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1 Introduction

MV-algebras were introduced by Chang Chang [1958] as an algebraic counter-
part of infinite valued logic. There are many papers on MV-algebras. Also, many
algebraic structures are defined, which extend the notion of MV-algebras. Quan-
tum computation logics M. L. Dalla Chiara and Leporini [2005] received more
attention in recent years, which are new forms of quantum logics G. Cattaneo and
Leporini [2004]. These logics determine the meaning of a sentence with a mixture
of quregisters M. L. Dalla Chiara and Greechie [2013]. Corresponding to quan-
tum computational, Ledda, Konig, Paoli and Giuntini introduced the notion of
quasi-MV algebras in A. Ledda and Giuntini [2006], which are generalizations of
MV-algebras. The element 0 in a quasi-MV algebra is not necessarily a neutral el-
ement of the operation @. Since then, many authors continued to study quasi-MV
algebras. For example, Ledda etc. studied some properties of quasi-MV alge-
bras and v// quasi-MV algebras F. Bou and Freytes [2008], F. Paoli and Freytes
[2009]; Chen introduced pseudo-quasi-MV algebras which are non-commutative
generalizations of quasi-MV algebras Liu and Chen [2016].

EMV-algebras (extended MV-algebras) Dvurecenskij and Zahiri [2019] are
also generalizations of MV-algebras. An EMV-algebra does not necessarily have
a top element. Dvurecenskij and Zahiri gave some properties of EMV-algebras.
The notions of ideals, congruences and filters in EMV-algebras were also intro-
duced and the relationships between them were investigated. One of the main
results is that every EMV-algebra can be embedded into an EMV-algebra with a
top element. Liu presented EBL-algebras in Liu [2020], which extended the no-
tion of BL-algebras. The author gave some properties of EBL-algebras. Also, the
concepts of ideals, congruences and filters were introduced and the relationships
between them were studied.

Inspired by DvureCenskij and Zahiri [2019], we shall give the definition of
Equasi-MV algebras. In these algebras, O is not necessarily the neutral element
and the complement element of 0 does not necessarily exist. The structure of this
paper is as follows. In Sect.2, we give some definitions and results of quasi-MV
algebras. In Sect.3, we introduce Equasi-MV algebras and present some examples
of Equasi-MV algebras. In Sect.4, we define ideals and ideal congruences in
Equasi-MV algebras. And we study the relationships between them. In Sect.5,
we introduce the notions of filters and prime ideals. Moreover, every Equasi-MV
algebra has at least one maximal ideal.
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2 Preliminaries

In this section, we will give some notions and results on quasi-MV algebras,
which will be used in the following.

A quasi-MV algebra A. Ledda and Giuntini [2006] is an algebra A = (A,®/,0, 1)
of type (2, 1,0, 0) satisfying the following conditions:

QMVD)z® (y@z2)=(x®2) Dy;

QMV2) 2" = x;

QMV3)z @ 1 =1,

QMV4) (' y) @y = (y &) & x;

QMV5) (z @ 0)' = 2’ & 0;

QMV6) (x b y)®0=2x D y;

QMV7) (0 = 1.

In any quasi-MV algebra A, we can define the following operations:

rRy=@0y);zV0y=20 (@ Qyhizny=2 (@ dy).

It is obvious that Wy = (z Wy) ® 0and x My = (z My) & 0. Moreover, we can
also define an binary relation < on A as follows: z < yiff t My = 2 & 0. The
relation < is a preordering of A, but not a partial ordering.

Lemma 2.1. [A. Ledda and Giuntini, 2006, Lemma 8] Let A be a quasi-MV
algebra. For all x,y, z € A, the following statements are equivalent.

()x <y

(i)' y=1;

(iii)rVy =y ® 0.

In the following, we give some properties of quasi-MV algebras, including a
few properties of preordering < and the operations M and U.

Lemma 2.2. [A. Ledda and Giuntini, 2006, Lemma 11] Let A be a quasi-MV
algebra. Forall x,y,z,w € A:

(i) 280 < yp0, yd0 < 280 imply xH0 = y&0; (vi)x < 2E0 and B0 < z;
(ii) x <yand z < wimply r®z < yPw; ii) 1@y < ziffr <y Dz;

(iii) x < yand z < w imply 1Rz < yQw; (viii) if v < y, theny' < a';

(iv)x < yand z < wimply xMz <y Mw; (ix) 0Lz, z < 1.

(v)x <yand z < wimply zUz < yUw;

Lemma 2.3. [A. Ledda and Giuntini, 2006, Lemma 12] Let A be a quasi-MV
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algebra. Forall x,y,z € A:

(i) Ay = yMx; (vii) 2R (yUz) = (xQy)U (x®z)

(ii) Wy = yUx; (viii) c@(ymz) = (xm )

(iii) My < z, yand z, y < zVy; (ix) 2V (yVz) = (zUy)Uz

(iv)ifx <y, z, thent <y mz; (x) r < xMzx and xMz < x;

(v)ifx, y < z, then zVy < z; (xi) (xMy)" = 2'Wy" and (zVy) = 2’ @y’

(vi) x®(yMz) = (xPy)M(zD2);

The following lemma gives the distributivity between M and W on quasi-MV
algebras.

Lemma 2.4. Let A be a quasi-MV algebra. Forall x,y,z € A,
(i) (zUy)Mz=(zMz2) Y (ymz);
(i) (zMy)VUz=(zVWz)M(y U z),
(i) xM(y®z) < (xMy) ® (xmz);
(iv) (zUy) @ (zVUz2) <zU(y 2).

Proof. (i) Forany z,y € A, wehave x,y < zUy and so zMz, yMz < (zUy)Mz
by Lemma 2.2 (iv). It follows from Lemma 2.3 (v) that (zMz)U(yMz) < (zUy)Mz.
Conversely, we have

Uy Mz =(zUy) o (2Uy) & 2)
=(zVy) @ ((«' ®2)m(y @ z)) (Lemma 2.3 (xi) and (vi))
(@@ ®2)VU(y® (¥ @ 2)) (Lemma 2.3 (vii) and (iii))
= (zmz)U(ymz).
Then (zMz)U(ymz) @0 < (zUy)Mmz)@0and (zWy)mz) B0 <
(zmz)U(ymz)) B 0. Note that (zMz) U (yMz)) 0= (xMz) VU (ymz)and
(zUy)mz) @0 = (zUy)mz It follows that (zM2) U (yMz2) = (zUy) Mz
by Lemma 2.2 (1).
Similarly, we can prove (ii).
(iii) For any z,y,z € A, since x < 2 ® 0 < = ® y, we have
(zmy)®(zmz)=((zmy)dz)Mm((xMy) ® z) (Lemma 2.3 (vi))
=(@@zr)myor)m(z®z)n(y o =2)
>xmzmzm(y P z)
=(x@0)mzm(y® z) (Lemma 2.3 (x))
=(xa0)m(y® z).
Note that (z®0)M(yDz) = zM(yDz). It follows that zM(yDz) < (zMy)B(zMz).
(iv) For any z,y, z € A, it follows from (x @ y) @y = 2’ @y &y = 1 that
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r ®y < y. Then we have
(zUyY)@(xVUz2)=(zVy)®2)VU ((xUy) ® z) (Lemma 2.3 (vii))

=(r®z)U(yer)U(z02)U(y©:2)
<zUzUzU(y® 2)
=(z®0)Uz UV (y® z) (Lemma 2.3 (x))
=(z@0)VU(y® z).
Note that (z ®0) U (y ® z) = 2z U (y ® z). It follows that (z U y) @ (z U z) <
VU (y® 2).0
Let A be a quasi-MV algebra and a € A. If a & a = a, we call a to be
idempotent. We use Z(A) to denote the set of all idempotent elements of A. For

a € A, we call a regular if a & 0 = a. We denote the set of all regular elements of
Aby R(A).

Lemma 2.5. Let A be a quasi-MV algebra. For any v € A, a € Z(A), we have
(i)xrBa=zVUa,
(ii) xt ®a=xMa.

Proof. (i) For any x € A and a € Z(A), we have x,a < = @ a. Then
rUa < x @ aby Lemma 2.3 (v). Conversely,

(r@®a)®(zVa) =(r@®a)® (2’ Ma’) (Lemma 2.3 (xi))
<((zda)®2)m((z®a)®ad) (Lemma 2.2(iii) and 2.3(iv))
=(amz")ym(zma’)
= (ama)m(zma’)
=0m(zma’) =0.

This means that (z @ a) ® (x U a) = 1. It follows that z G a < z U a.

(ii) By (i), we have o’ @ a'=2' U o/, thatis (¢/ ® d') = (2’ Ud') =z ma. It

follows that z Ma = x ® a.0

The application of the above lemma will be reflected in the following proof
process.

Example 2.1. [A. Ledda and Giuntini, 2006, Example 3] The Diamond is the 4-
element quasi-MV algebra, where the operations & and’ are defined as following
tables:

10 a b 1 !

0/0 b b 1 01
al|lb 1 1 1 ala
bbb 1 1 1 blb
111 1 1 1 110

Remark thata®a = 1,butaMa = (a' B (d' Ba)') = (a®(a®a)) =b# 1.
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3 Equasi-MYV algebras

In the section, we shall define the notion of extended quasi-MV algebras,
which are generalizations of quasi-MV algebras. Some basic properties of these
algebras are presented.

Definition 3.1. A extended quasi-MV algebra (abbreviated as Equasi-MV alge-
bra) is an algebra A=(A, ®,0), if the following conditions are satisfied:
EQMVI) (A, ®,0) is a commutative preordered semigroup and (x ©y) ®0 =
x@yforall z,y € A;
EQMV?2) for each x € A, there is b € T(A) such that x < b, and the element
Mo(z) = min{z € [0,b] : z ® x = b}
exists in A for all x € |0, b] such that ([0, b], ®, Ay, 0,0) is a quasi-MV algebra.

Note that for any =,y € A, there exist a,b € Z(A) such that x < a and y < b.
Then there exists ¢ € Z(A) such that a, b < c. In fact, take ¢ = a @ b. It is obvious
that a,b < a®band a®b € Z(A). Therefore, an Equasi-MV algebra has enough
idempotent elements. That is, for all z € A, there is a € Z(A) such that x < a.

Let A be an Equasi-MV algebra. For alln € N and = € A, we define

0z=0,lex=z ---,(n+1)z=nzdx.

An Equasi-MV algebra (A, @, 0) is called a proper Equasi-MV algebra if 0
has no complement element.

Example 3.1. If (A, @, ,0,1) is a quasi-MV algebra, then (A, ®,0) is an Equasi-
MV algebra. Also, if (A,V, A\, ®,0) is an EMV-algebra, it is obvious that (A, &, 0)
is an Equasi-MV algebra.

Example 3.2. Let (A, ®,,0,1) be a quasi-MV algebra and (B,V,\,®,0) be an
EMV-algebra. We define that the operation on the algebra A x B is point by point.
That is, for any (x1,z2), (y1,y2) € A X B,
(x1,22) ® (y1,y2) = (1 D Y1, T2 D Yo).
And the least element of Ax B is 0 = (0,0). Forany x € B, there existsb € Z(B)
such that x < b. Then for any (x1,z2) € A X B, there exists (1,b) € Z(A) x
Z(B). It suffices to show that ([(0,0), (1,b)], ®, A1.p), (0,0), (1, b)) is a quasi-MV
algebra. We define A1y ((x1,22)) = ((21)', M\p(22)), for all (x1,x2) € A X B. As
a result, A x B is an Equasi-MV algebra.

Example 3.3. Let e be a smallest idempotent of an Equasi-MV algebra A. Then
an Equasi-MV algebra is the algebra S=({A x A, ®°,0%), where:

(i) 05 = (0, %);

(ii) 2° ®° y° = (&1 ® y1, §), for all ° = (21, x2) and y° = (y1,ys).

For any a € Z(A), we define a® = (a, §). Then a® = a® ® a® € Z(S). Now
we show that ([0, a®], ®%, s, 0%, a”) is a quasi-MV algebra, where \,s(x°) =
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(Na(z1),29) and a € T(A). It is easy to show that \,s(x°) is the least element
such that ° & z° = a® for all z° € [0°,a”].

Itis clear that Mgs Ags (2°) = Aos (Mo (21), T2) = (11, 20) = 25, And \ys (2°®°
0%) = Aus(z1 ®0,5) = (Na(21) B0, 5), A\os(2%) & 05 = (Na(21), 2) B 07 =
(Aa(z1) ® 0, 5). What’s more, \,s(0%) = (X,(0), ) = (a, §) = a”.

)
Example 3.4. Let (A, V, A, 0) be a generalized Boolean algebra Conrad and Dar-
nel [1997]. For any x,y € [0,b], where & = \ and \y(z) is the unique relative
complement of x in [0,b]. Then (A, ®,0) is an EMV-algebra by Example 3.2 (2)
in Dvurecenskij and Zahiri [2019]. Hence, (A, ®,0) is an Equasi-MV algebra.

Example 3.5. Let (A, @, ,0,1) be a quasi-MV algebra and (B, V, N\, 0) be a gen-
eralized Boolean algebra. It is easy to show that A X B is an Equasi-MV algebra.

Proof. The operation @ on A x B is defined pointwise. For all (x,y) €
A x B, there exist a € Z(A) and b € Z(B) such that (z,y) < (a,b) and
([(0,0), (a,b)], ®, Aap), (0,0), (a, b)) is a quasi-MV algebra.

Let’s give a specific description of the above example. Let the Diamond (Ex-
ample 2.6) be the 4-element quasi-MV algebra A and M = (M, V, A,0) be the
generalized Boolean algebra Conrad and Darnel [1997], where M is the set of
components of any positive element N* and the least element 0 := (). That is,
M = {N : N C N*}. Then every element N in M is idempotent. It is easily
shown that A x M with the pointwise operation is an Equasi-MV algebra. O

Example 3.6. Let S = ([0, 1] x [0,1],®,,0, 1) be a standard quasi-MV algebra
A. Ledda and Giuntini [2006, Example 5]. Let A =S &S ®S & ---. Then A is
an Equasi-MV algebra.

Proof. Obviously, (A, ®, 0) is a commutative preordered semigroup and (x &
y)®0=zdyforall z,y € A. Forany z,y € A. Suppose x = (x;), y = (y;)-
If x; # 0 ory; # 0, there exists u; € Z(A) such that x;,y; < u; foralli > 1.
If x; = y; = 0, take u; = 0. We have an idempotent u = (u;) € A such that
x,y < wand ([0, u], B, Ay, 0, u) is a quasi-MV algebra. O

Remark 3.1. Let A be an Equasi-MV algebra. For all x,y € A, there exists
b € Z(A) such that x,y € [0,b]. In the quasi-MV algebra ([0, b], ®, Ay, 0,0), we
denote

Wy y = Ap(Ao(2) ©y) Yy, xMpy = Ap(Ap(2) & Mo(No(2) B Y)).

Proposition 3.1. Let A be an Equasi-MV algebra and a,b € Z(A) such that
a < b. For each x € [0, a], we have

(i) \p(a) is an idempotent, and \,(a)=0;

(ii) Aoz )@O—)\b( ) fa

(iii) Ap(x) ® 0 = Ao(x) D Np(a);

(iv) Ao(2) < ().
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Proof. Since ([0,b], D, Ay, 0,0) is a quasi-MV algebra and a € Z(A), by
Lemma 2.5 (i) we get that & a = x U a for all z € [0, b].

(i) Since ([0, b], B, Ay, 0, D) is a quasi-MV algebra, \;(a) is also an idempotent
element by Lemma 26 in A. Ledda and Giuntini [2006]. It is obvious A,(a) = 0
in the quasi-MV algebra ([0, a], ®, A\,, 0, a).

(ii) For all z € [0, a], we have

(Mp(z)Ma) B (xd0)=(Np(z) D (z®0)) M (a® (xP0)) (Lemma 2.3 (vi))
=bMa=a.
It follows that \,(z) ® 0 = A (z ® 0) < Ap(z) M @ in the quasi-MV algebra
([0,0], ®, Ay, 0,b). Conversely, since b = a @ Mp(a) = z B (Ao(x) B Np(a)), we
get \p(z) < Ao(z) @ Ap(a). Since A\y(a) is an idempotent, by Lemma 2.5 (i) we
have A\, (z) @ A\p(a) = A\o(2) U M\y(a). Hence, A\p(x) < Ao(x) U Np(a). Thus
() Ma < (Aa(x) U A(a)) Ma (Lemma 2.2 (iv))
= A(7) ® 0 (Lemma 2.4 (i)).
Summary of the above results, we get that \,(z) ® 0 = \y(z) M a
(ii1) By (i) we have
Aa() @ Mp(a) = (Aa(z) © 0) @ Ay(a)
— (u(2) M a) © Ny(a)
= M(z) U A\p(a) (Lemma 2.3 (vi) and Lemma 2.5 (i)).
It follows from = < a that A\y(a) < Ay(z). Then Ap(x) U Np(a) = Ny(z) @ 0.
Therefore, () & 0 = A\, (2) & Ap(a).

(iv) It follows from (ii) or (iii).O

The following statement shows that U, and M, on [0, a] are coincide with U
and M on A, respectively.

Proposition 3.2. Let A be an Equasi-MV algebra. For all x,y € A, there exist
a,b € Z(A) such that z,y € [0,a] and z,y € [0, b]. Then we have

() x Mgy = x My y;

(ii) Uy y = x Uy v.

Proof. (i) By Definition 3.1, for all a,b € Z(A), there exists ¢ € Z(A) such
that a, b < c. Then we have
rU.y=2® AT D A(y) ®0)
=2 A(x B N\ (y) B Ae(a)) (Proposition 3.1 (iii))

=2 ® (Ae(z D Na(y)) R a) (the definition of ®..)

=zx® (A (:L‘EB)\())ﬂa)(LemmaQS(u))

=2® ((Na(z® Na(y)) U A\e(a)) Ma) (Proposition 3.1(iii), Lemma 2.5(i))
=2 P (A @ N\o(y)) Ma) (Lemma 2.4 (i)

=2® Nz @ N(v)) ®0) =2 U, y.
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Similarly, we can show that z U,y = x U, y. Hence, x U, y = x U, y.
(i1) We also have

rMey = Ac(Ae(2) DA(Ae(2) DY)
= AeAe(2)BA(Aa(2)BYyDA(a))) (Proposition 3.1 (iii))
= Ae(Ae(2) D (Ac(Aa(2) Dy)®ca)) (definition of ®.)
= A(Ae(2)B((Na(Na(2) DY) D A(a)) ®. a)) (Proposition 3.1 (iii))
= Ae(Ae(2) B ((Aa(Aa(z)BYy) B Ac(a))Ma)) (Lemma 2.5 (i)
= Ac(Ac(@) B (Aa(Aa(z) By)Ma)) (Lemma 2.4 (i)
= Ac(Ae(2) D Aa(Xa(2) DY)
= Ae(Aa(2)B A (Ao () BYy) D Ae(a)) (Proposition 3.1 (iii))
= A(Aa(2) DA (Ao () DY) ) ®ca (definition of ®,)
= (Aa(Ae(z)BAa(Aa(2)BY)) B A(a)) ®ca (Proposition 3.1 (iii))
(@)@ (al) D)) M
=xMyy.

Similarly, we can show that z M.y = x M, y and so x M, y = = M, y.O

Definition 3.2. Let A be an Equasi-MV algebra and z,y € [0,a] where a €
Z(A). A preordering <, on the quasi-MV algebra ([0, a], ®, \,, 0, a) defined as
follows:

r<,y &= M, y=1®DO0.

By Proposition 3.2, for any x,y < a,b, where a,b € Z(A), we have © <,
y <= v <y <= z <, y. Then we can also define a preordering < on A by
r<y <= zMy=x60,wherez My =x M, y.

Lemma 3.1. Let A be an Equasi-MV algebra. For all x,y € A, the operation
®: Ax A — Adefinedby v @ y = \a(Aa(x) & \o(y)), where a € I(A) and
r,y < a. Then

(i) the well-defined binary operation ® on A is not determined by the choice
of a and is also order preserving and associative.

(ii)if v,y € A, & <y, theny®@ M, (z) = y@ N (2) and y®0 = 2B (y@ Ao ())
forall a,b € Z(A) and x,y < a,b.

(iii) if x,y € [0,a] and a € Z(A), then x @ A\,(y) = = @ A\o(z M y) and
r@0=(xMny)d (r AN(y)).

(iv) an element a € A is idempotent iff a @ a = a.

Proof. (i) Let x,y € Aand a,b € Z(A) such that z,y < a,b. We claim that
Aa(Aa() B A (y)) = Xo(Mo(x) B Ap(y)). Indeed, there exists an element ¢ € Z(A)
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such that a, b < c. Then
Ae(Ae(z) B Ac(y)) = A ® A\a(y) @ Ae(a)) (Proposition 3.1 (iii))
®e Ae(Ae(a)) (Propsition 3.1 (i)
M a (Lemma 2.5 (ii))
@ A(a)) Ma (Lemma 3.1 (iii))

)
YU A.(a)) Ma (Lemma 2.5 (i)

Similarly, we have \.(A.(7) & A.(v) )\b()\b( ) No(y ))
Let x,y,z € A. There exists ¢ € Z(A) such that x,y, z < c. It follows from
the definition of ® that z ® y, y ® z € [0, ¢|. Then
(T®Yy) ®2z=A(A(z®Y) B Ac(2))
= Ae((Ae ( ) D Acy))  Ac(2))
= AC(Ac(:'f) SA(y®2) =20 (y®2).
This proves that ® is associative. It is easy to prove that & is order preserving.

(ii) Letx < yand z,y < a,b, where a,b € Z(A). There exists ¢ € Z(A) such
that a, b < c. By Proposition 3.1, we have

Y @ Xa(®) = Ac(Ac(y) @ Ac(Aa()))
- )‘ ( (y) D )‘c<)‘a(x>> )
= Ae(Ac(y) & Ac(Aa(z) ©0))
=y ® (Aa(z) ©0)
Then
Y@ Ae(z) =y ® (Ae(z) B 0)
=y ® (Xa(z) ® Ac(a))
=y ® (Aa(z) U A(a)) (Lemma 2.5 (i)

= (y @ A\o(2)) U (y @ A\e(a)) (Lemma 2.3 (vii)).
Since A\.(a) < A:(y), we have y ® A\.(a) < y®@ A.(y) = 0, where y < a < c. This
implies y ® A\.(z) = y ® A\(x). Similarly, we have y ® A\.(x) = y @ \p(z). Tt
follows that y @ A\, () =y @ \y(z).
In the quasi-MV algebra ([0, a], @, \,, 0, a), we have
2@ YO A(z)) =20 A(Aaly) ©7) =2 Wy =y S0.
(iii) Let x,y < a and a € Z(A). We have
TR N(zMy) =2 @ (Aa(x) U (y))
= (@ A\a(2)) U (z @ \o(y)) (Lemma 2.3 (vii))
=2 ® Aa(y)-

88



On extended quasi-MV algebras

(zMy) @ (z @ Aa(y)) = (zMy) O (z® Aa(z My))
= (M y) & Aa(Aa(z) & (x M y))
=rd N(zB N(zMy)) (QMV 4)
= 2@ A7 B Na(2) D Aa(Na(2) ©Y))
=z ®0.

(iv) = Suppose a,b € Z(A) with a < b. We have \y(a) ® A\p(a) = \p(a) by
Proposition 3.1 (i). In the quasi-MV algebra ([0, b], B, Ay, 0, ), we have a ® a =
)\b()\b(a) © )\b(a)) = )\b()\b(a)) = Q.

<—: For each a € A, there exists b € Z(A) such that « < b. Suppose
a®a = a. We have \y(A\p(a) D Ny(a)) = a. Then A\y(Ap(Ap(a) ® Ap(a))) = Np(a).
It follows from \,(a) & A\y(a) = Np(a) that A\y(a) € Z(A). By Proposition 3.1
(i), we have Ap(Ay(a)) ® Np(Mp(a)) = Ap(Ap(a)). Thatis a @ a = a. It implies
ac€Z(A).O

Theorem 3.1. Let A be an Equasi-MV algebra. Then (R(A),Ug, Mg, g, O0r) is
an EMV-subalgebra of A.

Proof. It is obvious that R(A) is closed under the operations Ug, Mg, D g, Og.
Forall z,y € R(A), there exists a € Z(A) such that z, y < a. Then [0, a]"R(A)
is an MV-algebra of [0, a] by Lemma 15 in A. Ledda and Giuntini [2006]. This
means that R(A) is an EMV-subalgebra of A. O

4 Ideals and congruences

In this section, we give the notions of ideals and ideal congruences of Equasi-
MYV algebras. We also give an equivalent definition of ideals. Moreover, there is
a one-to-one correspondence between the set of all ideals and the set of all ideal
congruences.

Definition 4.1. Let A be an Equasi-MV algebra. An equivalence relation 0 on A
is called a congruence, if the following conditions hold:

(i) 0 is compatible with ®;

(ii) for all b € Z(A),0 N ([0,b] x [0,b]) is a congruence on the quasi-MV
algebra ([0, b], ®, Ay, 0, b).

The set of all congruences on A represented by Con(A).

Definition 4.2. Let A;, Ay be two Equasi-MV algebras. We call a map f :
A1 —> Ay to be an Equasi-MV homomorphism, if it satisfies the following state-
ments:

(i) fxdy) = f(x)® f(y) and f(0) =0, forall z,y € Ay;
(ii) for all z,y € [0,a] and a € Z(Aq), f(Aa(2)) = Apa)(f(2)).
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Example 4.1. Let f : Ay — Ay be an Equasi-MV homomorphism. We can define
0={(x,y) € Ay x Ay : f(x) = f(y)}, then 0 is a congruence.

Let A be an Equasi-MV algebra and 6 be a congruence on A. We denote
AJ0 ={x/0:x € A}, where /0 = {y € A: (z,y) € 0}.
We define operations M, U, & on A/6 as follows: for any x,y € A,
z/0my/0=(xmy)/0,2/0Vy/0 = (xVUy)/0,2/0 Dy/0 =(xDy)/0.
Suppose z/60 < y/6. Then (z My)/0 > x/0. For all z € A, we have
/0D z/0=(xD2)/0
< ((zmy) @ 2)/0

This proves that (A4/60, ®, 0/0) is a commutative preordered semigroup and (/0
y/0)®0/0=2/0dy/o.

For all x € A, there exists a € Z(A) such that x < a. It is easily shown that
a/0 is an idempotent element and /0 < a/6. Since A is an Equasi-MV algebra,
we have that ([0, a], @, A, 0, a) is a quasi-MV algebra. And let 6, = 0 N ([0, a] x
[0, a]) be an ideal congruence on ([0, a], &, A4, 0, a). For any /6, € [0/6,,a/0,],
we define A, /g, (2/0,) = Aa()/0a. Then [0/6,,a/0,] is a quasi-MV algebra.

Now we show that ([0/6,a/0],®, \aj9,0/6,a/0) is a quasi-MV algebra. For
all /0 € [0/6,a/0], there exists y/60 € [0/6,a/0] such that 2/0 & y/0 = a/6. 1t
follows that (x @ y,a) € 0. And since z,y < a, we have (z @ y,a) € 0,. That
is, /0, & y/0, = a/0,. Thus y/6, > A\,(z)/0, and so y/0 > A,(x)/6. This
implies that \,/9(x/6) exists and equals to \,(x)/6. It can be easily shown that
([0/60,a/0],®, Xaj9,0/6,a/0) is a quasi-MV algebra. Thus, (A/0,®,0/6) is an
Equasi-MV algebra.

And the map 7 : (A,®,0) — (A/0,®,0/0) defined by z — /6 is an
Equasi-MV homomorphism from A onto A/6.

Definition 4.3. Let A be an Equasi-MV algebra and I be a nonempty subset of
A. We call I to be an ideal of A if the following conditions hold:

(11)0 € I;

(I12) forall z,y € I, thenx &y € I;

(I3)x € Iandy < x implyy € 1.

If I is an ideal of Aand x € A, we have x € [ iff x & 0 € I by (I3).

Definition 4.4. Let A be an Equasi-MV algebra and I be a nonempty subset of
A. If the following statements hold, I is a weak ideal of A:

(WI)0 € I;

(W2) forall x,y € I, thenx &y € I;

(W3)xelandy € Aimplyx ®y € 1.
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Lemma 4.1. Let I be an ideal of an Equasi-MV algebra A. Then I is a weak
ideal.

Proof. Let [ be an ideal of Aand x € I. If y € A with y < =z, there exists
b € Z(A) such that z, y < b. Then we have
(z@y) Mz = A(As() & Ap(y)) M
= M (Ap(2) @ Ap(y) & Mp(Mo(2) @ Mo(y) © 7))
= A (Ao(@) B Ap(y) © Ap(b)) =2 @ y.
It follows that z ® y < x. Thus z ® y € I and so [ is a weak ideal of A.O
The converse of Lemma 4.1 is not true. For example, {0} is a weak ideal, but
not an ideal.

Proposition 4.1. Let [ be a nonempty subset of an Equasi-MV algebra A and 0 €
I. Then I is an ideal iff for all x,y € A, a € Z(A) withz,y < a, \j(z) @y € [
and x € I implies y € 1.

Proof. —>: Let [ be an ideal of A. For all z,y € A and a € Z(A) with
2,y < a,if \y(z) ®y € T and x € I, we have (\(7) ® y) ® = € I. Since
Aa(y) ® ((Aa(2) @ y) @ 2) = Aa(y) & (Aa(z @ Aa(y)) ® )
= Aa(y) ® (Aa(Aa(2) D y) B y) (QMV4A)
= Aa(y) @Y 8 Aa(Aa(2) B Y)
= a,’
wehavey < (A (2)®@y) @z e landy € I.
<=: Forany z,y € [ and a € Z(A) with x < y and =,y < a, we have
Ao(z) ®y =0 € I. Hence, y € [ is obtained from propositional conditions. And
then
M(@)@ (zDy) =Nz B No(z D Y))
= )\a(x) my
<yel
Then \,(z) ® (x @ y) € I. It follows from x € [ thatx $y € [.0

Definition 4.5. Let A be an Equasi-MV algebra. We define a binary relation <
as follows: forall x,y € A,
ryiffrmMy = .

The binary relation < satisfies antisymmetry and transitivity, but when x is a
regular element, it satisfies reflexivity.

Lemma 4.2. Let A be an Equasi-MV algebra and x,y € A. Then
rxyiffr<yandx € R(A).
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Proof. If z x y, wehavez My =zandzMy = (zMy) @0 =xd0. It
follows that + < y and * @ 0 = x. Thus = € R(A). Conversely, if z < y and
reR(A),wehavez My =2x@0=zandsor < y.0

Lemma 4.3. Let A be an Equasi-MV algebra and J C A. Then the following
statements are equivalent:

(i) J is a weak ideal of A;

(ii) (1) if v,y € J, thenx by € J; (2)ifvr € J, y X x, theny € J.

Proof. (i)=—>(ii): Suppose = € J and y < x. There exists b € Z(A) such that
r<b Thenz ® (N\p(x)Dy)=amy € J. Sincey < x,wehavez My =y € J.

(ii)<=(i): Forany = € J, y € A, there exists b € Z(A) such that z,y < b.
Since r®y < rand z®y € R(A) by Lemma 4.2, we have © ® y < x. Therefore,
r®yeJ.O

Let A be an Equasi-MV algebra and H be a subset of A. The ideal generated
by H is the smallest ideal of A containing H, denoted by (H ).

Lemma 4.4. Let A be an Equasi-MV algebra and H C A, then
(i) (HYy={x € A: there exist hy, - -, h, € Hn € Nsuch that t <h ®- - -Bh,};
(ii) (0) is the smallest ideal of A;
(iii) If I is an ideal of A and x € A, we have
(IU{z})={2€ A:z<a®n.xforsomea € [ andn € N}.

Proof. (i) We write M ={z € A : there existhy, - - -, h, € H,n €N such that z <
h1®- - -@®hy,}. Then M is an ideal of A. Now we show that M is the smallest ideal
of A containing H. Suppose M’ is an ideal of A containing H. For any x € M,
there exist hy,--- ,h, € Hsuchthatz < hy ®---® h,. As H C M’, we get
x € M andso M C M.

(i1) By (i) we obvious get the result.O]

Definition 4.6. An ideal I of an Equasi-MV algebra A is maximal if for all x €
AN (TU{z}) = A

Definition 4.7. Let A be an Equasi-MV algebra and 0 be a congruence on A. 0
is an ideal congruence if for all x,y € A, (x ® 0)0(y & 0) = x0y.

Example 4.2. Let A be an Equasi-MV algebra and x,y € A. A binary relation x
defined as follows: rxy iff r < yand y < x.

It is easy to show that x is compatible with &. We now show that for all b €
Z(A), xN([0,b]x[0,b]) is congruence on the quasi-MV algebra (|0, b], ®, Ay, 0, ).
Suppose (x,y) € x N ([0,b] x [0,b]). It follows from (x,y) € x that x < y and
y < x. Hence, \p(y) < No(x) and Np(x) < No(y). Therefore, (Np(x), \y(y)) €
x N ([0,b] x [0,b]). That is, x is a congruence on A. As a result, x is an ideal
congruence.
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Definition 4.8. Let A be an Equasi-MV algebra, I be an ideal of A and 0 be an
ideal congruence on A. We define two relations f(J) on A x A and g(0) on A as

follows:
(x,y) € f(J) iff there exists b € Z(A) such that x @ N\y(y),y @ \p(x) € J;

g(0)=0/0 ={x € A:x60}.

Theorem 4.1. Let A be an Equasi-MV algebra, J be an ideal of A and 6 be an
ideal congruence on A.

(i) f(J) is an ideal congruence on A;

(ii) g(0) is an ideal of A;

(iii) T = g(f(J));

(iv) 0 = f(g(0)).

Proof. (i) Obviously, f(.J) is a congruence on A. Now we show that f(.J) is
an ideal congruence. Let (z @ 0,y @ 0) € f(.J). There exists b € Z(A) such that
z,y < b. Then \y(z ®0) ® (y ® 0), \p(y ®0) @ (z @ 0) € J. It follows that
Mo (2) @y=Xp(x®0) @ (yp0) € J. Similarly, \y(y) @z € J. Thus, (z,y) € f(J).
Therefore, f(.J) is an ideal congruence on A.

(ii) Suppose (x,0) € 6 and y < x. We have (\,(z),b) € 6. That implies
(Mo(x) By,b) € fand so (x @ (\y(z) Dy), z®0b) € . Thatis, (zxMy,zH0) € 6.
It follows from y < z that x My = y @ 0. Thus, (y ® 0,2 & 0) € 6. Since # is an
ideal congruence on A, we have (y, z) € 6. This together with (0, z) € 6 implies
that (y,0) € 6 and so y € g(#). Therefore, g(f) is an ideal of A.

(i) It is easily seen that g(f(J)) = {r € A:2® 0 € J}. Forall x € A, we
havex € Jiffx @0 € J. Thus g(f(J)) ={r € A: 2z € J}.

(iv) For any z,y € A, if (z,y) € f(g(0)), there exists b € Z(A) such that
z,y < b, (AN(2)®y,0) € 0and (\(y)®x,0) € 0. Then ((\y(2)Ry)Dx,0dx) €
0. By M(z) @y) @z =2xUy, we get (x Uy, 0 x) € 6. Similarly, we have
(xVWy,0dy) € 6. Thus, (0 z,0d y) € 6. Since 0 is an ideal congruence on
A, we have (x,y) € 6. Therefore, f(g(0)) C 6.

Conversely, if (z,y) € 6, there exists b € Z(A) such that z,y < b and so
(y @ Mp(x),z @ A\p(x)) € 6. This together with x ® \p(xz) = 0 implies (y ®
Ao(2),0) € 6. Similarly, (z ® A\y(y),0) € 6. Thus, (z,y) € f(g(6)). Therefore,
6 C f(g(0)).0

Let / be an ideal of an Equasi-MV algebra A. The relation 6; is defined as

follows: for all x,y € A,
(x,y)€0; <= Tb € Z(A) withzx, y < bsuch that \,(A\y(2)DBy), Ap(N\p(y)Bx) € 1.

Proposition 4.2. Let A be an Equasi-MV algebra. If I is an ideal of A, the
relation 0y is an ideal congruence on A.

Proof. Let [ be an ideal of A. Suppose (x,y), (v, z) € 0. We have \,(\y(z)®
Y), M(Ao(y) @) € T and X\p(Xo(2) DY), Ao(Ap(y) @ z) € I where b € Z(A) such
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that z, y, z < b. Since [ is an ideal of A, we have A\,(\y(2)By)BAp(No(y)B2) € 1
and Ay(Ay(y) @ ) @ Ao(Xe(2) @ y) € 1. And (Ap(z) © 2) & (Mo(Mo(2) @ y)
Mo(Ap(y)B2z)) = b. It follows that A\, (A () D 2) € I. Similarly, \y(A\y(2) D) € 1.
Then (z, z) € ;. The reflexivity and symmetry is clear.

It is easy to prove that 6; is compatible with @. For all u € Z(A) such that
z,y, z < u. Now, we show that 6, = 0; N ([0, u] x [0,u]) is a congruence on the
quasi-MV algebra ([0, u], &, A\, 0, u). Suppose (x,y) € 6;,, we have \, (A, (z) &
Y), Mu(Au(y) ® ) € IN([0,u] x [0,u]). Then

Az ®2) ® (Y 2))  Au(Au() DY)
=MD 2)Br® 2P N(Au(y) B )
=Au(Au(T) © Au(2)) @ Au(2) @ 2 @ Au(Muly) © 7)
=u.
It follows that A, (A, (2®2)® (y®2)) < Au(Au(2)®y) € 6;. Then A\, (A, (2B 2) D
(y&®z)) € ;. Similarly, \,( A\ (y®2) B (x®2)) € 0;. Thus, (P z,yPz) € 0.
And (A, (), A\y(2)) € 05, is obvious. Therefore, 0; is a congruence on A.

For each (z © 0,y ® 0) € 07, we have \y(A\p(z @ 0) @ (y ® 0)), Ap(Ao(y D
0)® (x @ 0)) € I. Thatis, \y(Ap(x) B y), o(Mo(y) @ x) € I. Thus (z,y) € 6.
Therefore, 0; is an ideal congruence.O

Theorem 4.2. Let A be an Equasi-MV algebra. There is a one-to-one correspon-
dence between the set of all ideals and the set of all ideal congruences.

Proof. Let I be an ideal of A and 6; be an ideal congruence induced by /.
Now we show that [ = 0/6;. Since 0 € I, we have (z,0) € 0, forall z € I.
It follows that x € 0/6;. Conversely, suppose x € 0/6;. There exists a € Z(A)
such that z < a. By Proposition 4.1, since A\,(z) ® 0 € [ and 0 € I, we have
x € I. Hence, I = 0/6;.

Let 6 be an ideal congruence on A. Let [ = 0/6. Suppose (x,y) € 0.
There exists a € Z(A) such that z,y < a and A\(M\y(2) B y), M(M(y) ® z) €
I = 0/60. Thatis, (\(A\p(x) ® y),0) € 0 and (\y(\s(y) & x),0) € 6. Hence,
M(Mp(2) @ y) @ y,0 B y) € 0 and (N(N\(y) ® z) ® 2,0 ® ) € 0. Since
M(Mo(2) B y) By = N(No(y) B x) B x, we have (x © 0,y $ 0) € 0. And since 6
is an ideal congruence on A, we have (x,y) € 6.

Conversely, let (z,y) € 0. There exists a € Z(A) such that z,y < a. Then
(Aa(x), Aa(y)) € G and (A\o(2) @y, Aa(y) ®y) € 6. Since A\,(y) ®y = 0, we have
Ao(7) ® y € 0/6. Similarly, A\,(y) ® x € 0/6. That is, (x,y) € ;. Therefore,
0=0,0

Theorem 4.3. Let A be an Equasi-MV algebra. Then f(I)o f(J) = f(J)o f(I)
is vaild, where I and J are ideals of A.
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Proof. Suppose f(I), f(J) € Conl(A) and (z,y) € f(I)o f(J)forz,y € A.
So there exists z € A such that (x,z) € f([) and (z,y) € f(J). There exists
b € Z(A) such that xz, y, z < b. Let p be a ternary term defined as follows:
Po(@,9,2) = (z @ (Ao(y) & (yM2))) U (2 @ (Ao(y) & (y Mz))).
Then

(@ No(2) ® (2MY))) YU (y @ (Mo(2) @ (2 M2))) f(I) po(z,2,y) =y S0
and

(2@ (M=) ® (20 9) U (y ® (ul2) (20 2))) (J) pol,9,9) = ¢ B O.

Let
(z @ (M(2) ® (zMY))) U (y © (M(z) © (y M z))) = £,

where t < b € Z(A). It follows from (t,y ® 0) € f(/) and (t,z ® 0) € f(J) that

(y®0) @ N\p(t), My 0) @t €I

(2@ 0) @ NM(t), Mz D0) Dt € J.
Now, y @ \p(t) < (y@0)@M\p(t) € I, x @ N\p(t) < (xB0) @ Np(t) € J. Similarly,
M(y) @t < N(y@0)@t € I, Np(2) @t < \(z®0) @1 € J. Thus, (t,y) € f(I)
and (t,xz) € f(J). Thatis, (z,y) € f(J)o f(I).0

Lemma 4.5. If A is an Equasi-MV algebra, the lattice Conl (A) of ideal congru-
ences on A is a sublattice of Con(A).

Proof. Let I, J be two ideals of A. Tt is easy to prove that f(I N J) =
f(I)N f(J). Now we show that f(I V J) = f(I)V f(J).

Since g(f(I Vv J)) =1V Jand g(f(I)) V g(f(J)) = IV J, we claim that
g(f() v £(1) = g(f(1)) v g(f(J)). Letz € g(f(I)) v g(f(J)) such that
r < y®zwherey € g(f(I)) and z € g(f(J)). Then we get (y,0) € f(I),
(2,0) € f(J)and (y,z) € f(I)o f(J)= f(I)V f(J). It follows that (= 0,0) €
f(J)), (ydz,z00) € f(I)and (y®2,0) € f(I)of(J)= f(I)V f(J). And then
r<y®zeg(f(I)V f(J)). Therefore, g(f(I)) V g(f(J) € g(f(I)V f(J])).

Conversely, for any = € g(f(I) Vv f(J)), we have (x,0) € f(I)V f(J) =
f(I)o f(J). Then there exist z € A and b € Z(A) such that (x,z) € f(I) and
(2,0) € f(J). And (x®\y(2),0) € f(I), (2,0) € f(J). Thenz < (@ Xy(2)) @
z. Since z ®@ A\p(2) € g(f(I)) and z € g(f(J)) we have z € g(f(I)) VvV g(f(J)).
Thus, g(f(1) v £(7)) € g(F(D) v g(/(J)).0

Theorem 4.4. Conl(A) is distributive.

Proof. By Theorem 4.2, we only need to prove that the lattice of ideals on A
is distributive. Suppose [, J, K areidealson Aandz € IN(JV K). Thenz €
andx < y® z, forsome y € J, z € K. Hence, x < (xMy) © (z M z). It follows
fromzmyelnJ,zmzelINKthatze (INJ)V(INK).O
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5 Filters and prime ideals

In this section, we introduce the notions of filters and prime ideals of Equasi-
MYV algebras. Moreover, we study some properties of them. We prove that every
Equasi-MV algebra has at least one maximal ideal. Also, we get prime theorem
on Equasi-MV algebras.

Definition 5.1. Let (A, ®,0) be an Equasi-MV algebra and F be a nonempty
subset of A. F is called a filter if the following conditions are satisfied:
(i)forallz,y € A, ifx <yandx € F, theny € F;
(ii) forall x,y € F, thenx @ y € F.

Definition 5.2. We call a filter F is proper if ' # A. A proper filter F' is maximal,
ifforallz € A\ F, (FU{z}) = A

Let A be an Equasi-MV algebra. For z € A and n € N, we define
t=x, a2 =2""tQux,n>2.

Proposition 5.1. Let A be an Equasi-MV algebra and F be a filter of A. Then
I is an ideal of A, where
Ir={N(z):x€ F,da € Z(A),z < a}.

Proof. For all x € A, we have
r€lp < JacZ(A)st z<a,\(x)€F.

It is obvious that 0 € Ip. Suppose z,y € [r. There exist a,b € Z(A) such that
r < aand y < b. It follows A\, (z), \p(y) € F. Let ¢ € Z(A) such that a, b < c.
Then A\.(z), A\.(y) € F by Proposition 3.1 (iv). That implies A\.(z) ® \.(y) € F.
Since \.(z), Ac(y) < cand A\ (z) @ A(y) = Ae(z D y), we have z D y € Ip.

Suppose =,y € A with x € Ir and y < . There exists a € Z(A) such that
r < aand \,(x) € F. Since z,y € [0,a] and y < x, we have A\, (x) < A\, (y). It
implies A\,(y) € Fandy € [r. O

In the following, we give an equivalent condition of maximal filters.

Proposition 5.2. Let A be an Equasi-MV algebra and F' be a proper filter of A.
(i) Forallz € A, (FU{z}) ={z€A:z2>2y®2",IneNye F};
(ii) F' is a maximal filter iff for all x ¢ F, there existn € Nand b € Z(A)
with © < b such that \,(2™) € F.

Proof. (i) It is obvious.

(i) Let F' be a maximal filter and ¢ F. We have 0 € (F'U {x}) by (i) and
so there exist n € Nand y € F such that 0 = y ® z". There exists b € Z(A) such
that z,y < b. Then b = \p(y @ ™) = Ap(y) D Ap(a™), it follows that y < Ap(z™)
and \,(z") € F. Conversely, for any z € A\ F, there existn € N, b € Z(A)
such that A\,(2") € F. Then 0 = \y(2") ® 2™ and 0 € (F' U {x}). It follows that
(FU{z}) = Aand F is a maximal filter.O
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Lemma 5.1. Let F' be a proper filter of an Equasi-MV algebra A.
(i)Ifa € FNZ(A), we have a ¢ Ip.
(ii) If a € FNZ(A), then forallb € Z(A) with a < b, we have \y(a) € Ip.
(iii) If F' is a maximal filter of A, then forall a € Z(A), a ¢ I impliesa € F.
(iv) If J is a maximal ideal of A, then
Va € Z(A) \ J = M\y(a) € J, whereb € T(A) and a < b. (%)
(v) If J is an ideal of A satisfying (x), then F; is a filter of A, where
Fyp={\(x):x € JacZ(A)\Jz<a}.

Proof. (i) Suppose @ € F NZ(A) and a € Ip. There exists b € Z(A) such
that a < b and A\y(a) € F. Tt follows from )\,(a), a € F that 0 = a ® \y(a) € F,
which is a contradiction.

(i1) It is obvious.

(iii) Let a € Z(A) and a ¢ Ip. For all b € Z(A) with a < b, we have
Ap(a) ¢ F by Proposition 5.1. Suppose a ¢ F. Since F' is a maximal filter, we
have (F' U {a}) = A. By Proposition 5.2, there exist » € N and x € F such that
0=z®a" Wehave u € Z(A) suchthat z,a < vand 0 =z ® a" = z ®, a”
Since a € Z(A), we get a" = a and so u = A\, (z) ® A\, (a). It follows that
x < A\y(a) and A\, (a) € F, which is a contradiction.

(iv) Suppose a € Z(A) and @ ¢ J. For any b € Z(A) and a < b, we have
Mp(a) € (JU{a}) = A. By Lemma 4.4, there exist n € N and = € J such that
Mp(a) < z @ n.a. Since a, \y(a) € [0,b], we have

)\b(&) = /\b(a) D®0
= M\p(a) M (z @ n.a)
< (Mp(a) mz) ® (M\p(a) Mn.a) (Lemma 2.4 (iii))
= )\b(a) mx
It follows A\y(a) < = € J and so A\y(a) € J.

(v) Suppose z,y € Awithx < y and z € F;. There exists a € Z(A) \ J such
that z < a and \,(z) € J. Letb € Z(A) and a,y < b. We have \y(y) < M\p(2) <
Aa(7) @ Np(a). By (iv), we have A\y(a) € J and A\,(z) & \y(a) € J. That implies
M(y) € Jand y € F.

Let z,y € Fj. There exist a,b € Z(A) \ J such that x < a, y < b and
Aa(z), Mp(y) € J. Letc € Z(A) and a,b < ¢. We have A\.(a ) Ac(b) € J by (iv)
and A, (2) < \o(2) @0 = A, (@) @A) € JAcly) < Ay)® =/\(y)@>\c()
J by Proposition 3.1. It follows that A.(z), A\.(y) € J and A\.(z) & A\.(y) €
Thus A\.(A\e(2) @ Ae(y)) € Fy. Thatis, 2 @y =2 .y € F;.0

Definition 5.3. Let A be an Equasi-MV algebra and I be an ideal of A. We call
I to be prime ifforall v,y € A, x My € I implies that x € I ory € 1.

Proposition 5.3. Let I be an ideal of an Equasi-MV algebra A. Then I is prime iff
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forany x,y € A, there exists a € Z(A) withx,y < a such that \,(\,(z)Dy) € 1
or \o(Ma(y) ® ) € 1.

Proof. <: Let m: A — A/I be the canonical projection and 6 be an ideal
congruence. If t My € I, we have (xMy)/0 = z/0my/0 € w(I). Let x/6 = [z}
or y/0 = [j|, where i,j € I. There exists a € Z(A) such that z,y,i,j <
Mr)@ie L (i)@xeTor\(y)y®jel, \j)eye€el Itfollowsfrom
Proposition 4.1 thatx € T ory € I.

—: For any z,y € A, there exists a € Z(A) such that x, y < a. We have

(Aa(2)® y)Y(Aa(y) O)

ZAa(SC)@Z@A (Aa(2 )@yéBA (Aa(y) D))

=Aa(2) A0 (Aa(#) D Aa(Aa () D2)) D Aa(Aa (A ( )BAa(Aa(y) @ ))@Aa( )
=Aa(y)@x®A (Aaly )@I@I)@A (Aa(Aa(2) ©Aa(Aa(y) ©7)) B Aa(y))
=2a(2) D Aa(Aa(y) D)) D Aa((Aa(#) D Aa(Aa(y) D)) DY) Dr O Aa(Aa(y) DT D)

=a.
It follows Ao ((A\a(2) ® y) U (Ao(y) @ z)) = 0 € I. Thatis, \y(Aa(z) ® y) M
Aa(Aa(y) @ 2) = 0 € I. Therefore, \,(Ao(z) D y) € T or \y(A(y) ® ) € 1.0

Example 5.1. Let A x M be an Equasi-MV algebra mentioned in Example 3.6.
It can be easily proved that P = {0, b} is a prime ideal of a quasi-MV algebra
A. Now we show that P x M is a prime ideal of an Equasi-MV algebra A x M.
Obviously, (0,0) € P x M and (0, M) & (b,M) = (b,M) € P x M. And
for any (x, M) < (b, M), we have (x, M) € A x M. Then P x M is an ideal
of A x M. For any (x1,y1),{T2,y2) € A X M, suppose (x1,y1) M (T2, y2) =
(x1Mxe, y1 Ny2) € P X M, we have x1 € P orxo € P. Thatis, (x1,11) € Px M
or (xa,y2) € P x M.

Let A be a proper Equasi-MV algebra and a € Z(A) \ {0}. We define
ta={re€A:z>a}.
Then 71 a is a filter of A. Moreover, T a is a proper filter of A.

Proposition 5.4. Let F' be a maximal filter of an Equasi-MV algebra A. Then
Ir={X\(z):xz € F,3a € Z(A),z < a}

is a maximal ideal of A.

Proof. We know that I is an ideal of A by Proposition 5.1. As F' # (), we
have a € Z(A) N F and so a ¢ I by Lemma 5.1 (i).

Let J be an ideal of A and I C J. Suppose a ¢ J and a € Z(A), we have
a ¢ Ir and so a € F by Lemma 5.1 (iii). Then for any b € Z(A) with a < b,
we have \y(a) € Ir C J. Hence, J satisfies condition (x) in Lemma 5.1 (iv). It
follows from Lemma 5.1 (iv) that F; is a filter of A.
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Suppose z € F'and w € Z(A)\ J. There exists u € Z(A) such that z, w < u.
Since J is a proper ideal, we have u ¢ J. It follows from the definition of [y that
Au(x) € Ip C J and then = € F;. That implies F' C F);.

Since F'is a maximal filter, we have F); = F or F; = A. If F; = A, then
there exist + € J and @ € Z(A) such that z < a and \,(x) = 0, which is a
contradiction. Thus F; = F. By Lemma 5.1 (v), for all x € J, there exists
a € Z(A)\ J such that x < a and \,(x) € F; = F. Hence, we have = € Ip.
Thatis, J C Ip. Thus J = Ip. This proves that / is a maximal ideal of A.O

Theorem 5.1. Let A be a proper Equasi-MV algebra. Then A has at least one
maximal ideal.

Proof. Suppose 0 # a € A. Note that 1 a is a filter and {0} #71 a. By Zorn’s
lemma, we know that the set of all filters that does not contain 0 has a maximal
element, which is a maximal filter of A, denoted by F'. It follows from Proposition
5.4 that I is a maximal ideal.O

The following statement gives the prime theorem on Equasi-MV algebras.

Theorem 5.2. Let I be a proper ideal of an Equasi-MV algebra A and a € A\ I.
Then there exists a maximal ideal P which contains I and a € A\ P. Moreover,
P is prime.

Proof. Let M = {J : I C J,a ¢ J} where I, J are ideals of A. By Zorn’s
lemma, M has a top element P. It follows from I € M that M # (). We claim
that P is prime. Suppose z My € P and z,y ¢ P. We have a € (P U {z}) and
a € (PU{y}). Then there exist n € N and u,v € P such that a < u @ n.x and
a < v @ n.y. It follows that

a< (udnz)Mvdny) < (udvdnz)m(udvdny).
By Lemma 2.4 (iii), we have
a < (uPven.2)M(udvdn.y) = (udv)®(n.ofn.y) < (udv)®n®.(zAy) € P.
It follows that a € P, which is a contradiction. Thus, we have x € Pory € P.O

6 Conclusion

In this paper, we introduce the notion of Equasi-MV algebras, which are gen-
eralizations of quasi-MV algebras. We study some basic properties of Equasi-MV
algebras, such as ideals, ideal congruences and filters and investigate their mutual
relationships. We show that there is a one-to-one correspondence between the set
of all ideals and the set of all ideal congruences on an Equasi-MV algebra. And
we also studied some results on maximal ideals and prime ideals.

There are many topics that deserve further study. For example, (1) can any
Equasi-MV algebra be embedded into an Equasi-MV algebra with a top element?
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(2) Does any simple Equasi-MV algebra have a top element? (3) The author in-
troduced ME-algebras and studied the categorical equivalence between equality
algebras and abelian lattice-ordered groups in Liu [2019]. We will study the rela-
tionships between monadic Equasi-MV algebras and monadic equality algebras.
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