Regular generalized fuzzy b-separation axioms in fuzzy topology

Varsha Joshi *
Jenifer J.Karnel †

Abstract

Regular generalized fuzzy b-closure and regular generalized fuzzy b-interior are stated and their characteristics are examined, also Regular generalized fuzzy b $-\tau_i$ separation axioms have been introduced and their interrelations are examined. The characterization of regular generalized fuzzy b –separation axioms are analyzed.

Keywords: rgfbCS; rgfbOS; rgfbCl; rgfbInt; rgfbT₀; rgfbT₁; rgfbT₂; rgfbT₂ $\frac{1}{2}$ and fuzzy topological spaces X (in short fts).

2020 AMS subject classification: 54A40

_

^{*} Mathematics Department, SDM College of Engineering & Technology, Dharwad-580 003. Karnataka, India.E-mail: varshajoshi2012@gmail.com

^{*} Mathematics Department, SDM College of Engineering & Technology, Dharwad-580 003. Karnataka, India.E-mail: jeniferjk17@gmail.com

[†]Received on January 12th, 2021. Accepted on May 12th, 2021. Published on June 30th, 2021. doi: 10.23755/rm.v40i1.624. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY licence agreement.

1. Introduction

The fundamental theory of fuzzy sets were introduced by Zadeh [16] and Chang [9] studied the theory of fuzzy topology. After this Ghanim.et.al [10] introduced separation axioms, regular spaces and fuzzy normal spaces in fuzzy topology. The theory of regular generalized fuzzy b-closed set (open set) presented by Jenifer et. al [11]. In this study we define rgfb-closure, rgfb-interior and rgfb-separation axioms and their implications are proved. Effectiveness nature of the various concepts of fuzzy separation ideas are carried out. Characterizations are obtained.

2. Preliminary

 (X_1, τ) , (X_2, σ) (or simply X_1, X_2) states fuzzy topological spaces(in short, fts) in this article.

Definition 2.1[1, 3]: In fts X_1 , α be fuzzy set.

- (i) If $\alpha = IntCl(\alpha)$ then α is fuzzy regular open(precisely, frOS).
- (ii) If $\alpha = \text{ClInt}(\alpha)$ then α is fuzzy regular closed (precisely, frCS).
- (iii) If $\alpha \leq (\operatorname{IntCl}\alpha) \vee (\operatorname{ClInt}\alpha)$ then α is f b-open set (precisely, fbOS).
- (iv) If $\alpha \ge (IntCl\alpha) \land (CIInt\alpha)$ then α is f b-closed set (precisely, fbCS).

Remark 2.2 [1]: In a fuzzy topological space X, The following implication holds good

Figure 1. Interrelations between some fuzzy open sets

Definition 2.3[3]: Let α be a fuzzy set in a fts X_1 . Then,

- (i) $bCl(\alpha) = \bigwedge \{ \beta : \beta \text{ is a } fbCS(X_1), \geq \alpha \}$.
- (ii) bInt(α) = $\vee \{\lambda : \lambda \text{ is a fbOS}(X_1), \leq \alpha \}$.

Definition 2.4[11]: In a fts X_1 , if $bCl(\alpha) \le \beta$, at any time when $\alpha \le \beta$, then fuzzy set α is named as regular generalized fuzzy b-closed (rgfbCS). Where β is fr- open.

Remark 2.5[11]: In a fts X_1 , if $1-\alpha$ is rgfbCS(X_1) then fuzzy set α is rgfbOS.

Definition 2.6[11]: In a fts X_1 , if $bInt(\alpha) \ge \beta$, at any time when $\alpha \ge \beta$, then fuzzy set α is named as regular generalized fuzzy b-open (rgfbOS). Where β is fr-closed.

Definition 2.7[13]: Let (X_1, τ) , (X_2, σ) be two fuzzy topological spaces. Let $f: X_1 \to X_2$ be mapping,

- (i) if $f^1(\alpha)$ is rgfbCS(X_1), for each closed fuzzy set α in X_2 , then f is said to be regular generalized fuzzy b-continuous (briefly, rgfb-continuous).
- (ii) if $f^{1}(\alpha)$ is open fuzzy in X_{1} , for each rgfbOS α in X_{2} , then f is called strongly rgfb-continuous.
- (iii) if $f^1(\alpha)$ is rgfbCS in X_1 , for each rgfbCS α in X_2 , then f is called rgfb-irresolute.

Definition 2.8[10]: X_1 is a fts which is named as

- (i) fuzzy T_0 (in short, fT_0) if and only if for each pair of fuzzy singletons p_1 and p_2 with various supports there occurs open fuzzy set U such that either $p_1 \le U \le 1$ p_2 or $p_2 \le U \le 1$ - p_1 .
- (ii) fuzzy T_1 (in short fT_1)if and only if for each pair of fuzzy singletons p_1 and p_2 with various supports, there occurs open fuzzy sets U and V such that $p_1 \le U \le 1$ p_2 and $p_2 \le V \le 1$ p_1 .
- (iii) fuzzy T₂(in short, fT₂) or f-Hausdorff if and only if for each pair of fuzzy singletons p_1 and p_2 with various supports ,there occurs open fuzzy sets U and V such that $p_1 \le U \le 1$ p_2 , $p_2 \le V \le 1$ p_1 and $U \le 1$ V.
- (iv) fuzzy $T_2\frac{1}{2}$ (in short, $fT_2\frac{1}{2}$) or f-Urysohn if and only if for each pair of fuzzy singletons p_I and p_2 with various supports, there occurs open fuzzy sets U and V such that $p_I \le U \le I$ p_2 , $p_2 \le V \le I$ p_I and $clU \le I$ -clV.

3. Regular generalized fuzzy b-closure (rgfbCl) and Regular generalized fuzzy b-Interior (rgfbInt)

Definition 3.1: The regular generalized fuzzy b-closure is denoted and defined by, rgfbCl $(\alpha) = \Lambda \{ \lambda : \lambda \text{ is a rgfbCS}(X_1), \geq \alpha \}$. Where α be a fuzzy set in fts X_1 .

Theorem 3.2:Let X_1 be fts, then the properties that follows are occurs for rgfbCl of a set

Varsha Joshi and Dr.Jenifer J.Karnel

```
i. \operatorname{rgfbCl}(0) = 0

ii. \operatorname{rgfbCl}(1) = 1

iii. \operatorname{rgfbCl}(\alpha) is \operatorname{rgfbCS} in X_1

iv. \operatorname{rgfbCl}[\operatorname{rgfbCl}(\alpha)] = \operatorname{rgfbCl}(\alpha)
```

Definition 3.3:Let α and β be fuzzy sets in fuzzy topological space X_1 . Then regular generalized fuzzy b-closure of $(\alpha \lor \beta)$ and regular generalized fuzzy b-closure of $(\alpha \land \beta)$ are denoted and defined as follows

```
i. rgfbCl (\alpha \lor \beta) = \land \{\lambda : \lambda \text{ is a rgfbCS}(X_1), \text{ where } \lambda \ge (\alpha \lor \beta) \}
ii. rgfbCl (\alpha \land \beta) = \land \{\lambda : \lambda \text{ is a rgfbCS}(X_1), \text{ where } \lambda \ge (\alpha \land \beta) \}
```

Theorem 3.4: Let α and β be fuzzy sets in fts X_1 , then the following relations occurs

```
i. \operatorname{rgfbCl}(\alpha) \vee \operatorname{rgfbCl}(\beta) \leq \operatorname{rgfbCl}(\alpha \vee \beta)

ii. \operatorname{rgfbCl}(\alpha) \wedge \operatorname{rgfbCl}(\beta) \geq \operatorname{rgfbCl}(\alpha \wedge \beta)

Proof: (i) We know that \alpha \leq (\alpha \vee \beta) or \beta \leq (\alpha \vee \beta)

\Rightarrow \operatorname{rgfbCl}(\alpha) \leq \operatorname{rgfbCl}(\alpha \vee \beta) or \operatorname{rgfbCl}(\beta) \leq \operatorname{rgfbCl}(\alpha \vee \beta)

Hence, \operatorname{rgfbCl}(\alpha) \vee \operatorname{rgfbCl}(\beta) \leq \operatorname{rgfbCl}(\alpha \vee \beta).

(ii) We know that \alpha \geq (\alpha \wedge \beta) or \beta \geq (\alpha \wedge \beta)

\Rightarrow \operatorname{rgfbCl}(\alpha) \geq \operatorname{rgfbCl}(\alpha \wedge \beta) or \operatorname{rgfbCl}(\beta) \geq \operatorname{rgfbCl}(\alpha \wedge \beta)

Hence, \operatorname{rgfbCl}(\alpha) \wedge \operatorname{rgfbCl}(\beta) \geq \operatorname{rgfbCl}(\alpha \wedge \beta).
```

Theorem 3.5: α is rgfbCS in a fts X_1 , if and only if α =rgfbCl(α).

Proof: Suppose α is rgfbCS. Since $\alpha \le \alpha$ and $\alpha \in \{\beta : \beta \text{ is rgfbCS}(X_1) \text{ and } \alpha \le \beta \}$, α is the smallest and contained in β , therefore $\alpha = \Lambda \{\beta : \beta \text{ is rgfbCS}(X_1) \text{ and } \alpha \le \beta \} = \text{rgfbCl}(\alpha)$. Hence, $\alpha = \text{rgfbCl}(\alpha)$. On the other hand, Suppose $\alpha = \text{rgfbCl}(\alpha)$, then

On the other hand, Suppose α –ignoci (α), then $\alpha = \Lambda \{ \beta : \beta \text{ is rgfbCS}, \alpha \le \beta \} \Rightarrow \alpha \in \Lambda \{ \beta : \beta \text{ is rgfbOS}, \alpha \le \beta \}$. Hence, α is rgfbCS.

Definition 3.6: The regular generalized fuzzy b-interior is denoted and defined by, rgfbInt(α) = V { δ : δ is a rgfbOS(X_1), $\leq \alpha$ }. Where α be a fuzzy set in fts X_1 .

Theorem 3.7: Let X_1 be fts, then the properties that follows are occurs for rgfbInt of a set

```
i. rgfbInt(0) = 0
ii. rgfbInt(1) = 1
```

iii. $\operatorname{rgfbInt}(\alpha)$ is rgfbOS in X_1

iv. $\operatorname{rgfbInt}[\operatorname{rgfbInt}(\alpha)] = \operatorname{rgfbInt}(\alpha)$.

Definition 3.8: Let α and β are fuzzy sets in fts X_1 . Then regular generalized fuzzy b-interior of $(\alpha \lor \beta)$ and regular generalized fuzzy b-interior of $(\alpha \lor \beta)$ are denoted and defined as follows

- i. rgfbInt $(\alpha \lor \beta) = V \{\delta : \delta \text{ is a rgfbOS}(X_1), \text{ where } \delta \leq (\alpha \lor \beta) \}.$
- ii. rgfbInt($\alpha \land \beta$) = V { δ : δ is a rgfbOS(X_1), where $\delta \le (\alpha \land \beta)$ }.

Theorem 3.9:Let α and β are fuzzy sets in fts X_1 , then the following relations occurs

- i. $\operatorname{rgfbInt}(\alpha) \operatorname{V} \operatorname{rgfbInt}(\beta) \leq \operatorname{rgfbInt}(\alpha \operatorname{V} \beta)$
- ii. $\operatorname{rgfbInt}(\alpha) \land \operatorname{rgfbInt}(\beta) \ge \operatorname{rgfbInt}(\alpha \land \beta)$

Proof: (i) We know that, $\alpha \leq (\alpha \vee \beta)$ or $\beta \leq (\alpha \vee \beta)$

 \Rightarrow rgfbInt(α) \leq rgfbInt(α V β) or rgfbInt(β) \leq rgfbInt(α V β)

Hence, $\operatorname{rgfbInt}(\alpha) \operatorname{V} \operatorname{rgfbInt}(\beta) \leq \operatorname{rgfbInt}(\alpha \operatorname{V} \beta)$.

(ii) We know that $\alpha \ge (\alpha \land \beta)$ or $\beta \ge (\alpha \land \beta)$

 \Rightarrow rgfbInt(α) \geq rgfbInt($\alpha \land \beta$) or rgfbInt(β) \geq rgfbInt($\alpha \land \beta$)

Hence, $\operatorname{rgfbInt}(\alpha) \land \operatorname{rgfbInt}(\beta) \ge \operatorname{rgfbInt}(\alpha \land \beta)$.

Theorem 3.10: Let X_1 be fts, α is rgfbOS if and only if α =rgfbInt(α).

Proof: Suppose α is rgfbOS. Since $\alpha \le \alpha$, $\alpha \in \{\delta : \delta \text{ is rgfbOS and } \delta \le \alpha\}$ Since biggest α contains δ . Therefore, $\alpha = V\{\delta : \delta \text{ is rgfbOS } \delta \le \alpha\} = \text{rgfbInt}(\alpha)$. Hence, $\alpha = \text{rgfbInt}(\alpha)$.

On the other hand, Suppose α =rgfbInt (α). Then, α =V{ δ : δ is rgfbOS, $\delta \leq \alpha$ } $\Rightarrow \alpha \in V$ { δ : δ is rgfbOS $\delta \leq \alpha$ }. Hence, α is rgfbOS.

Theorem 3.11: Let α be a fuzzy set in a fts X_1 , in that case following relations holds good

- i. $\operatorname{rgfbInt}(1-\alpha) = 1-\operatorname{rgfbCl}(\alpha)$
- ii. $\operatorname{rgfbCl}(1-\alpha) = 1-\operatorname{rgfbInt}(\alpha)$

Proof: (i) Let α be a fuzzy set in fts X_1 . Then we have

rgfbCl $(\alpha) = \Lambda \{ \lambda : \lambda \text{ is a rgfbCS}(X_1), \geq \alpha \}$. Where α be a fuzzy set in fts X_1 .

```
1-rgfbCl (\alpha) = 1- \Lambda { \lambda : \lambda is a rgfbCS( X_1), \geq \alpha }.

= V { I - \lambda : \lambda is a rgfbCS( X_1), \geq \alpha }.

= V { I - \lambda : I - \lambda is a rgfbOS( X_1), \leq 1 - \alpha }.

= rgfbInt (1 - \alpha)
```

Hence, 1-rgfbCl(α) = rgfbInt (1- α).

(ii) Let α be a fuzzy set in fts X_1 . Then we have $\operatorname{rgfbInt}(\alpha) = V \{ \delta : \delta \text{ is a rgfbOS}(X_1), \leq \alpha \}$. Where α be a fuzzy set in fts X_1 .

```
1-rgfbInt (\alpha) = 1-V { \delta : \delta \le \alpha and \delta is rgfbOS (X_1)}

= \Lambda {1- \delta: \delta \le \alpha and \delta is rgfbOS(X_1)}

= \Lambda {1- \delta : 1- \alpha \le 1- \delta and 1- \delta is rgfbCS(X_1)}

= rgfbCl (1-\alpha)

Hence 1-rgfbInt (\alpha) = rgfbCl (1-\alpha).
```

4. rgfb-separation axioms

Definition 4.1:A fts is known as rgfbT₀, that is regular generalized fuzzy bT₀, iff for each pair of fuzzy singletons q_1 and q_2 with various supports, there occurs rgfbOS δ such that either $q_1 \le \delta \le 1$ - q_2 or $q_2 \le \delta \le 1$ - q_1 .

Theorem 4.2: A fts is rgfb T_0 ,that is regular generalized fuzzy b T_0 , if and only if rgfbCl of crisp fuzzy singletons q_1 and q_2 with various supports are different.

Proof: To prove the necessary condition: Let a fuzzy topological space be $\operatorname{rgfbT_0}$ and two crisp fuzzy singletons be q_1 & q_2 with various supports x_1 & x_2 respectively i.e. $x_1 \neq x_2$. Since fts is $\operatorname{rgfbT_0}$, there exist a rgfbOS δ such that, $q_1 \leq \delta \leq 1$ - $q_2 \Rightarrow q_2 \leq 1$ - δ , but $q_2 \leq \operatorname{rgfbCl}(q_2) \leq 1$ - δ , where $q_1 \leq \operatorname{rgfbCl}(q_2) \Rightarrow q_1 \leq 1$ - δ where 1- δ is rgfbCS . But, $q_1 \leq \operatorname{rgfbCl}(q_1)$. This shows that, $\operatorname{rgfbCl}(q_1) \neq \operatorname{rgfbCl}(q_2)$.

To prove the sufficiency: Let p_1 & p_2 be fuzzy singletons with various supports x_1 & x_2 respectively, q_1 & q_2 be crisp fuzzy singletons such that $q_1(x_1)=1$, $q_2(x_2)=1$. But, $q_1 \le \operatorname{rgfbCl}(q_1) \Rightarrow 1\operatorname{-rgfbCl}(q_1) \le 1\operatorname{-q_1} \le 1\operatorname{-p_1}$. As each crisp fuzzy singleton is rgfbCS , $1\operatorname{-rgfbCl}(q_1)$ is rgfbOS and $p_2 \le 1\operatorname{-rgfbCl}(q_1) \le 1\operatorname{-p_1}$. This proves, fts is $\operatorname{rgfbT_0}$ space.

Definition 4.3: A fts is known as rgfbT₁, that is regular generalized fuzzy bT₁, iff for each pair of fuzzy singletons $q_1 \& q_2$ with various supports $x_1 \& x_2$ respectively, there occurs rgfbOSs $\delta_1 \& \delta_2$ such that, $q_1 \le \delta_1 \le 1$ - q_2 and $q_2 \le \delta_2 \le 1$ - q_1 .

Theorem 4.4: A fts is rgfb T_1 , that is regular generalized fuzzy b T_1 , if and only if each crisp fuzzy singleton is rgfbCS.

Proof: To prove the necessary condition: Let rgfbT₁ be fts and crisp fuzzy singleton with supports x_0 be q_0 . There occurs, rgfbOSs δ_1 and δ_2 for any fuzzy singleton q with supports $x \neq x_0$, such that, $q_0 \leq \delta_1 \leq 1$ - q and $q \leq \delta_2 \leq 1$ - q_0 . Since, it includes each fuzzy set as the collection of fuzzy singletons. So that, $1-q_0 = V_{q \leq 1-q_0} = 0$. Thus, $1-q_0$ is rgfbOS. This shows that, q_0 (crisp fuzzy singleton) is rgfbCS.

To prove the sufficiency: Assume p_1 and p_2 be pair of fuzzy singletons with various supports x_1 & x_2 Further on fuzzy singletons with various supports x_1 & x_2 be q_1 & q_2 , such that $q_1(x_1) = 1$ and $q_2(x_2)=1$. As each crisp fuzzy singleton is rgfbCS, the fuzzy sets $1-q_1$ & $1-q_2$ are rgfbOSs such that, $p_1 \le 1-q_1 \le 1-q_2 \le 1-q_2 \le 1-q_1 \le 1-q_1 \le 1-q_1 \le 1-q_2 \le 1-q_2 \le 1-q_2 \le 1-q_1 \le 1-q_2 \le$

Remark 4.5: In a fts X_1 , each rgfb T_1 space is rgfb T_0 space.

Proof: It follows the above definition.

The opposite of this theorem is in correct. This is shown as follows –

Example 4.6:Let $X_1 = \{a, b\}, p_1 = \{(a,0),(b,1)\}$ and $p_2 = \{(a,0.4),(b,0)\}$ are fuzzy singletons. $U = \{(a, 0.5),(b, 1)\}$ be rgfbOS. Let $\tau = \{0,p_1, p_2, U,1\}$. The space is rgfbT₀ and it is not rgfbT₁.

Definition 4.7: A fts is known as rgfbT₂, that is regular generalized fuzzy bT₂ or rgfb-Hausdorff iff, for each pair of fuzzy singletons $q_1 \& q_2$ with various supports $x_1 \& x_2$ respectively, there occurs, rgfbOS $\delta_1 \& \delta_2$ such that, $q_1 \le \delta_1 \le 1$ - q_2 , $q_2 \le \delta_2 \le 1$ - q_1 and $\delta_1 \le 1$ - δ_2 .

Theorem 4.8: A fts is known as rgfbT₂, that is regular generalized fuzzy bT₂ or rgfb-Hausdorff if and only if for each pair of fuzzy singletons $q_1 \& q_2$ with various supports $x_1 \& x_2$ respectively, there occurs an rgfbOS δ_1 such that, $q_1 \le \delta_1 \le \text{rgfbCl } \delta_1 \le 1$ - q_2 .

Proof: To prove the necessary condition: Let rgfbT₁ be fts and fuzzy singletons $q_1 \& q_2$ with various supports .Let $\delta_1 \& \delta_2$ be rgfbOS such that, $q_1 \le \delta_1 \le 1$ - q_2 , $q_2 \le \delta_2 \le 1$ - q_1 and $\delta_1 \le 1$ - δ_2 where 1- δ_2 is rgfbCS. We have by definition, rgfbCl(δ_1)= $\bigwedge \{(1-\delta_2): (1-\delta_2) \text{ rgfbCS}\}$ where $\delta_1 \le 1$ - δ_2 . Also rgfbCl(δ_1) $\ge \delta_1$. This shows that, $q_1 \le \delta_1 \le \text{rgfbCl}(\delta_1) \le 1$ - $\delta_2 \le 1$ - $q_2 \Rightarrow q_1 \le \delta_1 \le \text{rgfbCl}(\delta_1) \le 1$ - q_2 .

To prove the sufficiency: Assume q_1 and q_2 are pair of fuzzy singletons with various supports and δ_1 be rgfbOS. Since, $q_1 \le \delta_1 \le \text{rgfbCl}$ (δ_1) ≤ 1 - $q_2 \Rightarrow q_1 \le \delta_1 \le 1$ - q_2 . Also $q_1 \le \text{rgfbCl}$ (δ_1) ≤ 1 - $q_2 \Rightarrow q_2 \le 1$ - rgfbCl (δ_1) ≤ 1 - q_1 . This shows that, 1- rgfbCl (δ_1) is rgfbOS. Also rgfbCl (δ_1) ≤ 1 - rgfbCl (δ_2). This proves that, fts is rgfbT₂ space.

Remark 4.9: In a fts X_1 , each rgfb T_2 space is rgfb T_1 space.

Proof: It follows the above definition.

The opposite of this theorem is in correct. This is shown as follows –

Example 4.10: Let $X_1 = \{a,b\}$. $q_1 = \{(a, 0.2),(b, 0)\}$ and $q_2 = \{(a,0),(b,0.4)\}$ are fuzzy singletons, $O_1 = \{(a,0.3),(b,0.4)\}$ and $O_2 = \{(a,0.8),(b,0.7)\}$ are rgfbOS .Let $\tau = \{0, p_1, p_2, O_1, O_2, 1\}$. The space is rgfbT₁ and it's not rgfbT₂.

Definition 4.11: A fts is known as $\operatorname{rgfbT}_{2\frac{1}{2}}$, that is regular generalized fuzzy $\operatorname{bT}_{2\frac{1}{2}}$ or $\operatorname{rgfb-Urysohn}$ iff for each pair of fuzzy singletons q_1 & q_2 with various supports x_1 & x_2 respectively, there occurs, $\operatorname{rgfbOSs}$ δ_1 & δ_2 such that, $q_1 \le \delta_1 \le 1$ - q_2 , $q_2 \le \delta_2 \le 1$ - q_1 and $\operatorname{rgfbCl}(\delta_1) \le 1$ - $\operatorname{rgfbCl}(\delta_2)$.

Remark 4.12: In a fts X_1 , each rgfb T_2 space is rgfb T_2 space.

Proof: It follows from the above definition.

The opposite of this theorem is in correct. This is shown as follows –

Example 4.13: Let $X_1 = \{a, b\}$. $q_1 = \{(a, 0.1), (b, 0)\}$ and $q_2 = \{(a, 0), (b, 0.3)\}$ are fuzzy singletons, $O_1 = \{(a, 0.2), (b, 0.3)\}$ and $O_2 = \{(a, 0.7), (b, 0.5)\}$ are rgfbOSs. Let $\tau = \{0, p_1, p_2, O_1, O_2, 1\}$. The space is rgfbT₂ and it's not rgfbT₂.

Figure2. From the above definition and examples one can notice that the above chains of implication.

Theorem 4.14: An injective function $f: X_1 \to X_2$ is rgfb-continuous, and X_2 is fT_0 , then X_1 is rgfb T_0 .

Proof: Assume α & β be fuzzy singletons in X_1 with various support then $f(\alpha)$ & $f(\beta)$ belongs to X_2 , As f is injective and $f(\alpha) \neq f(\beta)$. As X_2 is fT_0 , there occurs, a open set O in X_2 such that, $f(\alpha) \leq 0 \leq 1 - f(\beta)$ or $f(\beta) \leq 0 \leq 1 - f(\alpha)$, $\Rightarrow \alpha \leq f^{-1}(0) \leq 1 - \beta$ or $\beta \leq f^{-1}(0) \leq 1 - \alpha$. Since, $f: X_1 \to X_2$ is rgfb-continuous, $f^{-1}(0)$ is rgfbOS in X_1 . This shows that, X_1 is rgfb T_0 -space[4.1].

Theorem 4.15: An injective function $f: X_1 \to X_2$ is rgfb-irresolute, and X_2 is rgfb T_0 , then X_1 is rgfb T_0 .

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X_1 with various support. As f is injective $f(\alpha) \& f(\beta)$ belongs to X_2 and $f(\alpha) \neq f(\beta)$. As, X_2 is rgfbT₀, there occurs rgfbOS O in X_2 so that $f(\alpha) \leq 0 \leq 1 - f(\beta)$ or $f(\beta) \leq 0 \leq 1 - f(\alpha) \Rightarrow \alpha \leq f^{-1}(0) \leq 1 - \beta$ or $\beta \leq f^{-1}(0) \leq 1 - \alpha$. As, f is rgfb-irresolute $f^{-1}(0)$ is rgfbOS(X_1). This shows that, X_1 is rgfbT₀ space[4.1].

Theorem 4.16:An injective function $f: X_1 \to X_2$ is strongly rgfb-continuous, and X_2 is rgfb T_0 , then X_1 is f T_0 .

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X_1 with various support. Since f is injective $f(\alpha) \& f(\beta)$ belongs to X_2 and $f(\alpha) \neq f(\beta)$. As, X_2 is rgfbT₀, there occurs rgfbOS O in X_2 so that, $f(\alpha) \le 0 \le 1 - f(\beta)$ or $f(\beta) \le 0 \le 1 - f(\alpha)$, $\Rightarrow \alpha \le f^{-1}(0) \le 1 - \beta$ or $\beta \le f^{-1}(0) \le 1 - \alpha$. Since, f is strongly rgfb-continuous, $f^{-1}(0)$ is fuzzy-open in X_1 . This shows that, X_1 is fT₀-space[2.8].

Theorem 4.17: An injective function $f: X_1 \to X_2$ is rgfb-continuous, and X_2 is fT_1 , then X_1 is rgfb T_1 .

Proof: Assume α and β be fuzzy singletons in X_1 with various supports. $f(\alpha)$ and $f(\beta)$ belongs to X_2 , Since, f is injective. As, X_2 is fT_1 space hence, by the statement there occurs fuzzy-open sets O_1 & O_2 in O_2 such that, O_2 in O_3 and O_4 and O_4 and O_5 and O_6 and O_7 and O_8 and O_8 are refb-open in O_8 . Since O_8 is refb-continuous O_8 and O_8 are refb-open in O_8 . This

Since, f is rgfb-continuous $f^{-1}(O_1)$ and $f^{-1}(O_2)$ are rgfb-open in X_1 . This shows that, X_1 is rgfb T_1 space[4.3].

Theorem 4.18: An injective function $f: X_1 \to X_2$ is rgfb-irresolute, and X_2 is rgfb T_1 , then X_1 is rgfb T_1 .

Proof: Assume α & β be fuzzy singletons in with various supports. Since f is injective, $f(\alpha)$ & $f(\beta)$ belongs to X_2 . As X_2 is rgfb T_1 , there occurs two rgfbOS O_1 & O_2 in X_2 so that $f(\alpha) \leq O_1 \leq 1 - f(\beta)$ and $f(\beta) \leq O_2 \leq 1 - f(\alpha) \Rightarrow \alpha \leq f^{-1}(O_1) \leq 1 - \beta$ and $\beta \leq f^{-1}(O_2) \leq 1 - \alpha$. Since, f is rgfb-irresolute, then $f^{-1}(O_1)$ and $f^{-1}(O_2)$ are rgfbOS(X_1). This shows that, X_1 is rgfb T_1 space[4.3].

Theorem 4.19:If $f: X_1 \to X_2$ is strongly rgfb-continuous and X_2 is rgfb T_1 , then X_1 is fT_1 .

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X_1 with various supports. Since, f is injective, $f(\alpha) \& f(\beta)$ belong to X_2 . As, X_2 is rgfb T_1 , there occurs two rgfbOSs O_1 and O_2 in X_2 so that, $f(\alpha) \le O_1 \le 1 - f(\beta)$ and $f(\beta) \le O_2 \le 1 - f(\alpha) \Rightarrow \alpha \le f^{-1}(O_1) \le 1 - \beta$ and $\beta \le f^{-1}(O_2) \le 1 - \alpha$. Since, f is strongly rgfb-continuous, therefore $f^{-1}(O_1) \& f^{-1}(O_2)$ are fuzzy-open in X_1 . This shows that, X_1 is fT_1 space[2.8].

Theorem 4.20: An injective function $f: X_1 \to X_2$ is rgfb-continuous, and X_2 is fT_2 , then X_1 is rgfb T_2 .

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X_1 with various supports. Since, f is injective, so $f(\alpha) \& f(\beta)$ belongs to X_2 and $f(\alpha) \neq (\beta)$. Since, X_2 is fT_2 , therefore there occurs open fuzzy set O in X_2 so that, $f(\alpha) \le 0 \le$

Varsha Joshi and Dr.Jenifer J.Karnel

 $Cl(0) \le 1 - f(\beta) \Rightarrow \alpha \le f^{-1}(0) \le f^{-1}[Cl(0)] \le 1 - \beta$. Since, f is rgfb-continuous $f^{-1}(0)$ is rgfb $CS(X_1)$. Hence, $\alpha \le f^{-1}(0) \le f^{-1}[Cl(0)] \le f^{-1}[rgfbCl(0)] \le rgfbCl[f^{-1}[(0)] \le 1 - \beta$. That is, $\alpha \le f^{-1}(0) \le rgfbCl[f^{-1}[(0)] \le 1 - \beta$. This shows that, X_1 is rgfb X_2 [4.7].

Theorem 4.21: An injective function $f: X_1 \to X_2$ is rgfb-irresolute, and X_2 is rgfb T_2 . Then, X_1 is rgfb T_2 .

Proof: Obvious.

Theorem 4.22: An injective function $f: X_1 \to X_2$ is strongly rgfb-continuous, and X_2 is rgfb T_2 . Then, X_1 is fT_2 .

Proof: Obvious.

Theorem 4.23: An injective function $f: X_1 \to X_2$ is rgfb-continuous, and X_2 is $fT_2\frac{1}{2}$. Then, X_1 is $rgfbT_2\frac{1}{2}$.

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X_1 with various supports. Since, f is injective, then $f(\alpha)$ and $f(\beta)$ belongs to X_2 and $f(\alpha) \neq f(\beta)$. Since, X_2 is $fT_{2\frac{1}{2}}$, then there occurs open fuzzy sets O_1 and O_2 in X_2 such that, $f(\alpha) \leq O_1 \leq 1 - f(\beta)$, $f(\beta) \leq O_2 \leq 1 - f(\alpha)$ and $ClO_1 \leq 1 - ClO_2 \Rightarrow \alpha \leq f^{-1}(O_1) \leq 1 - \beta$, $\beta \leq f^{-1}(O_2) \leq 1 - \alpha$ and $Clf^{-1}(O_1) \leq 1 - Clf^{-1}(O_2)$. Since, f is rgfb-continuous $f^{-1}(O_1)$ and $f^{-1}(O_2)$ are rgfbOS(X_1). $Cl(f^{-1}(O_1)) \leq rgfbCl(f^{-1}(O_1))$ and $I - Cl(f^{-1}(O_2)) \leq I - rgfbCl(f^{-1}(O_2))$. Hence, rgfbCl(I = 1). This shows that, I = 1 rgfbI = 1 and I = 1 rgfbCl(I = 1).

Acknowledgements

The authors are grateful to principal of SDMCET, Dharwad and management SDM society for their support.

References

- [1] Azad,K. (1981). Fuzzy semi-continuity, Fuzzy Almost continuity and Fuzzy weakly continuity. Journal of Mathematics Analysis and Application,82, pp.14-32.
- [2] Balasubramaniam, G. and Sundaram. (1997). Some generalization of fuzzy continuous functions. Fuzzy Sets and Systems, 86(1), pp. 93-100.
- [3] Benchalli, S. and Karnel, J. (2010). On fuzzy b-open sets in fuzzy topological spaces.

Journal of Computer and Mathematical Sciences, 1(2),pp.103-273.

- [4] Benchalli, S. and Karnel, J. (2010). Fuzzy b-Neighborhoods' and Fuzzy b-Functions in fuzzy topological spaces. Journal of Computer and Mathematical Sciences, 1(6), pp.696-701.
- [5] Benchalli, S. and Karnel, J. (2011). On fbg-closed sets and fb-seperation Axioms in fuzzy topological spaces. International Mathematical Forum, 6(51),pp.2547-2559.
- [6] Benchalli, S. and Karnel, J. (2011). On fgb-continuous maps in fuzzy topological spaces. International Journal of Computer Applications, 19(1), pp. 24-29.
- [7] Benchalli, S. and Karnel, J. (2011). On weaker and stronger forms of fuzzy b-irresolute maps in fuzzy topological spaces. International Journal of Mathematical Analysis, 5(39),pp.1933-1941.
- [8] Benchalli, S. and Karnel, J. (2012). On some new-irresolute and closed maps in fuzzy topological spaces. International Journal of Mathematical Analysis,6(29),pp.1443-1452.
- [9] Chang, C.(1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Application, 24, pp.182-190.

Varsha Joshi and Dr.Jenifer J.Karnel

- [10] Ghanim, M., Kerre, E. and Mashhour, A. (1984). Separation axioms, subspaces and sums in fuzzy topology. Journal of Mathematical Analysis and Application, 102, pp. 189-202.
- [11] Karnel, J. and Joshi, V. (2019). Regular generalized fuzzy b-closed sets in fuzzy topological spaces. Journal of Emerging Technologies and Innovative Research, 6(6), pp. 85-86.
- [12] Karnel, J. and Joshi, V. (2019). New forms of irresolute maps in fuzzy topology. International Journal of Advance and Innovative Research, 6(2), pp. 161-164.
- [13] Karnel, J. and Joshi, V. (2021). Regular generalized fuzzy b-continuous function in fuzzy topology. (Communicated).
- [14] Jin Han Park and JK Park.(1998). On regular generalized closed fuzzy sets and generalizations of fuzzy continuous functions in fuzzy topological spaces, Indian Journal of Pure and Applied Mathematics, 34(7),pp.1013-1024.
- [15] Thiruchelvi, M. and Gnanmbal Ilango. (2016). On fuzzy generalized semi preregular continuous functions in fuzzy topological spaces. International Journal of Pure and Applied Mathematics, 106(6), pp.75-83.
- [16] Zadeh, L. (1965). Fuzzy sets, Information and Control, 8, pp.338-353.