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On the solutions of Pellian equation
U? — DV? = k*N
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Abstract

In this paper we consider a class of Pell’s equation U? — DV? =

k%N, where D, N are positive integers, D is non-square and k is any
u+vyVD
k

integer. When (u, v) satisfy this equation, we define to be its

solution. We first introduce the class of solutions of this equation

and call uwtvVD to be the fundamental solution of the class, if v is the

smallest positive value which occurs in the solutions of that class.
We first derive the necessary and sufficient condition for any two
solutions of proposed equation to belong to the same class and the
bounds for the values of u, v occurring in the fundamental solution.
We also derive an explicit formula which gives all the solutions of
this equation. We further present some interesting recurrence
relations connecting the values of u, v. Finally, we obtain the results
for total number of positive solutions of proposed equation not
exceeding any given positive real number Z.
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On the solutions of Pellian equation U2 — DV? = k2N

1. Introduction

In number theory, Pell’s equation falls in the category of Diophantine
equations and it is considered to be one of the oldest Diophantine equations.
Specifically, the term Pell’s equation is used to refer any Diophantine equation
of the form

u? —Dv? =N, (1.1)
where D and N are fixed non-zero integers and we wish to find integers u and
v that satisfy the equation. Throughout, we consider the integer D to be positive
and non-square. This condition is helpful because only it leaves open the
possibility of infinitely many solutions in positive integers u, v.

Pellian equation

x? —Dy? =1, (1.2)
where D is fixed positive non-square integer, attracted attention of early
mathematicians. It is known that (1.2) always has infinitude of solutions. We
refer to Stolt [11, 12] who nicely studied the equation x? — Dy? = +4N. In this
paper we use the notions proposed by Stolt. Many authors considered some
specific Pell equations and discussed about their solutions. For completeness
we recall that there are many papers which considered different types of Pell’s
equation. For extensive resources on Pell’s equation, one can refer [1] — [14].

In the present paper we consider the Pellian equation

U2 —DV? = k2N, (1.3)
where D, N are positive integers, D is non-square and k is any integer.
Throughout we assume that (1.3) is solvable. If (u,v) satisfy this equation,

”W\/— to be the solution of (1.3). If u“"/—
x +yVDis any solution of (1.2) and x; + y;VD is |ts smallest positive solution,

”“"/— X (x + yVD) is also a solution of (1.3).
+vVD

we define

is any solution of (1.3),

then it is easy to observe that

This solution is said to be assomated with the solution & . Here we note

are associated then there

that if two positive solutions “<='2 ang u3+zﬁ‘m

exists an integer t such that

t
“f”ZWE = u“*}‘:‘*@ X (x,+yVD) ;t=0,+1,+2,... (L4)
The set of all solutions associated with other forms a class of solutions of

u+v\/—

(1.3). Among all the solutions
U1+V1\/—
k

in any given class K we now choose a

solution ————in the following way: Let v, be the least non-negative value of

v which occurs in K. Then in this case, u; is also uniquely determined.
The solution @ defined in this way is said to be fundamental solution of
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is a fundamental solution of class K if
ua+vax/_

the class. It can be observed that
u.1+U1\/_

Uuq +U1\/_
k

X (x; — y;VD) is not a positive solution of (1.3). Thus if ~*—=—

any flxed fundamental solution then all the positive solutions given by (1 4) are
associated with each other. Moreover, we observe that if (1.3) is solvable, then
it has only finite number of classes of solutions.

2. The equation U? — DV? = k*N

. .. u+v/D +v'
It is easy to observe that if “*22 and “*Y2 are any two integer solutions
k k
uu'-pvv' wv'-u'v

of (1.3) such that u = u’ and v = v'(mod N), then ( o ) is the

positive solution of the equation R? — DS? = k2. We first present the necessary
and sufficient condition for any two solutions of (1.3) to be associated with each
other.

u+v\/_

Theorem 2.1. If and & +Z VD are any two solutions of (1.3) then the

necessary and sufﬁment condition for these two solutions to be associated with

each other is that 2= is an integer.
u+v\/_ u +v'\/—

and

k%N and u’Z—Dv’szZN. Multiplying these two equations we get
N\ 2

Proof. Since

are solutions of (1.3), we get u? — Dv?

r_ 11N 2

(”u e ) -D (M) — k2. We first show that the solutions “*2 and
kN kN

u'+v'VD

of the Pellian equation (1.3) are associated with each other if and only

-D .
if both X222 and “ =% are integers.
kN kN

uu' -Dvv’ vu' —uv’
and
kN kN

If two numbers

are integers, then

! ! ! !

T 2 N uu' —Dvv Jw-uw s ) )

(u) —D(M) = k2. Thus —k~ kN is a solution of
_kN . kN k

Pellian equation R? — DS? = k2. Now

u+v\/§ ! ! ! ! A !
X _ u+wD u—vx/E_uu—va_uv—uv
W+v'ND  w'+v'ND (u + UVD) X TRZN k2N ZN VD.
k

uu’'-Dvv’ d vu' —uv’

Clearly this is a solution of (1.2). Thus, both the solutions ——and ——
of (1.3) are associated.

u+vVD u'+v \/—

Conversely let two solutions and of (1.3) be associated with
each other. Then clearly, they should lie in the same solution class of (1.3). Then
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u+vVD , ,
k _ uu -Dvv uv'—u'v
we have —rms = —— —~— VD, which should be some solution of

k

(1.2). In this case we have u? — Dv? = k2N and u’> — Dv'* = k2N. This gives
2

(uu’—va’) _D (vu’—uv’)z = k2. Thus,

KN kN
k uu'-pvv’ w'-u'v\ _ (uu'-Dvv' uwv’'-u'v
X k2N ' k2N ) KN ' kN
. . . uu'—-Dvv’ wv'—u'v
is an integer solution of R? — DS? = k2. Hence ——— and ——— are
integers.
wv'—u'v

-Dvv’ . .
IS an integer when

Thus, it is now sufficient to show that =

!
is an integer; and = “_is not an integer. Since

u+v\/_a du+v’\/_

Dv’2 = +k2N Multiplying these two equations we get
(uu’' —vv'D)? — D(uv’ —vu')? = k?(kN)?. (2.1)
It is obvious from (2.1) that uu’ — Dvv' is divisible by kN when uv’ —u'v is

divisible by kN. That js, W —Dvv’ WUV s an integer.

IS not an mteger When

are solutions of (1.3), we have u? — Dv? = +k2N ,u'* —

IS an integer when

uu' -

Conversely, if |s not an mteger, then there exists an mteger d such that

d| kN butd t (uu’ — Dvv'). Now from (2.1) itisseenthat if d | (uv’ — u'v),
then d | (uu’ —vv'D) too, which is contrary to the assumption. Thus

dt (uv' —u'v), that Isuv “wv
required result.

is not an integer, as required. This proves the

We now derive the bounds for the values of u,v occurring in the
fundamental solutions.

u+v\/—

Theorem 2.2. If is the smallest fundamental solution of the class K of

the Pellian equation (1 3) and if x; + y;V/D is the fundamental solution of (1.2),

(x1+1)N N
then 0 < |u| < k /—and O<v<in 765

Proof. If both the inequalities to be proved are true for a class K, then they are
also true for the conjugate class K. Thus, we can assume that u is positive.

Notethat"xl—’”ylzﬂ_( VD) (ﬂ)zm_m uz:;zN
J(xl -1 ——N)
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u+Z\/5) (X1 _ }’1\/5) _ ux,—Dvy,+(x,v—yu)VD

Now consider the solution ( p

u+vVD u+vVD
Pt

of (1.3) which belongs to the same class as But p is the fundamental

solution of the class and by above ux%m’yl is positive. Thus, we must have

ux%myl > % ,as % occurs in fundamental solution of (1.3). From this inequality

it now follows that ux; — Dvy; = u. This gives u(x; — 1) = Dvy,, which
gives u?(x; — 1)? > D?v?y,2 = (u? — k?N)(x2 — 1). This can be written as
2 x1-1 (x1+1)k?N
X1+l 2
first of required inequality.

Again by (1.3) we have Dv? = u? — k%N. Using above inequality, we get

> u? — k2N, which eventually gives u? < . This proves the

2 _ 2
Dv? < w — k2N = PN This gives

v < kJ(x1—1)N — K (x2-1)N .

2D 2D(x1+1)

Since x; + y;VD is the solution of (1.2), we thus get 0 < v < ky, / N as

2(x1+1) !
required.

We now present an illustration to demonstrate the results of this theorem.

Illustration. Consider the Pellian equation U? — 7V? = 18. Then clearly,
D =7,k =3and N = 2. If we consider the equation x? — 7y? = 1, then it is

easy to see that 8 + 3+/7 is its fundamental solution. This gives x; = 8,y, = 3.

Now if ”Tﬁ is the smallest fundamental solution of equation U2 — 7V2 = 18,

then by above theorem we should have

0< |ul <3 x /%and03v33x3/i.
2 2X9

This gives 0 < |u|] <9 and 0 < v < 3. These are indeed true as
smallest fundamental solution of the equation U2 — 7V2 = 18.

5+v7 is the

We now prove a very important result which produces all the fundamental
solutions of (1.3).

Theorem 2.3. If u; + v;+/D runs through all the fundamental solutions of (1.1)

and # runs through all the fundamental solutions of R? — DS? = k2, then

all the fundamental solutions of U? — DV? = k2N are covered by

Aij+1:ij\/3 _ (rj+ij\/5) (ui + vi\/ﬁ)- (2.2)
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Proof. If we multiply the surd conjugate of (2.2) with (2.2) then we get
A% -DB? r?—Ds? .

= (’ . J)(u-z—Dv-z). Since uf —Dv} =N and r? — Ds? = k?,
we get A7, — DBY; = k*N. This shows that 25202 defined by (2.2) are the
solutions of (1.3).

We next show that the solutions M defined by (2.2) covers all the
fundamental solutions of (1.3). On the contrary assume that there exists some
positive solution, say X+Y‘/_ of (1.3) which is not covered by (2.2). Then this

solution will lie between any two successive solutions of (1.3) of some fixed
sjVD

class generated b

/5
<r1+i/ )(uiivi\/ﬁ) SX+Y\/— <T1+SJ >(u1+1+v1+1\/—)

Then; + v,V < (“52) (rﬁ:r

5
u; + VD < (X”\/—) (rj o ) < Ujpq + v41VD.

) < Uj4q T vi11VD. This gives

k k
We denote
e +6vD = (X2) (”‘ifﬁ). 2.3)
Then
Uu; i Ui\/ﬁ <e+ 6\/5 < Uit1 i Ui+1\/5. (24)

To prove the required result, it is sufficient to prove that
(i) € + 6v/D is a solution of (1.1), and
(ii) e > 0and 6§ > 0 or § < 0 depending on the sign of u; + v;v/D.
This will produce one positive solution of (1.1) between two consecutive
fundamental solutions of (1.1) for any fixed class j, which is a contradiction.
To prove (i), we multiply surd conjugate of (2.3) with (2.3). This gives
2 2
e - D5? = (X525) (222, since X2 — DY? = kN and 12 — D} = I,
we get €2 — D&2 = N, which proves the first part.
Next, we show that € and & defined by (2.3) are positive. Now > — Ds/ =

k? implies ( +S]m) (rf_s"‘/ﬁ) — 1 and P ritspV®
k k k

clearly 0 <X SJ\/—<oo Since €+ 6VD = (X+:m)(rj_ij\/5), we get

0<6+5\/_<00A|505|n066 — D&% = N, we get 0 < —— < oo, that is

5\/—
0<= 6\/— < 0. This gives 0 <e— VD <oo. Adding this result with

0<e+6\/_<ooprovesthate>0.

> 1. Since 0 <

< oo,
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We further observe by (2.4) that
1<u;+v;VD < e+ 8VD < ujpq + ;1D < 0.
By considering the ‘+° sign, we get 0<

€E— 5\/— i—'Ul'\/E
Then 0< <=

Subsequently We get
25VD = (e + (5\/5) — (e - 6\/5) = (ui + vi\/ﬁ) — (ui - vix/ﬁ) = 2v;V/D.
This gives § = v; > 0.
Also, if we select ‘=’ sign in u; + v;+/D, then we have
€+6VD <ujpq — vl+1\/_ < 00,
ui+1+Vi+1\/5 e=8vD

1
Then
Uiy1—Vig1VD < 5\/— en0 < N < N

This gives € — VD > u;,q + vi+1\/—. Thus, we get
26VD = (e + 6VD) — (e = VD) < (uiy1 — vi41VD) — (w41 + vi11VD)

1 1
<
oV = wro D

. which gives 0<e—6VD <u —v;VD.

which implies that 0 <

This gives § < —v;,; < 0. Hence § >0 or § < 0 depends on the sign of
w; + v;v/D, which proves (ii). Hence all the fundamental solutions 2 k”\/_ of

(1.3) are covered by (2.2).

We illustrate this by an example which justifies the meaning of “... covered
by (2.2)”.

Illustration. As earlier we once again consider the equation U? — 72 = 18.
Thenwe have D = 7,k = 3 and N = 2. Next, we consider the Pellian equation

R? — 782 = 9 and if 227 V7 runs through all of its fundamental solutions, then
r1+51\/— AT 1ptspV7  1144VT r34ssVT _ 2449V7

3 3 ' 3 3 ' 3 3 °
Also u; + v;\/7 runs through all the fundamental solutions of u? — 7v? = 2,
then we have u; + v;v/7 = 3 + /7. Then above theorem claims that all the
fundamental solutions of U? — 7V2? = 18 are covered by

A1j+Blj\/E T']+SJ\/—)
- ( (3£+7);j=1,23.

Thus, A11+;311\/— (4+\/_) (3 + \/—) _ 19+7\/— ’5 3\/—’
A12+B12V2 _ (11+4\/—) (3 n \/—) _ 61+23\/— 5+7 and
3 3 - 3 '3
Aq13+B13V2 24+9V7 135+51V7 9+3V7
= 313 :( 3 )Giﬁ): 3 7 3 7

it can be observed that
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194+7v7

It can be observed that and

are the only three fundamental

solutions of the equation U2 — 7V2 =18. Thus @;j = 1,2,3 covers all

the fundamental solutions of U? — 7V? = 18.
Here the smallest fundamental solution of U2 —7V? = 18 is

x; + y;V/D = 8 4+ 3v/7 is the fundamental solution of x? — 7y? = 1. Then
every fundamental solution of U? —7V? =18 should be smaller than
5+3ﬁ>< (8+43V7) = 61+:3ﬁ. This is indeed true as the only fundamental

A11+B11V2 19477 A1p+B1pvV2 547
- 3 3 T3

5+d_ 9+3v7
3

5+\/— and

solutions of U? —7V? =18 are

A13+B13V2 _ 9+3V7
3 -3

and

We next derive an explicit formula which produces all the positive
solutions of (1.3).

Theorem 2.4. If x; + y;+/D is the smallest positive solution of (1.2) and

M defined by (2.2) runs through all the fundamentals solutions of (1.3),

then all the integer solutions ”’“L% of U2 — DV? = k2N are given by

uij,n+Zij.n\/E — (Aij'l'iijﬁ) (X1 + y1\/5)n; n = 0. (25)

Proof. If we consider the surd conjugate of (2.5) and multiply with (2.5),
2 _ 2, 2 2
we get u”’"kfv”'” = (A kD )(x1 Dy)™. Since Af; — DB} = k*N and

— Dy? = 1,wegetuf,,, — Dv{;, = k*N.Thu Mdefined by (2.5)
are the solutions of (1.3).

We next show that the solutions M defined by (2.5) gives all the

positive solutions of (1.3). On the contrary assume that there exists some

positive solution, say X”\/_ of (1.3) which is not covered by (2.5). Then this
solution will lie between any two successive solutions of (1.3) of some classes

generated by M (for a fixed i, j). This means for some fixed i, j and for
some fixed m, we have

(A20P) (1, 4y, VD)™ < T (AP o 4y D)

ij+BijVD ij+BiVD
Then (A 2y D) < (252) (2, - y,VD)" < (A 2y D) (x1 + VD).
We denote
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5VD X+YVD m
E+k = ( +k )(x1 —y,VD) . (2.6)

Thus,

(1200) 5 50 (W) ), e

To prove the required result, it is sufficient to prove that

(i) =2 H‘w— is a solution of (1.3)
(i) e > 0,6 > 0.
(iii) H‘w— is the solution of (1.3) smaller than all its fundamental solutions for

the flxed classes i, j. This will contradict the fact that %"\/— runs through

every fundamental solution of (1.3) for some fixed value of i, j.
To prove (i), we take surd conjugate of (2.6) and multiply it with (2.6).

2_ 2 2_ 2
> = (=3) (x - Dy>)™. Since X2 —DY? = kN and

This gives —> -
— Dy? =1,weget e2 — D5% = k2N, as required.

Again, since 1< (x;+y,VvD)" <o and X+r/b

k
0<(x;—yvD)" <1. Hence, we get 0< EJ”N— o, as S0P

k
(X+Y\/5)( x, —y,VD) . This gives 0 < & 5\/_ = 5‘/—

< 0, as
€? — D&% = k2N. Adding this result with 0 <

>1, we have

< 00, that is0 <
e+6\/—

< o0 proves that € > 0.
U+Bl]\/5 < E+8\/5
k k

We further observe by (2.7) that 1 < < oo, Taking

k -6vD _ Aij—Bij\D
< <1.Then 0 << 2By
€+8VD ~ Ajj+BijVD kN kN

This gives 0 < E_i‘/ﬁ < A”_i”\/ﬁ. Subsequently we get

26VD _ (e+6\/3) _ (6—5\/3) > (Aij+3ij\/5) _ (Aij_Bij\/E) _ ZBij\/B_

reciprocal, we get 0 <

k k k k k k
This now gives § = B;; > 0. Hence both € > 0,6 > 0, which proves (ii).
\/—

Finally, we prove that < is the smallest solution of (1.3) for the fixed

5\/—

classes i, j. On the contrary suppose ——— is positive solution of (1.3) but not

the smallest solution of any fixed classes i,j. In this case E+i\/— (xl - ylx/ﬁ)
will be the positive solution of (1.3). Then by (2.7) we have

Ai'+Bi'\/3 €+6vVD Ai'+Bl"\/E
]k] S <(]k] )(x1+y1\/5),

which gives
A;i+B; \/B +5\/_ Aij +Bl \/—
(—J kj )(x1_}’1VD)Se X ( — Y1V ) ———
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Here M runs through every fundamental solution of (1.3). Thus, we can
e+6\/5

(1 — ylx/—) is a positive solution of (1.3) smaller than all
Aij+BijVD
k

now say that

the fundamental solutions of (1.3), which is a contradiction. This

contradiction finally assures that there cannot exist any solution of (1.3) which
Is not covered by (2.5), as required.

We illustrate this theorem by the following example:

Illustration. Once again we consider the Pellian equation U? —7V2 = 18
A11+B11V2 —
3
19+37\/_’ A12+B]_2\/_ 5+7 and A13+§13\/_ 9+3\/_ and X1 + yl\/— 8 + 3\/—
is the fundamental solution of x? — 7y? = 1. Then the above theorem asserts

whose all the fundamental solutions are given by

that all the integer solutions % of Pellian equation U? — 7V? = 18 are

covered by ”‘”f”’"\/— = (A”f”ﬁ) (x, +y:¥D)";j = 1,23; n = 0. This

gives u“'"+:“'”ﬁ = (19‘;7‘/7) (8+3v7)";

u12,n+;712,n\/7 _ (5-!—3\/7) (8 n 3\/7)71 and u13.n+;713,n\/7 _ (9+§\/7) (8 n 3\/7)71.

We now prove some recurrence relations for the values of w;;, and v;; .
We assume that x; + y;+/D is the fundamental solution of (1.2), u; + v;/D runs
through all the fundamental solutions of (1.1), % runs through all the
fundamental solutions of R? — DS? = k2, r > 1 is a fixed integer and n > 1.

_ XrUjjntDYrVijn _ YrUijntXrVijn
Theorem 2.5. @) u;j p4r = — % Vi =T -
b _ X1Ujjn4r—1tDY1Vijnir—1 _ Vilijntr—1tX1Vijn4r—1
) uij,n+r - Kk ’ vij,n+r - k .
_ 2kxrUjjnir—Uijn _ 2kxXyVijnir—Vijn
C) uij,n+2r - K2 ’ vij,n+2r - k2 .

Proof. (a) By (2.5), we have

Ujiner+ViinsrVD Aji+Bii\ND n+r Ujjn+V;
ijn+r kl],n+r :( ij kl] )(xl +y1\/5) :( ijn Un )(xr +yr\/_)

_ (oeru; jntDYyrv; j,n)"'(yrui jntXrv; j,n)\/E

k
_ XrUjjn+tDYyrvijn _ YrUijntXrVijn
Hence Uijn+r = 7, Vijn+r = T

(b) To prove the second result, we first consider » = 1 and replacen by n — 1
in the above result. We thus get
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_ XqUjjn—1tDY1Vijn_1 _ Y1lUijn-1tX1Vijn-1
Uijn = X Vijn = X
_ XrUjjp+tDyrvijn
Then w;j 4y = —2—=

1 x1uijn—1+DJ’11’ijn—1) (3’1uijn—1+x1vij n—1)}
=—-1X . - D - -

k{ r ( k +Dyr k

1 XrUijn-1+tDYrVijn-1 XrVijn—-11tYrlijn-1
- E{xl ( — +Dyy B

_ X1Ujjnyr—1tDY1Vijnir—1

k
Value of v;; .., can be obtained accordingly.

(c) To prove the final part, we replace n by n + r in the first result and using
that in (a) above, we obtain
Yruij.n"'xrvij,n)}

1
Uijn+2r = ;{xruij,nﬂ” + Dy, ( X

1 DyZu; in Dyrvijn
= e+ =5+ ()

1 Dyfujjn Xrlijn
= ;{xruij,nﬂ” + T + Xy (uij,n+r R )}
_ 1 Uijn , 2 2
- E{Zxruij,nﬁ" T Tk (xr - Dyr )}
Since x, + y,v/D is asolution of (1.2), we have x? — Dy? = 1. Thus, we obtain
_ 2kxrUijnir—Uijn
uij,n+2r - K2 .
Value of v;; ,,», can also be obtained accordingly.

We further derive some more interesting properties related with the value
of u;;, and v;;,. The following interesting recursive formula connects three

U;jn’s as well as v;; ,’s when the suffixes are in arithmetic progression.

2 — 1,2 2
Corollary 2.6. (a) u;jnWijns2r — Uijntr = K*DNYF.

(b) VijnVijn+2r — Uizj,n+r = _kzNyrZ-
Proof. By (2.5) we have u”‘”Z”‘”‘/ﬁ = (A”"Li”\m) (x, +y:¥D)".

Taking its surd conjugate, we get
Uijn—VijnVD Aiji—BiivD n
e = (M) (= 71D)"

k
For convenience we write y =x; +y,VD,7 =x, —y,VD and p;; =
Ajj+BiivD __ A;j—Bijj\D UijntvijnVD
ij kl] = % Then we have % = ,Uij)’n and
uij,n—vij,nx/ﬁ L —
f - .ulﬂ/n-

Adding and subtracting these two relations, we get
k — k —
Ui =5 My + Ty} and vy = 5= {uy™ — my7"
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. A?~—DBL~2-
It can be easily observed that yy = x{ — Dy{ = 1 and p;;fi;, = ]kz L =N.
Then
UijnUijnt2r — u‘lzj n+r
k2 (.ulﬂ/ + l'l’l]y )('ul]yn+2r + 2% y(n+2r))
4 _('ul]yn+r + 1 y(n+r))
5 n+2r ng (n+27r)
’1 “Uul](y n+ry (T]l/+r) ) k {N(VZT +7 Zr) — 2N}
=24 y"TY
k2N
= —(V -7
Since x, + y,VD = (x; + ylx/—) =y" and x, — =(x, — ylx/ﬁ)r =

¥ ', we get UijnUijnt2r — ul],n+r = kZDNyr .
Second result can be proved accordingly.

Following result gives some more recurrence relations in the form of a
determinant.

ijn uij,n+r

Theorem 2.7. a) |
b) |

= ky,N
vun vij,n+r Yr
ul] n+r—1 uij,n+r

= ky,N
Uij,n+r—1 Uij,n+r Y1
1 1 1

Uijn—r UWUijn Uijn+r

C) = —2kNy,(x, — 1).

Vijn-r Vijn Vijn+r
Proof. We only prove (c), since first two results follow easily through theorem
2.5. Now

1 1 1
Uijn-r Uijn Uijn+r

Vijn-r  Vijn Vijn+r
_ |uij,n Uijntr |uij,n—r Uijn+r |uij,n—r Uijn

Vijn  Vijn+r Vijn-r Vijn+r Vijn-r Vijn
=2ker - kerN + ker = kN(Zyrz_ er)-
r . .
Now (x1 + y1VD) = Xor + Yo, VD = (xr + yT\/D) . This gives y,, =

2x,yy . Thus
1 1 1

Uijn-r UWijn  UWijntr| = KNQy, — 2x,y,) = —2kNy,(x, — 1).

Vijn-r Vijn Vijn+r
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3. Number of solutions up to a desired limit

In this final section, we define and obtain the values of the sums R(Z) =
Zuij’nwij’n\/ﬁ 1,S2) =% wjn=<z 1 and T(Z) =% v,z 1, the
K sz U2-DV2=k2N U2-DV2=kZN

U2-DVZ2=k2N
total number of positive solutions ,Uijn and vy, respectively of

(1.3) that do not exceed any given large positive real number Z.
Ajj+B;ijVD
k
runs through all the fundamental solutions of (1.3) for any fixed class i. We also
assume that (1.1) has B fundamental solutions and the equation R? — DS? = k?

has n fundamental solutions.

Thus, throughout we have 1 <i < p and 1 <j < 7. We first obtain the
value of R(Z) which gives the number of all the solutions of (1.3) not exceeding
any fixed given positive real number Z.

uij‘n+vij‘n\/5

For convenience, we denote § = @,y x; +y;VD and let A;; =

Theorem 3.1. R(Z) = S{Bn log(Z) — log(]_[fil ;Llcﬂij)} + C, where C is

the effective constant such that 0 < C < 7.
Proof. To find the value of R(Z) = Zuijn'“’ijn‘/ﬁ 1, we first find the number
% <Z
U2-DV2=kZN

of positive solutions of (1.3) that do not exceed Z for some fixed
class i =a (1 <j <mn). Since y and A;; are solutions of (1.2) and (1.3)

uaj‘n+vajn\/5

Ujjntvij, n\/—

respectively, (2.5) can be written as = Agjy™. Now, for any given
Z, it is clear that for some fixed class i = «, there exists some n such that

UgintVginVD u +v vD
—gn-_elnt_ < 7 < -Amwm Then we get Ay v < Z < Agjy™t

logZ-log Ay
%<n+1. Since n is an integer, we get

] where [x] denotes the integer part of x.

This implies n <
[logZ log Agj

Now smce [x] = x — {x}, where {x} is the fractional part of x and as
0 < {x} <1, we have

logZ-logA;; logZ—logA;; '
R(Z) = Zlez?zl[ 1] =y 2 (—’ +c )

logy logy
where 0<c'<1. Thus R(Z) = logy}f 12 (logZ — logc/ll-j) + Bnc'.
If we write C = Bnc’,thenwe get 0 < C < i and
R(Z) = 6{[?77 log(Z) — log(H U)} +C.
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We next find the value of S(Z2).

Theorem 3.2. 5(2) = & {Bnlog(2Z/k) — log(IT%L, [T\, A;; )} + C, where €
is the effective constant such that —fn < C < Bn.

Proof. To find the value of S(Z), we first find the number of positive solutions
of (1.3) where the values u;; , of U do not exceed Z for some fixed class i = a

(1 <j <1n).Now (2.5) can be written as %’”\/— = Agjy™. Then for any

given Z, it is clear that for some fixed class i = a, there exists some n such that
A—"ﬁi”\m , We write A, = A—”_i”\/ﬁ.
We also have y ! = x; — y,VD. Since y and A;;, A, are the solutions of (1.2)
and (1.3) respectively, we have yy~' = 1and A,; A, = N. Then (2.5) can
be written as

Ugjn <Z< Ugjn+1- Since c/qu =

uo:j,n"'vo:j,n\/B
k

Now taking surd-conjugate of (3.1) we get
with (3.1) we now have
k —_— _ k N
Ugjn = E{C’qajyn + c’qaﬂ/ n} = E{Uqajyn + «/l_a,-y n}.
Since ugjn < Z < Ugjns1, fOr some n, we get
e N o -n 22 gt N n-1
Aqjy +ﬂajy = o <Aaj¥ +ﬂajy

= Agjy" 3.1)

Ugjn— va]n\/_

P = A,y ™. Adding this

. N _ — N —
Also, since ——y~" >0, cfla]=Jl—0‘j<cflaj and y <y, we have

aj
2Z
Agjy" < < 2ALy™ Now y =x; + y;VD > 2. Then we have
log2Z—-logAyj—logk
logy
log2Z—-log A, i—logk .. .
n is an mteger, we getn < [Og ff’gy“’ o8 ] < n + 1. This implies

log2Z-log A, i—logk log2Z-log A, j—logk
Tl:[g gSqj g]orn:[g gSqj g]—l
logy logy

Agjv" < Z < Aqjy™ 2. This implies n < <n+ 2.Since

Thus $(2) = B, 3, [FEX5—20e 28 4 ¢, where ¢ = 0 or —1.
Then S(Z) = logyzﬁ 1 2)-1(log2Z —log A;; —logk +c +c'),  where
0 < ¢’ < 1. Now considering ¢ + ¢’ = €', we have —1 < €' < 1. We can now
write S(Z) = ‘”’ 2 log(22/k) - —z X7 log Ay + BC’.
If we write C ﬁnC’ then we get ﬁn <C<pBn and

$(2) = 8{pn1og(2z/k) —log(I1L_, TT]_, Ay )} + C.

Finally, we find the value of T(Z).
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Theorem 3.3 T(Z) = §{Bnlog(2vDZ/k) — log(ITL, IT)_, Ay )} + C.
where C is the effective constant such that 0 < C < 2f7.

Proof. To find the value of T(Z), we first find the number of positive solutions
of (1.3) where the values v;;,, of V do not exceed Z for some fixed class i = «
uaj,n'{'vaj,n‘/ﬁ uotj,n_votj,n\/B _

(1 <j<mn). Now by (2.5) since p

Agq,y ™", on subtraction, we get

= Agq;¥y" and

— k N _ g .,—Nnl _— k n __ L -n
Vajn = zm{ﬂajy 14 } = Zﬁ{dqajy cﬂajy .
Since vgjn < Z < Vgjne1, fOr some n, we have
N 2VDZ N
Ayt — — _nS—<cfl an+1l Y —n—1.
ajV Aaj)’ " ajV cﬂaj)/
2VvDZ .. .
‘/k— < Agq;¥™ 1. This implies
log 2/DZ-logAqj—logk
logy

Thus, we have A, ;y"* <

n—1<
Since n is an integer, we have
log2vVDZ-logA,i— logk log2VDZ—-log Ay i—logk
_[g gAaj g]om_[g gAaj g]_‘_l.

- logy logy
log 2V/DZ-log Ay j—logk

<n+1.

— B §n
1 !
T(2) = logny;lZ?zl(log 2v/DZ —log A;; —logk + ¢ + ¢'),
where 0 < ¢’ < 1. Considering ¢ + ¢’ = C’, we have 0 < C' < 2. Thus, we
. _ Bn 1 4 ’
now write T(Z) = mlog(Z\/EZ/k) — mZmZ}Lllogv‘lu + BnC’.
If we write C = nC’, thenwe get 0 < C < 21 and

T(Z) = 6{[)’77 log(Z\/EZ/k) — log(]‘[f}=1 ;?zlc/q,ij)} + C.

] + c,wherec =0 or 1. Then

The Following interesting conclusions are now an easy consequence from
these theorems.

Corollary 3.4.T(Z) — S(Z) = 88nlog~/D.

Corollary 3.5. If the solutions M of U2 — DV?2 = k2N are considered

as lattice points within the square [0, Z] x [0, Z], then density of these lattice
points is zero.

This follows from the fact that lim

n—-oo

logZ
E2 = 0.
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4. Conclusions

In this paper, we derived the necessary and sufficient condition for any two
solutions of U? — DV?2 = k2N to belong to the same class and the bounds for
the values of u, v occurring in the fundamental solution. We also derived an
explicit formula which gives all its positive solutions. We further obtained some
interesting recurrence relations connecting the values of u,v. Finally, we
obtained the results for total number of its positive solutions not exceeding any
given positive real number Z.
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