb(a) ∈ 〈J ∪ {a}〉 = A. By Lemma 4.4, there exist n ∈ N and x ∈ J such that
λb(a) 6 x⊕ n.a. Since a, λb(a) ∈ [0, b], we have

λb(a) = λb(a)⊕ 0

= λb(a) e (x⊕ n.a)
6 (λb(a) e x)⊕ (λb(a) e n.a) (Lemma 2.4 (iii))
= λb(a) e x.

It follows λb(a) 6 x ∈ J and so λb(a) ∈ J .
(v) Suppose x, y ∈ A with x 6 y and x ∈ FJ . There exists a ∈ I(A) \J such

that x < a and λa(x) ∈ J . Let b ∈ I(A) and a, y 6 b. We have λb(y) 6 λb(x) 6
λa(x)⊕ λb(a). By (iv), we have λb(a) ∈ J and λa(x)⊕ λb(a) ∈ J . That implies
λb(y) ∈ J and y ∈ FJ .

Let x, y ∈ FJ . There exist a, b ∈ I(A) \ J such that x 6 a, y 6 b and
λa(x), λb(y) ∈ J . Let c ∈ I(A) and a, b 6 c. We have λc(a), λc(b) ∈ J by (iv)
and λc(x) 6 λc(x)⊕0 = λa(x)⊕λc(a) ∈ J , λc(y) 6 λc(y)⊕0 = λb(y)⊕λc(b) ∈
J by Proposition 3.1. It follows that λc(x), λc(y) ∈ J and λc(x) ⊕ λc(y) ∈ J .
Thus λc(λc(x)⊕ λc(y)) ∈ FJ . That is, x⊗ y = x⊗c y ∈ FJ .2

Definition 5.3. Let A be an Equasi-MV algebra and I be an ideal of A. We call
I to be prime if for all x, y ∈ A, x e y ∈ I implies that x ∈ I or y ∈ I .

Proposition 5.3. Let I be an ideal of an Equasi-MV algebra A. Then I is prime iff
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for any x, y ∈ A, there exists a ∈ I(A) with x, y 6 a such that λa(λa(x)⊕y) ∈ I
or λa(λa(y)⊕ x) ∈ I .

Proof. ⇐=: Let π: A −→ A/I be the canonical projection and θ be an ideal
congruence. If x e y ∈ I , we have (x e y)/θ = x/θ e y/θ ∈ π(I). Let x/θ = [i]
or y/θ = [j], where i, j ∈ I . There exists a ∈ I(A) such that x, y, i, j 6 a,
λa(x) ⊗ i ∈ I , λa(i) ⊗ x ∈ I or λa(y) ⊗ j ∈ I , λa(j) ⊗ y ∈ I . It follows from
Proposition 4.1 that x ∈ I or y ∈ I .

=⇒: For any x, y ∈ A, there exists a ∈ I(A) such that x, y 6 a. We have
(λa(x)⊕ y)d(λa(y)⊕x)

=λa(x)⊕y⊕λa(λa(x)⊕y⊕λa(λa(y)⊕x))
=λa(x)⊕λa(λa(x)⊕λa(λa(y)⊕x))⊕λa(λa(λa(x)⊕λa(λa(y)⊕x))⊕λa(y))
=λa(y)⊕x⊕λa(λa(y)⊕x⊕x)⊕λa(λa(λa(x)⊕λa(λa(y)⊕x))⊕λa(y))
=λa(x)⊕λa(λa(y)⊕x))⊕λa((λa(x)⊕λa(λa(y)⊕x))⊕y)⊕x⊕λa(λa(y)⊕x⊕x)
=a.
It follows λa((λa(x) ⊕ y) d (λa(y) ⊕ x)) = 0 ∈ I . That is, λa(λa(x) ⊕ y) e
λa(λa(y)⊕ x) = 0 ∈ I . Therefore, λa(λa(x)⊕ y) ∈ I or λa(λa(y)⊕ x) ∈ I .2

Example 5.1. Let A ×M be an Equasi-MV algebra mentioned in Example 3.6.
It can be easily proved that P = {0, b} is a prime ideal of a quasi-MV algebra
A. Now we show that P ×M is a prime ideal of an Equasi-MV algebra A×M .
Obviously, 〈0, 0〉 ∈ P × M and 〈0,M〉 ⊕ 〈b,M〉 = 〈b,M〉 ∈ P × M . And
for any 〈x,M〉 6 〈b,M〉, we have 〈x,M〉 ∈ A ×M . Then P ×M is an ideal
of A × M . For any 〈x1, y1〉, 〈x2, y2〉 ∈ A × M , suppose 〈x1, y1〉 e 〈x2, y2〉 =
〈x1ex2, y1∧y2〉 ∈ P×M , we have x1 ∈ P or x2 ∈ P . That is, 〈x1, y1〉 ∈ P×M
or 〈x2, y2〉 ∈ P ×M .

Let A be a proper Equasi-MV algebra and a ∈ I(A) \ {0}. We define
↑ a = {x ∈ A : x > a}.

Then ↑ a is a filter of A. Moreover, ↑ a is a proper filter of A.

Proposition 5.4. Let F be a maximal filter of an Equasi-MV algebra A. Then
IF = {λa(x) : x ∈ F, ∃a ∈ I(A), x 6 a}

is a maximal ideal of A.

Proof. We know that IF is an ideal of A by Proposition 5.1. As F 6= ∅, we
have a ∈ I(A) ∩ F and so a /∈ IF by Lemma 5.1 (i).

Let J be an ideal of A and IF ⊆ J . Suppose a /∈ J and a ∈ I(A), we have
a /∈ IF and so a ∈ F by Lemma 5.1 (iii). Then for any b ∈ I(A) with a 6 b,
we have λb(a) ∈ IF ⊆ J . Hence, J satisfies condition (∗) in Lemma 5.1 (iv). It
follows from Lemma 5.1 (iv) that FJ is a filter of A.
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Suppose x ∈ F and w ∈ I(A)\J . There exists u ∈ I(A) such that x,w 6 u.
Since J is a proper ideal, we have u /∈ J . It follows from the definition of IF that
λu(x) ∈ IF ⊆ J and then x ∈ FJ . That implies F ⊆ FJ .

Since F is a maximal filter, we have FJ = F or FJ = A. If FJ = A, then
there exist x ∈ J and a ∈ I(A) such that x < a and λa(x) = 0, which is a
contradiction. Thus FJ = F . By Lemma 5.1 (v), for all x ∈ J , there exists
a ∈ I(A) \ J such that x < a and λa(x) ∈ FJ = F . Hence, we have x ∈ IF .
That is, J ⊆ IF . Thus J = IF . This proves that IF is a maximal ideal of A.2

Theorem 5.1. Let A be a proper Equasi-MV algebra. Then A has at least one
maximal ideal.

Proof. Suppose 0 6= a ∈ A. Note that ↑ a is a filter and {0} 6=↑ a. By Zorn’s
lemma, we know that the set of all filters that does not contain 0 has a maximal
element, which is a maximal filter ofA, denoted by F . It follows from Proposition
5.4 that IF is a maximal ideal.2

The following statement gives the prime theorem on Equasi-MV algebras.

Theorem 5.2. Let I be a proper ideal of an Equasi-MV algebra A and a ∈ A \ I .
Then there exists a maximal ideal P which contains I and a ∈ A \ P . Moreover,
P is prime.

Proof. Let M = {J : I ⊆ J, a /∈ J} where I, J are ideals of A. By Zorn’s
lemma, M has a top element P . It follows from I ∈ M that M 6= ∅. We claim
that P is prime. Suppose x e y ∈ P and x, y /∈ P . We have a ∈ 〈P ∪ {x}〉 and
a ∈ 〈P ∪ {y}〉. Then there exist n ∈ N and u, v ∈ P such that a 6 u ⊕ n.x and
a 6 v ⊕ n.y. It follows that

a 6 (u⊕ n.x) e (v ⊕ n.y) 6 (u⊕ v ⊕ n.x) e (u⊕ v ⊕ n.y).
By Lemma 2.4 (iii), we have
a 6 (u⊕v⊕n.x)e(u⊕v⊕n.y) = (u⊕v)⊕(n.xen.y) 6 (u⊕v)⊕n2.(xey) ∈ P.
It follows that a ∈ P , which is a contradiction. Thus, we have x ∈ P or y ∈ P .2

6 Conclusion
In this paper, we introduce the notion of Equasi-MV algebras, which are gen-

eralizations of quasi-MV algebras. We study some basic properties of Equasi-MV
algebras, such as ideals, ideal congruences and filters and investigate their mutual
relationships. We show that there is a one-to-one correspondence between the set
of all ideals and the set of all ideal congruences on an Equasi-MV algebra. And
we also studied some results on maximal ideals and prime ideals.

There are many topics that deserve further study. For example, (1) can any
Equasi-MV algebra be embedded into an Equasi-MV algebra with a top element?
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(2) Does any simple Equasi-MV algebra have a top element? (3) The author in-
troduced ME-algebras and studied the categorical equivalence between equality
algebras and abelian lattice-ordered groups in Liu [2019]. We will study the rela-
tionships between monadic Equasi-MV algebras and monadic equality algebras.

References
F. Paoli A. Ledda, M. Konig and R. Giuntini. MV-algebras and quantum compu-

tation. Studia Logica, 82(2):245–270, 2006.

C. C. Chang. Algebraic analysis of many valued logics. Transactions of the
American Mathematical society, 88(2):467–490, 1958.

P. F. Conrad and M. R. Darnel. Generalized Boolean algebras in lattice-ordered
groups. Order, 14(4):295–319, 1997.
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