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Abstract

In this paper, a new class of sets called Da-open sets are introduced
and investigated with the help of gd-open and d-closed sets. Re-
lationships between this new class and other related classes of sets
are established and as an application Da-continuous and almost Da-
continuous functions have been defined to study its properties in terms
of Da-open sets. Finally, some properties of Da-closed graph and
(D,a)-closed graph are investigated.
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1 Introduction

The concept of generalized open sets introduced by Levine[Levine, 1970]
plays a significant role in General Topology. The study of generalized open
sets and its properties found to be useful in computer science and digital topol-
ogy[Khalimsky et al., 1990, Kovalevsky, 1994, Smyth, 1995]. Since Professor
El- Naschie has recently shown in [El Naschie, 1998, 2000, 2005] that the no-
tion of fuzzy topology may be relevant to quantum particle physics in connection
with string theory and > theory.So,the fuzzy topological version of the notions
and results introduced in this paper are very important. Recently, Ekici [Ekici,
2008] introduced the notion of a-open sets as a continuation of research done
by Velicko [Velicko, 1968] on the notion of d-open sets.Dontchev et al., intro-
duced gd-closed sets and gd-continuity.In this paper,new generalizations of a-open
sets by using gd-open and J-closed sets called Da-open sets are presented. Also
Da-continuous functions,almost Da-continuous functions,Da-closed graphs and
(D,a)-closed graphs have been defined to study its properties in terms of Da-open
sets.

2 Prerequisites, Definitions and Theorems

In what follows,spaces always mean topological spaces on which no sepa-
ration axioms are assumed unless explicitly stated and f:(X,7) — (Y,n) or simply
f:X —Y denotes a function f of a space (X,7) into a space (Y,n). The -closure of
a subset A of X is the intersection of all -closed sets containing A and is denoted
by Cls(A).

Definition 2.1. In (X,7),let N C X.Then N is called:

(i)regular closed[Stone, 1937] (resp.,a-closed[Ekici, 2008 ], §-preclosed[Raychaudhuri
and Mukherjee, 1993], e*-closed[Ekici, 2009], 6-semiclosed|Park et al., 1997],
B-closed[Abd El-Monsef, 1983 ], semiclosed[Levine, 1963 ], preclosed[Mashhour,
1982])if N = Cl(Int(N)) (resp., Cl(Int(Cls(N))) C N, Cl(Ints(N)) C N, Int(Cl(Ints(N))
C N, Int(Cls(N)) C N, Int(Cl(Int(N)) C N, Int(CI(N)) C N, Cl(Int(N)) C N).

(ii) 6-closed [Velicko, 1968] if N = Cls(N)

where Cls(N) = {peX:Int(Cl(O))"\N#¢p,OcT and pO}.

(iii)generalized 0-closed (briefly,gd-closed)[Dontchev et al., 2000] if CI(N)) C G
whenever N C G and G is §-open in X.

(iv)generalized closed (briefly,g-closed)[Levine, 1970] if CI(N)) C G whenever N
C Gand G is open in X.

The complements of the above mentioned closed sets are their respective open
sets.
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The set of all regular open (resp.,6-open, 3-open, 6-preopen, preopen, semiopen,
d-semiopen,e*-open,gd-open and a-open) sets of (X,7) is denoted by RO(X) (resp.0O(X),
BO(X), )PO(X), PO(X), SO(X), 6SO(X), e*O(X), G6O(X) and aO(X)).

The a-closure[Ekici, 2008](resp, gd-closure,d-closure) of a set N is the inter-
section of all a-closed(resp, gd-closed,d-closed) sets containing N and is denoted
by a-CI(N) (resp., Cl;s(N),Cls(N)). The a-interior[Ekici, 2008](resp,gd-interior,d-
interior) of a set N is the union of all a-open(resp, go-open,d-open) sets contained
in M and is denoted by a-Int(M)(resp, Int,;(M),Ints(M))

Definition 2.2. [Ekici, 2005] A topological space (X,T) is said to be:

(1) r-Ty if for each pair of distinct points x and y of X, there exist regular open sets
UandV suchthatx € U,y ¢Uandx ¢ V,y € V.

(2) r-Ts if for each pair of distinct points x and y of X, there exist regular open sets
UandV such thatx € U,y € Vand UNV =¢.

Theorem 2.1. Let C and D be subsets of a topological space (X,T).Then
()If C is go-closed,then Cly,5(C) = C.

(ii) If CCD,then Cl,5(C)C Clys(D).

(iv) x €Clys(C) if and only if for each gd-open set O containing x,0 N C#¢,
(v)Clys(C)UClys5(D)C Clys(AUD).

(vi)Clys(CND)CClys(C)NClys(D).

3 Da-Open Sets.

Definition 3.1. A subset M of a topological space (X,7) is said to be:

(1) Da-open if M C Intys(Cls(Intys(M)),

(2) Da-closed if Clys(Ints(Clys(M))CM.

The collection of all Da-open(resp,Da-closed) sets in (X,7) is denoted by DaO(X)
(resp,DaC(X)).

Theorem 3.1. Let (X,7) be a space.Then for any NCX,

(i) NedO(X) implies NeaO(X)[Ekici, 2008].

(ii) NedO(X) implies N € GOO(X)[Dontchev et al., 2000].

(iii)NeGO(X) implies N € GOO(X)[Dontchev et al., 2000].

(iv) N €aO(X) implies NeDaO(X).

(v) NeGOO(X) implies NeDaO(X).

Proof: (iv) Since 6O(X)CGO(X), Ints(N) C Intys(N).

Now,let NecaO(X), then N C Int(Cl(Ints(N)). Therefore,

N C Int(Cl(Ints(N))=Ints(Cl(Int5(N))Clntys(Cls(Inty5(N)). Hence N €DaO(X).
(v) Suppose N is gd-open. Then Int,s(N)=N.
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Therefore, Int,s(N)C Cls(Intys(N). Then
N=Int,5(N)=Intys5(Int,5(N)) C Inty5(Cls(Intys(N)). Hence N €DaO(X).

Remark 3.1. The following diagram holds for any subset of a space (X,T).

open set  <—  J-openset —  a-open set

vd
4 i Da-open set

S

g-open set —>  gd-open set

None of these implications is reversible

Example 3.1. Let X={p,q,r,s} and 7={X,0,{p},{q}.,{p.q}.{p.r}-{p.q.r} }.then
aO(X)={X.¢.{q}.{p.r}.{p.q.r}}

GoOX)={X, ¢.Ap}.{a}.{r}-Ap.at.{p.rHa.r}.{p.a.r}}.

DaO(X)={X, o{p}Aqt{rtAp.a}.{p.r}.{a.rHp.a.r}{p.q.5}.{q.ns}}.
Therefore, {q,1,s}€DaO(X) but {q,1,s}¢a0(X) and {q,r,s}¢ gdO(X).

Lemma 3.1. If there exists a M € GOO(X) such that M C N Clnt,s(Cls(M)),then
N is Da-open.
Proof: Since M is go-open, Int;o(M)=M. Therefore,
Intg(;(Cl(;(Intgg(N)) Dlnlgg(Clg(Il’ltg(;(M)) = Il’ltg(;(Clg(M)) DN.
Hence N is Da-open.
Converse of the Lemma 3.1 is not true as shown in Example 3.1.

Example 3.2. In Example 3.1, {p,q,r}€DaO(X) and {p,r}€GoO(X) but {p,r} C
{p.a.r} & Intgs(Cls({p.r}))={p.r} .

Lemma 3.2. For a family { B\:\eA} of subsets of a space (X,7),the following
hold:

(1) Clgs(({Br:AEA}) C (M Clys(Br):AEA}.

(2) Clg(s(U{V)\.‘)\E/\}) D U{Clg(s(BA).'/\E/\}.

(3) CIs(M{BAAEAY) C () {Cls(Br):AEAL.

(4) Cls(U{BAAEAY) D U{Cls(By): AeA}

Theorem 3.2. If {G,:\EA} is a collection of Da-open sets in a space (X,T),then
U G is a Da-open set in (X,T) :

aEN

Proof: Since each G,is Da-open, G, C Inty;(Cls(Inty5(G,)) for each o€ and
hence |J G, C | Intys5(Cls(Intys5(G,))CIntys(Cls(Intys( | J Go)). Thus | Gy, is

aeN aEN aEN aeEN
Da-open.
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Corolary 3.1. If {F,:a€N} is a collection of Da-closed sets in a space (X, ),then
() Fa is a Da-closed set in (X,T)

aEN

Remark 3.2. M and N € DaO(X) & M N N € DaO(X) as seen from Example 3.1,
where both M = {q,1,5} and N = {p,q,s} € DaO(X) but

MNN = {q,s} ¢ DaO(X).

Corolary 3.2. If Me DaO(X) and BEaO(X),then MUBE DaO(X).
Proof:Follows from Theorem 3.1(iv) and Theorem 3.2

Corolary 3.3. If Mc DaO(X) and BEG)O(X),then MUB€E DaO(X).
Proof:Follows from Theorem 3.1(v) and Theorem 3.2

Definition 3.2. In (X,7),let M C X.

(1)The Da-interior of M, denoted by Int? (M) is defined as
Int?(M)=\J{G:GCM and MeDaO(X)};

(2)The Da-closure of M, denoted by ClaD (M) is defined as
CIP(A)=N{F:MCF and FEDaC(X)}.

Theorem 3.3. In (X,7),let M, N,F C X.Then:
()M C CI?(M)CaCl(M), CIZ(M)CCl,5(M).
(2) le(M) is a Da-closed set.
(3) If F is a Da-closed set, and F D M,then F D ClaD(M).
i.e.,ClaD (M) is the smallest Da-closed set containing M.
(4)M is Da-closed set if and only ifClaD(M)zM.
(5) CIP(CIP(M)) = CIP(M).
(6)M C N implies ClaD(M) - le(N).
(7)p €CIP(M) if and only if for each Da-open set V containing p,V N\ M#¢.
(8) CI?(M) U CI?(N) C CIP(M U N).
(9) CI?(M N N) C CI®(M) N CIP(N).
Proof: (1)It follows from Theorem 3.1(iv) and (v)
(2)It follows from Definition 3.2 and Corollary 3.1
(3)Let F be a Da-closed set,containing M.CIP (M) is the intersection of Da-closed
sets containing M, and F is one among these,;hence F O le (M).
(4) Let M be Da-closed,then by Definition 3.2(2), ClaD(M):M.
Conversely,let Cl(’? (M)=M. Then by (2) above,M is Da-closed.
(5)It follows from (2) and (4).
(6) Obvious.
(7) p ¢CID(M) & (3 GeEDaC(X))(MCG)(p ¢G)
& (3 GeDaC(X))(MCG)(p €G°)
& (3 GeDaO(X))(MNG=¢)(p €G°)
& (3 GeDaO(X,p) (MNG =)
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i.e.,(3U(=G°)e DaO(X,p)(MNU=¢)
(8) and (9) follows from (6).

Remark 3.3. (/) le(M) U ClL’?(N)7é le(M U N), in general, as seen from Ex-
ample 3.1 where M = {p}, N = {r} and M U N = {p,r}.Then CI°(M)={p},
CIP(N)={r},CI2(M)UCIP(N)={p,r} and CI?(MUN)={p,5s};

(2) CI2(M N N)+ CI?(M) N CIP(N), in general,as seen from Example 3.1 where,M
={p.q,r}, N={s} and MNN = ¢.Then CI®(M) = X, CIP(N) = {s}, CI?(M)NCI?(N)
= {s} and CI?(MNN)=¢

Lemma 3.3. In (X,7),let M C X.Then
(1) CI2(X\M) = X\Int? (M),
(2) IntaD(X\M) = X\ClaD(M).

Theorem 3.4. In (X,7),let M,N,G C X,

(1)alnt(M) C Int? (M)CM, Int,s(M)CInt2 (M).

(2) Int?(M) is a Da-open set.

(3) If G is a Da-open set, and G C M,then G C Int?(M).
i.e.,Int?(M) is the largest Da-open set contained in M.
(4)M is Da-open set if and only ifIntaD(M):M.

(5) Int? (Int®(M)) = Int?(M).

(6)M C N implies Intf(M) C IntaD(N).

(7) p € Int®(M) if and only if there exists Da-open set N containing p such that N
CM.

(8) It (M N N)C Int? (M) N Int?(N).

(9) Int? (M) U Int®(N) CInt?(M U N).

Proof:Similar to the proof of Theorem 3.3

Remark 3.4. (8 )Intf (M N N)# Intf (M) N Intf (N), in general, as seen from Ex-
ample 3.1,where M = {p,q,s}, N = {q,,s} and M N N = {q,s}.Then Int?(M) =
{p.q.s}, ItP(N) = {q,s}, Int? (M) N Int?(N) = {q,s} and Int?(MNN) = {q}.
(9) It (M) U Int?(N) # Int?(M U N),in general, as seen from Example 3.1,
where M = {p,q,r}, N = {s} and M U N = X.Then Int?(M) = {p,q,r}, Int?(N) =
o, Int? (M) U Int?(N) = {p,q,r} and Int?(M U N) = X.

Lemma 3.4. In (X,7),let M C X. Then
(1)M is Da-open if and only if M = M N Ints(Cls(Intys(M)).
(2)M is Da-closed if and only if M = MU Cl5(Ints(Clys(M)).

Proof:(1) Let M be an Da-open. Then,
MClntys(Cls(Intys(M)) implies MM Inty5(Cls(Int,5(M))=M.
Conversely,let M = MM Int,s5(Cls(Int,5(M)) implies M C Inty5(Cls(Intys(M)).
(2)It follows from (1)
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Lemma 3.5. In (X,7),let M C X. Then

()M N Inty5(Cls(Inty5(M)) is Da-open

(i))MU Cl 5(Ints5(Cl,5(M)) is Da-closed.

Proof: (i) Intys(Cls(Intys(M N Inty5(Cls(Inty5(M)))))) = Inty5(Cls(Inty5(A)N Inty5(Cls(Inty5(M)))))
= Intys5(Cls(Intys(M))). This implies that

M N Intys(Cls(Intys(M))) = M N Intys(Cls(Intys(M N Intys(Cls(Intys(M)))))) C
Inty5(Cls(Intys(M N Intys(Cls(Inty5(M)))))) . Therefore M N Intys5(Cls(Intys(M)))

is Da-open.

(ii) From (i) we have X\(MUClys(Ints(Cly5(M))) = (X\M) N Clys(Ints(Clys(X\M)))

is Da-open so that M UCl 5(Ints(Clys(M))) is Da-closed.

Lemma 3.6. In (X,7),let M C X. Then

(i)Int? (M)=M N Int,5(Cls(Int,5(M)).

(ii)CI2 (M)=MU Cls(Ints(Clys(M)).

Proof:(i)Let N=Int?(M),then NCM.Since N is Da-open,NClInt,5(Cls(Inty5(N))
Clnty5(Cls(Inty5(M)). Then NCMNIntys(Cls(Intys(M))CM.Therefore,by Lemma 3.5,
it follows that MNInt,5(Cls(Int,5(M)) is a Da-open set contained in M. But Intf(M)
is the largest Da-open set contained in M it follows that

MnNint,s(Cls(Intys(M))C IntaD(M)=N. Then N=MnNIntys(Cls(Intys(M)).
Therefore,lntaD(M)=M N Intys(Cls(Intys(M)).

(ii)It follows from (i)

4 Da-Continuous functions.

Definition 4.1. A function f:(X,7) — (Y,n) is said be a Da-continuous if for each
peX and each NeO(Y,f(p)), there exists M € DaO(X,p) such that f{M)C N.

Theorem 4.1. For a function f:(X,7) — (Y,n),the following are equivalent

(1)f is Da-continuous;

(2)For each NeO(Y), f~Y(V)eDaO(X).

Proof:(1)—(2)Let NeO(Y) and pc f~1(N). Since f(p) € N,then by(1),there exists
M, € DaO(X,p) such that f(M,,) C N.It follows that

SYN)=U{M,: pe f~1(N)}€DaO(X), by Theorem 3.2 .

(2)—=(1) Let p € X and N €O(Y,f(p)).Then,by (2), f "{(N)€DaO(X,p).

Take M = f~Y(N), then fiM) C N.

Corolary 4.1. A function f-(X,7) — (Y.n) is Da-continuous if and only if f ~*(F)€DaC(X)
for each FeC(Y).
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Remark 4.1. The following implications hold for a function f:(X,7) — (Y,n):

continuity <—  d-comtinuity —  a-continuity

v
4 i Da-continuity

/!

g-continuity ~ —  gd-continuity

Example 4.1. Consider (X,7) as in Example 3.1 and n={X,¢,{p}.{q}.{p.q}.{p.q.7}}-
Define f:(X,0)—(X,n) by fip)=s.f{q)=p.f(r)=q and f(s)=r.Then f is Da-continuous
but neither a-continuous nor gd-continuous since {p,q,r} is open in (X,n),

I '{p.qr}) = {grs}EDaO(X) but {q,1,s}¢aO(X) and {q,rs}¢ gdO(X).

The other Examples are shown in[3,5,21]

Theorem 4.2. The following conditions are equivalent for a function
f(XT) = (¥n):

(1) fis Da-continuous;

(2) For each subset N of Y, Cl,s(Ints(Cl,s(f~Y(N))) C f~Y(CI(N);
(3)For each subset N of Y, f~(Int(N)) C Intys(Cls(Int,s(f~1(N));
(4)For each subset N of Y,CI?(f~Y(N)) C f~Y(CI(N));

(5)For each subset M of X,f(CI?(M)) C CI(fiM));

(6)For each subset N of Y, f~Y(Int(N)) C Int?(f~1(N)).

Proof: (1)—(2) Let N C Y.Then by (1), f "*(CI(N)) € DaC(X) implies
N CUN)SClys(Ints(Clys( f~H(CUN)))D Clys(Ints(Clys( f(N)))
(2)—(3).Replace N by Y\N in (2), we have
Clys(Ints(Clys(f~Y(Y\N)))C f~(CI(Y\N), and therefore

f~Y(Int(N)) C Intg(;(Clg(Intg(;(f*1(N))f0r each subset N of Y.
(3)—(1). Clear

(1)—(4). Let N C Y .Then by (1), f~Y(CI(N))€DaC(X). Thus
CIP(f~Y(N)) C CIP(f~Y(CI(N))=f~Y(CI(N) by Theorem 3.3(4).
(4)—(1). Let N €C(Y).Then by (4),

CIP(f~X(N)) C f~Y(CUN)=f"Y(N) implies CIZ(f~}(N))=f~(N).
Then by Theorem 3.3(4), f~Y(N) € DaC(X).

(4)—(5).Let M C X.Then fiM) C Y.By (4), we have

fUCUfM)) S CIZ(f71(fiM))) D CLD (M),

Therefore, f(CI?(M)) C f( f~Y(CI(fiM))) C CI(fiM).

(5)—(4).Let N C Y and M=f~1(N) C X.Then by (5),

fCI2(f~Y(N))) € Cl(fi f~(N)) C CI(N) implies CI?(f~'(N)) C f~'(CI(N)).
(4)—(6).Replace N by Y \N in (4), we get

CIP(f~Y(Y\N)) C f~Y(CUY\N)) implies CIP(X\[~\(N)) C f~(Y\Ini(N))
Therefore, f ~(int(N)) C Int?( f=*(N)) for each subset N of Y.
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(6)—(1).Let GCY be open.Then f~Y(G)=f~Y(Int(G)) C Int?(f~1(G) implies
Int?(f=1(G)=f~4(G).So by Theorem 3.4(4), f ~1(G)eDaO(X).

Definition 4.2. Two non-empty subsets A and B of a topological space (X,T)
are said to be Da-separated if there exist two Da-open sets G and H,such that
ACG,BCH, ANH=¢ and BNG=¢.

Definition 4.3. Two non-empty subsets A and B of a topological space (X,7) are
said to be strongly Da-separated if there exist two Da-open sets U and V,such that
ACU,BCV and UNV=¢.

Definition 4.4. A topological space (X,7) is said to be
(1) Da-T, if any two distinct points are strongly Da-separated in (X, 7)
(2) Da-T if every pair of distinct points is Da-separated in (X,T).

Remark 4.2. The following implications are hold for a topological space (X, T)
a-Ty —Da-To+— Ty

\ 3 \

a-T; —Da-T+— T,

Theorem 4.3. If an injective function f:(X,7) — (Y,n) is Da-continuous and (Y,n)
is Ty, then (X,7) is Da-T}.

Proof: Let (Y,0) be Ty and p,qeX with p#q. Then there exist open subsets G, H
in Y such that f(p) € G, flq) ¢ G, fip) ¢ H and flq) € H. Since f is Da-continuous,
f~YG)and f~Y(H) € DaO(X) such thatp € f~Y(G), q & f~(G), p & f~'(H) and
q € f~Y(H). Hence,(X,0) is Da-T, .

Theorem 4.4. If an injective function f: (X,7) — (Y,n) is Da-continuous and (Y,n)
is Ty, then (X,7) is Da-Ts.
Proof: Similar to the proof of Theorem 4.3

Recall that for a function f:(X,7) — (Y,n), the subset
G={(x,f(x)):x €X} C XxY is said to be graph of f.

Definition 4.5. A graph G of a function f:(X,7) — (Y,n) is said to be Da-closed
if for each (p,q) ¢ Gy, there exist UeDaO(X,p) and VeO(Y,q) such that (Ux V)N
G = 0.

As a consequence of Definition 4.5 and the fact that for any subsets C C X and
D C Y, (CxD)N Gy=¢ if and only if f(C)ND = ¢,we have the following result.

Lemma4.1. For a graph G¢ of a function f:(X,7) — (Y,n), the following properties
are equivalent:

(1)Gy is Da-closed in XxY;

(2)For each (p,q) ¢Gy, there exist UcDaO(X,p) and VeO(Y,q) such that filU)NV
= ¢.
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Theorem 4.5. If f:(X,7) — (Y,n) is Da-continuous and (Y,n) is To , then Gy is
Da-closed in XxY.

Proof: Let (p,q) ¢Gy, fip)#q. Since Y is Ty, there exist VW €O(Y) such that
fip)e V. geW and V\W=¢. Since f is Da-continuous, f~*(V)€DaC(X,p).Set U
=f~Y(V), we have fiU)C V. Therefore, f{U)NW=¢ and Gy is Da-closed in XxXY

Theorem 4.6. Let f:(X,7) — (Y1) have a Da-closed graph Gy. If f is injective,
then (X,7) is Da-Tj.

Proof:Let x1,x0€X with x1#xo.Then f(x1)#f(x2) as f is injective So that (x1,f(x2))
¢G.Thus there exist UeDaO(X,x1) and VeO(Y f(x2)) such that fflU)NV = ¢.Then
fixo)Ef(U) implies xo¢ U and it follows that X is Da-T;.

Theorem 4.7. Let f:(X,7) — (Y,n) have a Da-closed graph Gy. If f is surjective,

then (Y,n) is Ty.

Proof:Let y,,yo€Y with y,#y..Since f is surjective,f(x)=ys for some x€X and
(x,y2)¢G ;.By Lemma 4.1, there exist Ue DaO(X,x) and VEO(Y,y, ) such that flU)NV
= ¢.It follows that yo¢V.Hence Y is T;.

Theorem 4.8. Let f:(X,7) — (Y,n) have a Da-closed graph Gy. If fis surjective,
then (Y,n) is Da-T;.
Proof:Similar to the proof of Theorem 4.7

Corolary 4.2. Let f:(X,7) — (Y,n) have a Da-closed graph Gy. If f is bijective,
then both (X,7) and (Y,n) are Da-T,
Proof:Follows from Theorems 4.6 and 4.8

Definition 4.6. A graph Gy of a function f:(X,7) — (Y,n) is said to be (D,a)-
closed if for each (p,q) ¢ Gy, there exist UeDaO(X,p) and VeaO(Y,q) such that
(UxaCl(V))N Gy = ¢.

Lemma 4.2. For a graph G of a function f:(X,7) — (Y,n), the following proper-

ties are equivalent:

(1)Gy is Da-closed in XxY;

(2)For each (p,q) ¢ Gy, there exist UcDaO(X,p) and VeaO(Y,q) such that ffU)NaCl(V))
= ¢.

Theorem 4.9. Let M C X.Then x€ a-CI(M) if and only if G N M # ®, for every
a-open set G containing x.

Proof:Similar to the proof of Theorem 3.3(7)

Theorem 4.10. Let f:(X,7) — (Y,n) have a (D,a)-closed graph Gy . If f is surjec-
tive, then (Y,n) is a-Ty(resp,a-T1 ).

Proof:Let y,,y, €Y with y, #y,.Since f surjective, f(x1)=y1 x1€X and hence (x1,y2)¢Gj.
By Lemma 4.2,there exist EEDaO(X,x1) and FeaO(Y,y,) such that f{E) aCl(F)

= ¢. Now, x1EE implies f(x1)=y1Ef(E) so that y,¢aCl(F).By Theorem 4.9,there
exists DeaO(Y,y,) such that DN\F=¢.Hence Y is a-T.
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Theorem 4.11. Let f:(X,7) — (Y,n) have a (D,a)-closed graph G¢ . If fis surjec-
tive, then (Y,n) is Da-Ts(resp,Da-Th ).
Proof:Similar to the proof of Theorem 4.10

Theorem 4.12. Let f:(X,7) — (Y,n) have a (D,a)-closed graph G¢ . If fis injective,
then (X,7) is Da-T).
Proof:Similar to the proof of Theorem 4.6

Corolary 4.3. Let f:(X,7) — (Y,n) have a (D,a)-closed graph Gy. If f is bijective,
then both (X,7) and (Y,n) are Da-T,
Proof:Follows from Theorems 4.11 and 4.12

5 Almost Da-Continuous functions.

Definition 5.1. A function f:(X,7) — (Y,n) is said to be almost Da-continuous if

for each point p € X and each open subset V of Y containing f(p), there exists U €
DaO(X,p) such that f{U) C int(Cl(V)).

Theorem 5.1. If f:(X,7) — (Y,n) is Da-continuous function , then f is an almost
Da-continuous,but not conversely.
Proof:Obvious

Example 5.1. Consider (X,7) and (X,n) as in 4.1. Define f:(X,7) — (X,n) by
f(r)=p.flq)=s.f(r)=q and f(s)=r Then f is almost Da-continuous but not Da-continuous
since {p,q,r} is open in (X,n), f~'({p,q.r})={p.5s}¢DaO(X,7)

Definition 5.2. [Noiri and Popa, 1998] A space X is said to be semi-regular if for
any open set U of X and each point x € U there exists a regular open set V of X
such thatx € V. C U.

Theorem 5.2. If f:(X,7) — (Y,n) is an almost Da-continuous function and Y is
semi-regular, then fis Da-continuous.

Proof: Let p € X and let V € O(Y,f(p)). By the semi-regularity of Y, there exists
GeRO(Yf(p)) such that G C V. Since fis almost Da-continuous, there exists U €
DaO(X, x) such that flU) C Int(Cl(G)) = G C V and hence f is Da-continuous.

Lemma 5.1. Let (X,7) be a space and let A be a subset of X. The following state-
ments are true:

(1) A € PO(X) if and only if sCl(A) = Int(CI(A)) [Jankovié, 1985].

(2) A € BO(X) if and only if CI(A) is regular closed [Abd EI-Monsef, 1983].
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Theorem 5.3. Let f:(X,7) — (Y,n) be a function. Then the following conditions
are equivalent:

(1) f is almost Da-continuous;

(2) For every NERO(Y), f~Y(N)EDaO(X);

(3) For every MERC(Y), f~Y(M)eDaC(X);

(4) For each subset C of X, fiCI?(C)) C Cls(f(C));

(5)For each subset D of Y, CI?(f~Y(D)) C f~Y(Cls(D));

(6)For every GESC(Y), {1 G)eEDaC(X);

(7)For every HESO(Y), f~Y(H)EDaO(X);

(8) For every NeO(Y), f~Y(Int(CI(N)eDaO(X);

(9) For every McC(Y), f~Y(Cl(Int{M)EDaC(X);

(10) For every NeSO(Y), CI?(f~Y(N)) C f~Y(CI(N));

(11) For every MEBC(Y), f~Y(Int(M)) C Int2(f~1(M));

(12) For every MESC(Y), f~Y(Int(M)) C Int?(f~Y(M));

(13) For every NeSO(Y), CIP(f~Y(N)) C f~Y(CI(N));

(14) For every MEPO(Y), f~Y(M) C Int?( f~Y(Int(CI(M));

(15) For each pe X and each NeO(Y,f(p)), there exists M € DaO(X,p) such that
fiM) C sCI(N);

(16) For each pe X and each NERO(Y,f(p)), there exists M € DaO(X,p) such that
fiM) CN;

(17) For each pe X and each Ne6O(Y,f(p)), there exists M € DaO(X,p) such that
fiM) C N.

Proof: (1)—(2) Similar to the proof of (1)—(2) of Theorem 4.1.

(2)—>(3) It follows from the fact that f~(Y\F) = X \ f~(F).

(3)—>(4) Suppose that D€ 6C(Y) such that f{C)C D. Observe that D = Cls(D)
=({F:DCF and FERC(Y)} and so f~Y(D) = ({f~(F):DCF and FERC(Y)}.
By (3) and Corollary 3.1,we have f~1(D)eDaC(X) and CC f~(D). Hence CI2(C)
Cf~ND), and it follows that f(CI®(C) ) C D. Since this is true for any J-closed
set D containing f(C), we havef(le(C))C Cls(f(C)).

(4)—(5) Let D C Y, then f~Y(D) C X. By (4),

fCI2(f~1(D)))C Cls(fi f~1(D)))CCls(D). So that

CI2(f~(D)) C f~(Cls(D)).

(5)—(6) Let GESC(Y) Then by (5), CIP(f~1(G)) C f~YCls(G))=f"YG). In
consequence, CI?(f~Y(G))=fY(G) and hence by Theorem 3.3(4), f~1(G)eDaC(X).
(6)—(7):Clear.

(7)—=(1): Let p€ X and let O€O(Yf(p)). Set D = Int(Cl(0)) and C =f~Y(D).
Since D€ §O(Y), then by (7), C = f~Y(D) € DaO(X). Now, fip) € O= Int(O)C
Int(Cl(0)) = D it follows that pc f ~Y(D)=C and f{C)=f(f~(D)CD=Int(CI(O).
(2)—(8): Let N €O(Y). Since Int(CI(N))ERO(Y),by (2), f~*(Int(Cl(N))EDaO(X).
The converse is similar.

(3)<—(9)It is similar to (8)<+—>(2).
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(3)—> (10): Let NeSO(Y).Then by Lemma 5.1(2),CI(N) € RC(Y).So by(3), f ~}(CI(N))
€DaC(X).Since f1(N) C f~*(CI(N)) and by Theorem 3.3(4),CI2(f~1(N))C f~1(CI(N)).
(10)— (11): and (12)— (13):Follows from Lemma 3.3

(11)— (12):1t follows from the fact that SC(Y)CSC(Y)

(13)— (3):1t follows from the fact that RC(Y)CSO(Y).

(2)<— (14): Let N €PO(Y). Since Int(CI(N)) € RO(Y),then by (2),
f~Y(Int(CI(N))) € DaO(X) and hence

f~YN) C f~Y(int(CI(N))) = Int?(f~Y(int(CI(N)))). Conversely,let NERO(Y).
Since N € PO(Y), f~Y(N) C Int?(f~(int(CI(N)))) =Int?( f ~1(N)). In consequence,
Int?(f~Y(N))=f~Y(N) and by Theorem 3.4, f"(N) € DaO(X).

(1)—> (15): Let peX and NeO(Y,f(p)). By (1), there exists Me DaO(X,p) such
that fiM) C Int(CI(N)).Since NEPO(Y),by Lemma 5.1, fiM) C sCI(N).

(15)— (16): Let pc X and NERO(Yf(p)). Since NeO(Y,f(p)) and by (15), there
exists MeDaO(X,p) such that f{M)C sCI(N). Since N €PO(Y), then by Lemma 5.1,
fiM) CInt(CI(N)) = N.

(16)— (17):Let pe X and VESO(Yf(p)). Then, there exists GEO(Y.f(p))such
that G C Int(Cl(G)) C N. Since Int(Cl(G))€RO(Yf(p)), by (16), there exists M
DaO(X,p) such that fiM) C Int(Cl(G))C N.

(17)—(1). Let pe X and NeO(Y,f(p)). Then Int(CI(N))e 6O(Y,f(p)). By (17),
there exists Me DaO(X,p) such that fiM) C Int(CI(N)). Therefore,f is almost con-
tinuous

Theorem 5.4. If f:(X,7) — (Y,n) is an almost Da-continuous injective function
and (Y,n) is r-Ty , then (X,0) is Da-T; .
Proof: It is similar to the proof of Theorem 4.3

Theorem S5.5. If f:(X,7) — (Y,0) is an almost Da-continuous injective function
and (Y,0) is r-To , then (X,7) is Da-T, .
Proof: It is similar to the proof of Theorem 4.4

Lemma 5.2. [Ayhan and Ozkog, 2016] Let (X,7) be a space and let A be a subset
of X. Then:
A €e*O(X) if and only if Cls(A) is regular closed.

Theorem 5.6. For a function f:(X,7) — (Y,n),the following are equivalent:
(a) f is almost Da-continuous;

(b) For every e*-open set N in Y, f ~}(Cls(N)) is Da-closed in X;

(c) For every §-semiopen subset N of Y, f ~Y(Cls(N)) is Da-closed set in X;
(d) For every d-preopen subset N of Y, f ~}(Int(Cl5(N))) is Da-open set in X;
(e) For every open subset N of Y, f ~(Int(Cls(N))) is Da-open set in X;

(f) For every closed subset N of Y, f ~(Cl(Ints(A))) is Da-closed set in X .
Proof: (a)—(b):Let Nece*O(Y) Then by Lemma 5.2,Cls(N)eRC(Y).
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By (a), f'(Cls(N))eDaC(X).

(b)—(c):Obvious since 6SO(Y)C e*O(Y).

(c)—(d):Let N €0PO(Y),then Ints(Y\N)€0-SO(Y).By (c),

7Y Cls(Ints(Y\N))eDaC(X) which implies f~*(Int(Cls(N))€DaO(X).
(d)—(e):Obvious since O(Y)C 6PO(Y).

(e)—(f):Clear

(f)—(a):Let NERO(Y).Then N=Int(Cls(N)) and hence Y\NEC(X). By (f),
F7HY\N)=X\ f~Y(Int(CI5(N)))=f ~*(Cl(Ints(Y\N))€DaC(X).

Thus f~Y(N)EDaO(X).

Lemma 5.3. [Ayhan and Ozkog¢, 2016] Let (X,7) be a space and let A C X. The
following statements are true:

(a) For each Ace*O(X), a-CI(A)=Cls(A)

(b)For each A€6SO(X), 6-pCIl(A)=Cls(A).

(c)For each A€OPO(X),6-sCI(A)=Int(Cls(A)).

As a consequence of Theorem 5.6 and Lemma 5.3, we have the following
result:

Theorem 5.7. The following are equivalent for a function f:(X,7) — (Y,n):
(a) fis almost Da-continuous,

(b) For every e*-open subset G of Y, f "'(a-CI(G)) is Da-closed set in X;

(c) For every d-semiopen subset G of Y, f "1 (5-pCI(G)) is Da-closed set in X;
(d) For every 0-preopen subset G of Y, f ~1(5-sCI(G))) is Da-open set in X;
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