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New structure of norms on Rn and their
relations with the curvature of the plane

curves
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Abstract

Let f1, f2, . . . , fn be fixed nonzero real-valued functions on R, the
real numbers. Let ϕn(Xn) =

(
x21f

2
1 + x22f

2
2 + . . . + x2nf

2
n

) 1
2 , where

Xn = (x1, x2, . . . , xn) ∈ Rn. We show that ϕn has properties similar
to a norm function on the normed linear space. Although ϕn is not
a norm on Rn in general, it induces a norm on Rn. For the nonzero
function F : R2 → R, a curvature formula for the implicit curve
G(x, y) = F 2(x, y) = c 6= 0 at any regular point is given. A similar
result is presented when F is a nonzero function from R3 to R. In con-
tinued, we concentrate on F (x, y) =

∫ b
a
ϕ2(x, y)dt. It is shown that

the curvature of F (x, y) = c, where c > 0 is a positive multiple of c2.
Particularly, we observe that F (x, y) =

∫ π
2

0

√
x2 cos2 t+ y2 sin2 tdt

is an elliptic integral of the second kind.
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1 Introduction
A normed linear space is a real linear space X such that a number ‖x‖, the

norm of x, is associated with each x ∈ X , satisfying: ‖x‖ ≥ 0 and ‖x‖ = 0 if and
only if x = 0; ‖λx‖ = |λ|‖x‖ for all λ ∈ R and ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
For example, let X be a Tychonoff space, C∗(X) the ring of all bounded real-
valued continuous functions on X . Then C∗(X) is a normed linear space with
the norm ‖f‖ = sup{|f(x)| : x ∈ X} and pointwise addition and scalar multi-
plication. This is called the supremum-norm on C∗(X). The associated metric is
defined by d(f, g) = ‖f − g‖. A non-empty set C ⊆ Rn is called a convex set if
whenever P and Q belong to C, the segment joining P and Q belongs to C. An-
alytically the definition can be formulated in this way: if P is represented by the
vector x, and Q by the vector y, then C is a convex set if with P and Q it contains
also every point with a vector of form λx + (1− λ)y, where 0 ≤ λ ≤ 1. A point
P is an interior point of a set S contained in Rn, if there exists an n-dimensional
ball, with center at P , all of whose points lie in S. An open set is a set containing
only interior points. A subset C ⊆ Rn is centrally symmetric (or 0-symmetric) if
for every point Q ∈ Rn contained in C, −Q ∈ C, where −Q is the reflection of
Q through the origin, that is C = −C.

Definition 1.1. ([Siegel, 1989, page 5]) A convex body is a bounded, centrally
symmetric convex open set in Rn.

Example 1.1. The interior of an n-dimensional ball, defined by x21 + x22 + · · · +
x2n < a2 provides an example of a convex body.

One of the many important ideas introduced by Minkowski into the study of
convex bodies was that of gauge function. Roughly, the gauge function is the
equation of a convex body. Minkowski showed that the gauge function could be
defined in a purely geometric way and that it must have certain properties analo-
gous to those possessed by the distance of a point from the origin. He also showed
that conversely given any function possessing these properties, there exists a con-
vex body with the given function as its gauge function.

Definition 1.2. ([Siegel, 1989, page 6]) Given a convex body B ⊆ Rn containing
the origin O, we define a function f : Rn → [0,∞) as follows.

f(x) =


1 if x ∈ ∂B,
0 if x = 0,
λ if 0 6= x = λy,

where λ is the unique positive real number such that the ray through O and the
point (whose vector is) x intersects the surface ∂B ( the boundary of B) in a point
y. The function f so defined is the gauge function of the convex body B.
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Example 1.2. Let f : R→ [0,∞) defined by

f(x) = max{|x1|, |x2|, . . . , |xn|},

where x = (x1, x2, . . . , xn) ∈ Rn. Then intB, the interior of the cubic B =
{(x1, x2, . . . , xn) : |xi| ≤ 1} is a convex body and f is a gauge function of it.

It is shown in [Siegel, 1989, Theorems 4-7] that a function f : R → [0,∞)
is a gauge function if and only if the following conditions hold: f(x) ≥ 0 for
x 6= 0, f(0) = 0; f(λx) = λf(x), for 0 ≤ λ ∈ R; and f(x + y) ≤ f(x) + f(y).
Moreover, f is continuous and the convex body of f is B = {x : f(x) < 1}.

A brief outline of this paper is as follows. In section 2, we introduce a function
ϕn on Rn, by the formula

ϕn(Xn) =
√
x21f

2
1 + x22f

2
2 + · · ·+ x2nf

2
n,

when n fixed nonzero real-valued functions f1, f2, . . . , fn on R are given. We
show that the mappings ϕn have similar properties such as norm functions within
difference the ranges of these functions lie in RR while the range of a norm func-
tion is in the [0,∞). This definition allows us to define a norm and hence a gauge
function on Rn. So it turns Rn into a metric space. In Section 3, we focus on
n = 2, ϕ2 and the induced norm on R2. First, we show that if F : R2 → R is a
nonzero function, then k, the curvature of the implicit G(x, y) = F 2(x, y) = c 6=
0 at every regular point is calculated by this formula:

k =
|HG| − 4F 2|HF |
4F
(
F 2
x + F 2

y )
3
2

,

where HF and HG are the Hessian matrices of F and G respectively. It is also
shown if F (x, y) =

∫ b
a

√
x2f 2(t) + y2g2(t)dt, then |HF | = 0 and the eigenvalues

of HF and HG, where G = F 2 are nonnegative. Particularly, when f(t) = cos t

and g(t) = sin t, we prove that
∫ π

2

0

√
x2f 2(t) + y2g2(t)dt is an elliptical integral

of the second type.

2 A norm on Rn made by the real valued functions
on R

We begin with the following notation.

Notation 2.1. Suppose that f1, f2, . . . , fn are nonzero real-valued functions on R
and define ϕn : Rn → RR with

ϕn(Xn) =
√
x21f

2
1 + x22f

2
2 + · · ·+ x2nf

2
n, (∗)
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where Xn = (x1, x2, . . . , xn) and RR is the set (in fact, ring) of all real-valued
functions on R.

The following statement is a key lemma. However, its proof is straightforward
and elementary, it will be used in the proof of the triangle inequality in the next
results.

Lemma 2.1. Let a, b, c and d are nonnegative real numbers. Then
√
ac+

√
bd ≤

√
(a+ b)(c+ d).

Proposition 2.1. LetXn, Yn ∈ Rn, n = 1, 2 or 3. Then ϕn(Xn+Yn) ≤ ϕn(Xn)+
ϕn(Yn).

Proof. The inequality clearly holds when n = 1. Next, we do the proof for n = 2.
Take X2 = (x1, y1), Y2 = (x2, y2) ∈ R2 and suppose that f and g are nonzero
elements of RR. Then

ϕ2(X2 + Y2) =
√

(x1 + x2)2f 2 + (y1 + y2)2g2

≤
√
x21f

2 + y21g
2 +

√
x22f

2 + y22g
2

= ϕ2(X2) + ϕ2(Y2)

if and only if

x1x2f
2 + y1y2g

2 ≤
√[

x21f
2 + y21g

2
][
x22f

2 + y22g
2
]

= ϕ2(X2)ϕ2(Y2). (?)

Now, if we let B := x1x2f
2 + y1y2g

2 and suppose that B ≥ 0, then (?) holds if
and only if

f 2g2(x1y2 − x2y1)2 ≥ 0,

which is always true (note, (?) trivially holds if B ≤ 0). Hence, in this case, the
proof is complete.
Here, we prove the proposition for n = 3. Let X3 = (x1, y1, z1) = (X2, z1) and
Y3 = (x2, y2, z2) = (Y2, z2), where X2 = (x1, y1), Y2 = (x2, y2) and let f, g, h be
nonzero elements of RR. Then

ϕ3(X3 + Y3) =
√
(x1 + x2)2f 2 + (y1 + y2)2g2 + (z1 + z2)2h2

≤
√
x21f

2 + y21g
2 + z21h

2 +
√
x22f

2 + y22g
2 + z22h

2

= ϕ3(X3) + ϕ3(Y3)
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if and only if

x1x2f
2 + y1y2g

2 + z1z2h
2 ≤

√
[x21f

2 + y21g
2 + z21h

2][x22f
2 + y22g

2 + z22h
2]

=
√[

ϕ2
2(X2) + z21h

2
][
ϕ2
2(Y2) + z22h

2
]

Now, if we let a = ϕ2
2(X2), b = z21h

2, c = ϕ2
2(Y2) and d = z22h

2, then by (∗) in
Notation 2.1, we have

x1x2f
2 + y1y2g

2 ≤
√
ac.

Moreover, it is clear that z1z2h2 ≤
√
bd. Therefore,

x1x2f
2 + y1y2g

2 + z1z2h
2 ≤
√
ac+

√
bd.

In view of Lemma 2.1, the proof is now complete.

Next, we state the general case of Proposition 2.1.

Theorem 2.1. Let Xn = (x1, x2, . . . , xn), Yn = (y1, y2, . . . , yn) ∈ Rn, λ ∈ R and
ϕn be as defined in Notation 2.1. Then the following statements hold.

(i) ϕn(Xn) = 0 if and only if Xn = 0,

(ii) ϕn(λXn) = |λ|ϕn(Xn),

(iii) ϕn(Xn + Yn) ≤ ϕn(Xn) + ϕn(Yn) (triangle inequality).

Proof. (i) and (ii) are evident. (iii). The proof is done by induction on n, see
Proposition 2.1. If we setXn−1 = (x1, x2, . . . , xn−1) and Yn−1 = (y1, y2, . . . , yn−1)
then Xn and Yn can be substituted by (Xn−1, xn) and (Yn−1, yn) respectively.
Therefore,

ϕn(Xn + Yn) ≤ ϕn(Xn) + ϕn(Yn)

if and only if

x1y1f
2
1 + · · ·+ xnynf

2
n ≤ ϕn(Xn)ϕn(Yn)

=
√[

ϕ2
n−1(Xn−1) + x2nf

2
n

][
ϕ2
n−1(Yn−1) + y2nf

2
n

]
.

Now, let a = ϕ2
n−1(Xn−1), b = x2nf

2
n, c = ϕ2

n−1(Yn−1) and d = y2nf
2
n plus the

assumption of induction, we have

x1y1f
2
1 + · · ·+ xn−1yn−1f

2
n−1 ≤

√
ac.

Moreover, it is obvious that xnynf 2
n ≤

√
bd. Thus, x1y1f 2

1 + · · · + xnynf
2
n ≤√

ac+
√
bd. Lemma 2.1 now yields the result.
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Corollary 2.1. If f1, f2, . . . , fn are nonzero constant functions, then ϕn is a norm
(and hence a gauge function) on Rn.

By Theorem 2.1, we obtain the following result.

Proposition 2.2. Let a, b be real numbers, f1, f2, . . . , and fn the restrictions of
some non-zero elements of RR on [a, b] such that each of them is nonzero on this
set, and letϕn be as defined in the previous parts (Notation 2.1). Then the mapping
ψn : Rn → [0,∞) defined by

ψn(Xn) =

∫ b

a

ϕn(Xn)dt

is a norm on Rn, and hence d(Xn, Yn) = ψ(Xn − Yn) turns Rn into a metric
space.

Corollary 2.2. The mapping ψn is a gauge function on Rn with the convex body
Cn = {Xn ∈ Rn : ψn(Xn) < 1}.

3 F (x, y) =
∫ b
a ϕ2(x, y)dt as a norm on R2 and the

curvature in the plane

Proposition 3.1. ([Goldman, 2005, Proposition 3.1]) For a curve defined by the
implicit equation F (x, y) = 0, the curvature of F (denoted by κ) at a regular
point (x0, y0) (i.e., the first partial derivatives Fx and Fy at this point are not both
equal to 0) is given by the formula

κ =
|F 2
yFxx − 2FxFyFxy + F 2

xFyy|(
F 2
x + F 2

y

) 3
2

,

where Fx denotes the first partial derivative with respect to x, Fy, Fxx denotes the
second partial derivative with respect to x, Fyy, and Fxy denotes the mixed second
partial derivative (for readability of the above formulas, the argument (x0, y0) has
been omitted).

We recall that the Hessian matrix of z = F (x, y) and w = F (x, y, z) are

defined to be Hz =

[
Fxx Fxy
Fyx Fyy

]
and Hw =

Fxx Fxy Fxz
Fyx Fyy Fyz
Fzx Fzy Fzz

 at any point at

which all the second partial derivatives of F exist.
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Theorem 3.1. Let F : R2 → R be a nonzero function and (x0, y0) ∈ R2 a
regular point. Suppose that the second partial derivatives of F at (x0, y0) exist
and further Fxy = Fyx at this point. Let HF and HG be the Hessian matrices
of F and F 2 respectively (we assume that G = F 2) and let k be the curvature of
G(x, y) = F 2(x, y) = c 6= 0 at (x0, y0). Then we have

k =
|HG| − 4F 2|HF |
4F
(
F 2
x + F 2

y )
3
2

.

Proof. For simplicity, we do the proof without (x0, y0). The partial derivatives of
G = F 2 are as follows:

Gx = 2FFx, Gxx = 2(Fx
2 + FFxx),

Gy = 2FFy, Gyy = 2(F 2
y + FFyy), and G2

xy = 4(FxFy + FFxy)
2.

Therefore,

|HG| = GxxGyy −G2
xy = 4

(
Fx

2 + FFxx
)(
F 2
y + FFyy

)
− 4
(
FxFy + FFxy

)2
= 4
[
F 2
xF

2
y + FF 2

xFyy + FF 2
yFxx + F 2FxxFyy − F 2

xF
2
y − 2FFxFyFxy

− F 2F 2
xy

]
= 4
[
F 2
(
FxxFyy − F 2

xy

)
+ F

(
F 2
xFyy − 2FxFyFxy + F 2yFxx

)]
= 4
[
F 2|HF |+ F

(
F 2
xFyy − 2FxFyFxy + F 2yFxx

)]
.

In view of Proposition 3.1, we have

|HG| = 4
[
F 2|HF |+ F

(
F 2
xFyy − 2FxFyFxy + F 2yFxx

)]
= 4
[
F 2|HF |+ Fk

(
F 2
x + F 2

y )
3
2

]
Therefore,

k =
|HG| − 4F 2|HF |
4F
(
F 2
x + F 2

y )
3
2

,

and we are done.

The next result is a similar consequence for the implicit surface.

Theorem 3.2. Let F : R3 → R be a nonzero function and (x0, y0, z0) ∈ R3 a
regular point. Suppose that the second partial derivatives of F at (x0, y0, z0) exist
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and further the mixed partial derivatives at this point are equivalent. If k is the
curvature of G(x, y, z) = F 2(x, y, z) = c 6= 0 at (x0, y0, z0), then we have

k =
|HG| − 8F 3|HF |

8F 2
(
F 2
x + F 2

y + F 2
z )

3
2

,

where HF and HG are the Hessian matrices of F and F 2 respectively (we assume
that G = F 2).

Proof. As we did in the previous theorem, the proof is done without (x0, y0, z0).

Let K =


Fxx Fxy Fxz Fx
Fxy Fyy Fyz Fy
Fxz Fyz Fzz Fz
Fx Fy Fz 0

. It is known that the curvature k of the implicit

surface F (x, y, z) = 0 is k = |K| at every regular point in which the second
partial derivatives of F exist. We first calculate the partial derivatives of G and in
continued we obtain determinant of HG.

Gx = 2FFx, Gxx = 2(Fx
2 + FFxx), G2

xy = 4(FxFy + FFxy)
2

Gy = 2FFy, Gyy = 2(F 2
y + FFyy), G2

xz = 4(FxFz + FFxz)
2

Gz = 2FFz, Gzz = 2(F 2
z + FFzz), G2

yz = 4(FyFz + FFyz)
2.

Recall that the Hessian matrices of F and G are

HF =

Fxx Fxy Fxz
Fxy Fyy Fyz
Fxz Fyz Fzz

, and HG =

Gxx Gxy Gxz

Gxy Gyy Gyz

Gxz Gyz Gzz

.

Here, we compute the determinant of HG.

1/8|HG| = Fxx
(
FyyFzz − F 2

yz

)
− Fxy

(
FxyFzz − FxzFyz

)
+ Fxz

(
FxyFyz − FxzFyy

)
= FxxFyyFzz − FxxF 2

yz − FyyF 2
xz − FzzF 2

xy + 2FxyFyzFxz

=
(
F 2
x + FFxx

)(
F 2
y + FFyy

)(
F 2
z + FFzz

)
−
(
F 2
x + FFxx

)(
FyFz + FFyz

)2
−
(
F 2
y + FFyy

)(
FxFz + FFxz

)2 − (F 2
z + FFzz

)(
FxFy + FFxy

)2
+
(
FxFz + FFxz

)(
FyFz + FFyz

)(
FxFy + FFxy

)
= F 3

[
FxxFyyFzz − FxxF 2

yz − FyyF 2
xz − FxxF 2

xy + 2FxyFyzFxz

]
+ F 2

[
FxxFyyF

2
z + FxxFzzF

2
y + FyyFzzF

2
x − 2FxyFxzFyFz

− 2FxyFyzFxFz − 2FxzFyzFxFy + F 2
xyF

2
z + F 2

xzF
2
y + F 2

yzF
2
x

]
+ F

[
0
]
.
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Therefore, we have 1/8|HG| = F 3|HF | + F 2k(F 2
x + F 2

y + F 2
z )

3
2 . So the result

is obtained, i.e.,

k =
|HG| − 8F 3|HF |

8F 2
(
F 2
x + F 2

y + F 2
z )

3
2

.

Theorem 3.3. Let f, g be nonzero real-valued functions on R, a, b ∈ R and F :

R2 → R defined by F (x, y) =
∫ b
a

√
x2f 2(t) + y2g2(t)d(t). Then

(i) The curvature of F (x, y) = c, where c > 0 at any point of the curve is
positive multiple of c2.

(ii) tr(HF ) = Fxx + Fyy ≥ 0.

Proof. (i). First, we note that F ≥ 0. The surface F meets the plane z = 0 at the
origin only. But the intersection of F with the plane z = c (where c > 0) is the
curve F (x, y) = c. Here the partial derivatives of F are calculated (see [Rudin,
1976, Theorem 9.42]).

Fx =

∫ b

a

xf 2(t)√
x2f 2(t) + y2g2(t)

d(t), Fy =

∫ b

a

yg2(t)√
x2f 2(t) + y2g2(t)

d(t),

Fxx =

∫ b

a

y2f 2(t)g2(t)(
x2f 2(t) + y2g2(t)

) 3
2

d(t), Fyy =

∫ b

a

x2f 2(t)g2(t)(
x2f 2(t) + y2g2(t)

) 3
2

d(t),

and

Fxy = −
∫ b

a

xyf 2(t)g2(t)(
x2f 2(t) + y2g2(t)

) 3
2

d(t) = Fyx.

Let us put ϕ :=
√
x2f 2(t) + y2g2(t). For the simplicity, we set

Fx =

∫
xf 2

ϕ
, Fy =

∫
yg2

ϕ
, and so on . . .
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By formula of the curvature k in Proposition 3.1, we obtain

k =
1(

F 2
x + F 2

y

) 3
2

[(
y2
∫
f 2g2

ϕ3

)(
y

∫
g2

ϕ

)2
+ 2

∫
xyf 2g2

ϕ3

∫
xf 2

ϕ

∫
yg2

ϕ

+
(
x2
∫
f 2g2

ϕ3

)(
x

∫
f 2

ϕ

)2]
=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

[
y4
( ∫ g2

ϕ

)2
+ 2x2y2

∫
f 2

ϕ

∫
g2

ϕ
+ x4

( ∫ f 2

ϕ

)2]

=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

[ ∫ x2f 2

ϕ
+

∫
y2g2

ϕ

]2
=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

[ ∫ x2f 2 + y2g2

ϕ

]2
=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

[ ∫
ϕ
]2

=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

F 2(x, y).

Hence, we observe that the curvature of F (x, y) = c at (x0, y0) is a positive
multiple of F 2(x0, y0) = c2, and we are done.
(ii). Since

f 2g2(x2 + y2)

ϕ3
≥ 0,

it is clear that Fxx + Fyy ≥ 0. So the result holds.

Lemma 3.1. Let F : R2 → R be a homogeneous function of degree one. Suppose
that the second derivatives of F at (a, b) ∈ R2 exist. Moreover, Fxy = Fyx at this
point. Then

(i) |HF |(a,b) = 0.

(ii) The eigenvalues of HF are 0 and tr(HF ) at (a, b).

Proof. (i). First, we note that F (λx, λy) = λF (x, y), for all (x, y) ∈ R2 and
λ ∈ R. Also, we remind the reader of the following fact, which is known as
Euler’s property,

xFx + yFy = F (x, y).
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Therefore,

xFxx + Fx + yFxy = Fx, and xFxy + Fy + yFyy = Fy.

Consequently, xFxx = −yFxy and xFxy = −yFyy. Now, consider the Hes-

sian matrix HF =

[
Fxx Fxy
Fxy Fyy

]
of F . For the point (0, b), where b 6= 0, we

have Fyy(0, b) = 0 = Fxy(0, b). This implies that |HF | = 0. Also, con-
sidering the point (a, 0), where a 6= 0 gives Fxy(a, 0) = 0 = Fxx(a, 0), this
again yields |HF | = 0. Now, let (a, b) such that a 6= 0 and b 6= 0. Then
Fxx(a, b) = −b

a
Fxy(a, b) and Fyy(a, b) = −a

b
Fxy(a, b). Hence, |HF | = 0. So

we always have |HF | = 0. The proof of (i) is now complete. (ii). Recall that the
characteristic equation of HF is

λ2 − (tr(HF ) = Fxx + Fyy)λ+ (|HF | = FxxFyy − F 2
xy) = 0.

So λ2−(Fxx+Fyy)λ = 0. Therefore, λ = 0 or λ = tr(HF ), and we are done.

Proposition 3.2. Let f, g be nonzero real-valued functions on R and F : R2 → R
defined by F (x, y) =

∫ b
a

√
x2f 2(t) + y2g2(t)dt and let G(x, y) = F 2(x, y). Then

the eigenvalues of HF and HG at any point except the origin are nonnegative.
(In fact, the eigenvalues of HF are zero and tr(HF ) at that point).

Proof. We observe that F is a homogeneous function of degree one. So Lemma
3.1 and Theorem 3.3 (ii) yield the result. For the matrix HG, we look to the
Theorem 3.1. Since, F 2|HF | = 0, we have

|HG| = 4Fk
(
F 2
x + F 2

y

) 3
2 .

We notice that F, k ≥ 0 gives |HG| ≥ 0. On the other hand, tr(HG) = Gxx +
Gyy ≥ 0. Therefore, the roots of λ2 − tr(HG)λ + |HG| = 0, which are the
eigenvalues of HG, are nonnegative. The proof is finished.

In the following result, we present a norm on R2 which is an elliptic integral
of the second kind.

Corollary 3.1. Let f(t) = cos t, g(t) = sin t and let F : R2 → R is given by

F (x, y) =

∫ π
2

0

√
x2 cos2 t+ y2 sin2 tdt.

Then the following statements hold.

(i) The eigenvalues of HF and HG, where G = F 2 at every point except the
origin are nonnegative.
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(ii) F (x, y) is an elliptic integral of the second kind.

Proof. (i). It follows from Proposition 3.2. (ii). Notice that

F (x, y) =

∫ π
2

0

√
x2(1− sin2 θ) + y2 sin2 θdθ = |x|

∫ π
2

0

√
1− k2 sin2 θdθ,

where k =

√
x2−y2
|x| and |x| ≥ |y|. So this gives F (x, y) is an elliptic integral of

the second kind and we are done.

Corollary 3.2. There are ordered pairs (x, y) with rational coordinates (other
than the origin) which satisfy the inequality

∫ π
2

0

√
x2 cos2 θ + y2 sin2 θdθ ≤ r,

when 0 < r ∈ Q. Also, if r /∈ Q then (x, y) has irrational coordinates.

Proof. It is sufficient to take the pairs (r, 0), (0, r), (−r, 0) and (0,−r).

We end this article with the next results.

Proposition 3.3. Let 0 ≤ x, y ∈ R. Then∫ π
2

0

√
x2 cos2 t+ y2 sin2 tdt ≤ x+ y.

Proof. First, note that

x2 cos2 t+ y2 sin2 t = (x cos t+ y sin t)2 − 2xy sin t cos t,

and take 0 ≤ φ ≤ π
2

such that tanφ = y
x

(if x > 0). Now,

(x cos t+ y sin t)2 = x2(cos t+
y

x
sin t)2 = x2(cos t+

sinφ

cosφ
sin t)2

=
x2(cos t cosφ+ sin t sinφ)2

cos2 φ
=
x2 cos2(t− φ)

cos2 φ

= (x2 + y2) cos2(t− φ) (note, cos2 φ =
x2

x2 + y2
).

Hence, x2 cos2 t+ y2 sin2 t ≤ (x2 + y2) cos2(t− φ). Therefore,∫ π
2

0

√
x2 cos2 t+ y2 sin2 tdt ≤

∫ π
2

0

√
(x2 + y2) cos2(t− φ)dt

=
√
x2 + y2

∫ π
2

0

| cos(t− φ)|dt

=
√
x2 + y2

∫ π
2
−φ

−φ
cosTdt (T = t− φ)

= x+ y.
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New structure of norms on Rn and their relations with the curvature of the plane
curves

Remark 3.1. We find 4
∫ π

2

0

√
x2 cos2 t+ y2 sin2 tdt ≤ 2(2x+2y). The left phrase

is the length of the ellipse x′ = x cos t and y′ = y sin t, while 2x and 2y are the
major axis and minor axis of this ellipse.
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