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Abstract  

The 11-year sunspot number cycle has been a fascinating phenomenon 

for many scientists in the last three centuries. Various mathematical 

functions have been used for modelling the 11-year sunspot number 

cycles. In this paper, we present a new model, which is derived from 

the well known Maxwell-Boltzmann probability distribution function. 

A modification has been carried out by introducing a new parameter, 

called area parameter to model sunspot number cycle using Maxwell-

Boltzmann probability distribution function. This parameter removes 

the normality condition possessed by probability density function, and 

fits an arbitrary sunspot cycle of any magnitude. The new model has 

been fitted in the actual monthly averaged sunspot cycles and it is 

found that, the Hathaway, Wilson and Reichmann measure, the 

goodness of fit is high. The estimated parameters of the sunspot number 

cycles 1 to 24 have been presented in this paper. A Monte Carlo based 

simple random search is used for nonlinear parameter estimation. The 

Prediction has been carried out for the next sunspot number cycle 25 

through a model by averaging of recent cycle's model parameters. This 

prediction can be used for simulating a more realistic sunspot cycle 

profile. Through extensive Monte Carlo simulations, a large number of 

sunspot cycle profiles could be generated and these can be used in the 

studies of the orbital dynamics. 
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1 Introduction  

To know in advance the multitude of atmospheric processes that cause 

concern to   mankind, in particular phenomena occurring in the solar plasma 

receive great consideration from the scientific world. Since the 18th century, 

scientists are conducting systematic research on a multitude of processes 

caused by solar activity. Solar Activity forecasting is crucial in scientific and 

technological fields such as spacecraft orbital life time prediction, airline 

communications and geophysical applications, mainly it is the energy source 

behind all phenomena driving space weather. The low Earth orbiting satellites 

are also influenced by solar activity (Seeds,M.A,Backman,D,[2015]; 

Hathaway,D.H., [2010]). However, predicting the solar cycle is challenging on 

the basis of time series of various proposed indicators, due to the high 

frequency contents, noise contamination, high dispersion level and high 

variability both in phase and amplitude.  

The prediction of solar activity is complicated by the lack of a quantitative 

theoretical model of the sun's magnetic cycle. The effect of solar activity is 

greater on space activities especially on the operations of low Earth orbiting 

satellites which provide significant contribution in communication, national 

defence and Earth mapping. Such satellites also handle a large quantity of 

scientific data. During higher solar activity, the maximum ultraviolet rays are 

emitted from the sun that heat up Earth's upper atmosphere, and expands the 

atmosphere. This affects the life time of operational space crafts in the low 

earth orbits (Whitlock,D, [2006]). Therefore better predictions of solar activity 

are essential to help spacecraft mission planning and design. 

 

 

2 Satellite life time estimation and re-entry 

prediction 

In spacecraft mission design, orbital life time estimation is a critical activity 

(Whitlock, D, [2006]). Many uncertain parameters need to be considered while 

doing orbital life time estimation. The upper atmospheric density variation is 

the primary factor which is so difficult to predict. Many studies have been 

taken place to model the atmospheric density accurately. Orbital life time 

estimation community has always been looking up for better models of 

atmospheric density. Atmospheric models generally use parameters such as ap 

or Kp, and F10.7. Solar flux receives a lot of attention because it is an 

important parameter in determining atmospheric density. Most predictions rely 
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on the sunspot activity happening in the sun. This has been monitored since 

the 17th century regularly. An empirical relationship exists between the 

sunspot number, R, averaged over a month, and F10.7 (David A.Vallado et.al 

,[2014]). 

 

F10.7 =  63.7 +  0.728 R +  0.000 89 R2,                                                       (1)  
 

From the above equation, we can see that 10.7 cm radio flux has a base level 

of about 63.7 solar flux units. To understand and estimate the radio emissions 

effectively we can use the following equation (David A.Vallado et.al, [2014]) 

 

F10.7 =  145 +  75 COS (0.001696 t +  0.35 SIN (0.00001695)),        (2) 

 

where t is the number of days from January 1, 1981. 

We can summarise it as, atmospheric density is directly related to the solar 

flux, which in turn can be related to the solar activity. Studies done by 

different scientists and academicians shows that solar activity and solar flux 

have affirmed relation, a monthly estimate of F10.7 and sunspot number has 

been well established. Predicting the solar flux accurately can generate more 

accurate atmospheric density models that will help in fine tuning the fuel 

budget for longer satellite life. 

The discussion went so far reminds that the accurate prediction of the life 

time requires a very good predicted solar flux profile. In turn, it is sufficient to 

have a predicted sunspot number cycle. Since, via equation (1) one can 

transform sunspot numbers into solar flux. In this paper we try to predict 

sunspot number cycle in a simple and powerful technique. Initially, we model 

the sunspot cycle using a skew-symmetric probability distribution. The 

Maxwell-Boltzmann distribution is considered for this purpose. Then a 

preliminary level prediction is proposed as an average (mean) cycle of some 

recent cycles. Then a varying error band is derived from the past cycles. 

Within this error profiles, via Monte Carlo sampling, the predicted averaged 

cycle is transformed into many profiles. Sample profiles are taken and plotted. 

Before venturing into the details, a brief review of sunspot data and review 

some of the recent models are provided. 

 

3 Sunspot number cycles and sunspot number 

data 

In 1848 the Swiss astronomer Johann Rudolph Wolff introduced actual 

measurements of sunspot number. His method uses still today. Total number 
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of spots visible on the face of the sun is 'n' and the number of groups into 

which they cluster is 'g' then the sunspot number Rn is defined as  

 

Rn  =  10 g +  n.                                                          (3) 

 
To compensate the observational limitations like Earth's atmosphere 

variability above the observing site and sun's rotation, each daily sunspot 

number is computed as a weighted average of measurements made from a 

network of observatories. The 11-year cyclic variation in the sunspot numbers 

was first noted by Schwabe, M., [1844]. In 1848 Rudolf Wolf at Swiss Federal 

Observatory in Zurich, Switzerland devised his measure of sunspot numbers 

that continues to this day as the International sunspot number. Wolf recognised 

that it is far easier to identify sunspot groups than to identify each individual 

sunspot. This relative sunspot number,Rz with emphasis on sunspot groups is 

defined as,   

Rz  =  k (10 g +  n),                                                     (4) 

 
Where k the correction factor for the observer, g is the number of identified 

sunspot groups, and n is the number of individual sunspots. These sunspot 

numbers are called the Zurich or International sunspot numbers have been 

obtained daily since 1848.  

Sunspot cycle time series is one of the longest time series which was 

studied by many experts for various reasons. First of all, this time series is 

non-stationary, cyclic and highly nonlinear in the time domain. In the present 

study, the prediction of sunspot cycles is carried out with the monthly 

averaged sunspot number values. The monthly averaged sunspot data were 

available from, http://www.sidc.be/silso/versionarchive at the royal 

observatory, Belgium is being used for the present study. It may be noted that, 

the scientific community recently recalibrated the entire historical sunspot 

number record and that SILSO (Sunspot Index and Long-term Solar 

Observations) maintains this new definitive record as well as the original 

version of sunspot numbers. 

 

 
Figure 1: Sunspot cycle evolution-Monthly averaged sunspot numbers from 

the year 1749 to December 2016. 
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4 Existing models of sunspot number cycles 

Several mathematical functions were introduced to model the shape of the 

sunspot number cycle. Due to the exponential rise and decay, the exponential 

function was used by Nordemann, [1992], Nordemann, et.al.,[1992]. The bell 

shaped nature of the sunspot cycle was explored by Hathaway et.al.,[1994]. 

Few statistical probability distribution functions were also proposed for the 

shape modelling by various authors. De Mayer, F.,[1981], proposed a model 

using periodic functions. In prediction, averaged models are used as an initial 

estimate of the future cycle.  

We have an exhaustive list of details and voluminous data literature 

available at hand pertaining to the attempts to predict the future behaviour of 

solar activity (Hathaway, et.al., [1999]). It can be categorised under five heads, 

based on the nature of the prediction methods. They are: 1) Curve fitting, 2) 

Precursor, 3) Spectral, 4) Neural Networks and 5) Climatology (Sello, 

S.,[2001]).  McNish-Lincoln curve fitting was the first attempt on the 

methodology of curve fitting (de Meyer,[1981], McNish, A.G., Lincoln, 

J.V.,[1949]). Over the years, various techniques and models have been 

proposed by several authors working in the field for the prediction of the 

nonlinear behaviour of sunspot cycles. The first breakthrough in the field of 

modelling the shape of the sunspot cycles by fitting an exponential function 

over the sunspot number cycle time series was due to Nordemann,[1992]. In 

this method, fitting the rise to maximum and the fall to minimum were fitted 

with a function of exponential function demanding six free parameters. Later a 

modified version of F-distribution density function with five parameters was 

proposed by Elling and Schwentek[1992].  Nordemann's[1992] method 

suggests exponential fitting and explain the solar behaviour. Hathaway, 

Wilson, and Reichmann[1994] substantiated the superiority of a new model 

along with a measure for the goodness of fit. Number of free parameters in this 

model is reduced to four. All these models introduce high amount of error in 

the prediction, due to the incompetence to fit the peak locations of the sunspot 

cycle. The continuous nature of the model at the high solar activity period 

contributes a large amount of uncertainty and hence in the applications such as 

the orbital re-entry predictions these models are not suitable. The next 

subsection surveys the literature pertaining to some models, especially on the 

shape of sunspot cycles. 

 

4.1 Stewart and Panofsky model 

Stewart and Panofsky [1938] proposed a function for the shape of the cycle 

with the form 
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R(t) = a(t − t0)be−c(t−t0),                                                     (5) 

 

where a, b, c, and t0 are parameters that vary from cycle to cycle. The 

important thing to be noticed is that, this model gives a power law for the 

rising phase of a cycle and an exponential for the declining phase of a cycle. 

The model parameters for cycle 1to 16 were computed and there by the 

maximum amplitude, the epoch of the peak sunspot number, etc. was 

predicted. 
 

4.2 Nordemann model 

Nordemann used the solution of the differential equation 
dN

dt
= KN, in 

analogy with the nuclear decay process. Thus the declining phase of a sunspot 

cycle is represented by: 

 

N = N0eKt               K < 0                                                                            (6) 

 

and the solution of  
dN

dt
= A + KN, is used to represent the ascent phase of a 

sunspot cycle. Thus the model for the ascent phase is: 

 

N =
A

K
(1 − eKt)               K < 0                                                                 (7 ) 

 

Where N represents sunspot numbers, K decay constant and A a production 

parameter. The estimated values of the parameters N0, K and A for all the 22 

sunspot cycles were given in Nordemann [1992]. 

 

4.3 Elling and Schwentek model 

 Instead of using yearly means, quarterly averages of sunspot numbers were 

utilised by Elling and Schwentek[1992] for optimal fitting of each cycle. They 

used a modified F-distribution density function that required five free 

parameters. This approach is much more worth than the previous models. In 

this model fitting concluded only for modern era of sunspot cycles (10 to 21). 

By considering the maxima and minima of mean sunspot number as a 

function of time, affinity can be observed in each cycles.  While considering 

different sunspot cycles the ascending phase take dwindle time than the 

descending phase, that means Starting from a minimum, time taken for 

reaching the maximum is always shorter as compared to the time from 

maximum down  to minimum  .     
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They explained very effectively, ascending and descending branches of the 

various cycle curves have curvatures which are rather similar to those of the F-

distribution curves. For this reason, each sunspot cycles from cycle 10 to cycle 

21 has been approximated by a modified F-distribution, f(t) which is defined 

by: 

 

f(t) = P4

Γ [
P2 + P3

2 ]

Γ (
P2

2 ) Γ (
P3

2 )
P2

P2
2 P3

P3
2

[P1(t + P5)]
P2
2

−1

[P3 + P2P1(t + P5)]
(P2+P3)

2

,                             (8) 

 

where t is the time and Γ(x) is the gamma function. P1 is the length or duration 

of the sunspot cycle, that is, the time interval from one minimum to the next, 

P2 to the curvature of the ascending branch of f(t), P3 to the curvature of the 

descending branch of f(t), P4 to the amplitude of the maximum of f(t), P5 to 

the time shift of the f(t) curve. Through least square fit all the five parameters 

are estimated. 
 

4.4 Hathaway, Wilson, and Reichmann model 

Hathaway et.al [1994] suggested a model with free parameters fewer than 

the models which we had come across. They utilised a four-parameter quasi-

Planck function to fit the monthly mean sunspot numbers of a solar cycle, 

similar to that of Stewart and Panofsky[1938]. But the only difference we can 

see that a fixed power law for the initial rise of the sunspot cycle and the phase 

starting from maximum down to minimum can be well represented by a 

function that decreases as e−t2
.  By combining these, the model as a function 

of time can be written as: 

 

f(t) =
a(t − t0)3

e
[
(t−t0)2

b2 ]
− c

,                                                         (9) 

 

This model has four parameters. a represents the amplitude and is directly 

related to the rate of rise from minimum; b is related to the time in months 

from minimum to maximum; c gives the asymmetry of the cycle; and a 

starting time t0 . Along with the early detection of parameters to predict the 

solar activity they examine the relationship between the parameters. It is 

similar to the Plank function but contains four free parameters and has a more 

rapid decrease after maximum, but causes lack of accuracy. The estimation of 

these parameters was obtained through Levenberg-Marquardt methods (Press, 

W, H., [1992]). 
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4.5 Volobuev’s one-parameter fit 

In 2009, Volobuev introduced a function of two-parameters and he refers to 

this as a one parameter fit. We can see that the parameters are correlated (r = 

0.88) for all the 23 solar cycles. The correlation between the parameters 

provides the possibility of a one-parameter fit by neglecting the need to 

determine the best starting time. He showed that a one-parameter fit can also 

be derived from truncated dynamo models.  Due to the unavoidable 

uncertainty of starting time goodness of fit value is not better as compared to 

the empirical fit. 

We can see that this model is also similar to that of Stewart and Panofsky 

[1938] proposed Pearson's type III curves by putting b =2 and modifying the 

growth multiplier and decay multiplier properly by introducing the new 

parameters Ts and Td.  

The empirical model used is written as: 
 

R = (
t − t0

Ts
)

2

e
−(

t−t0
Td

)
2

,                                                     (10) 

 

4.6 Sabarinath and Anilkumar model 

 Sabarinath and Anilkumar[2008] proposed a model consist of a mixture of 

Laplace distribution with six parameters (later reduced to two). This model fits 

the multiple sharp peaks in a solar cycle. The model for a generic cycle is: 

                                    

F =  
A1

33.2
 exp (

−|t − 41.7|

16.6
)  +  

A2

46
 exp (

−|t − 67.3|

23
),                     (11) 

 

where t is the time.  
 

5 Skew symmetrical distributions 

Sunspot cycles are asymmetric with respect to their maxima (Hathaway, 

D.H., [2010]). Starting from minimum the time taken to reach maximum is 48 

months and 84 months to fall back to minimum again. An average cycle can be 

constructed by stretching and contracting each cycle to the average length and 

normalising each to the average amplitude.   

In general, if we survey any model of the shape of the sunspot cycle, it is 

evident that, all functions are a product of a polynomial and a negative 

exponential function. Then the goodness of fit solely depends on how the 

model parameters are chosen in the model. In this context, we propose a skew 
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symmetrical function from the class of skew symmetrical probability 

functions. 

 

 

6 Maxwell-Boltzmann probability distribution 

function 

In statistical physics, Maxwell-Boltzmann distribution is a probability 

distribution named after the famous Scottish physicist James Clerk Maxwell 

and Ludwig Boltzmann. It is used in atomic physics for describing particle 

speeds in idealised gas. The Maxwell-Boltzmann distribution function is given 

as (Balakrishnan, N., Nevzorov, V.B., [2003])  

 

f(v) = √(
m

2πkT
)

3

4πv2e−
mv2

2kT  ,                                              (12) 

 

where m the particle mass and kT is the product of Boltzmann's constant and 

thermodynamic temperature.  From Equation (12), if we put α = √
kT

m
, then the 

Maxwell-Boltzmann probability distribution function can be simplified as  

f(x; α) =
1

α3
√

2

π
  x2e

−
x2

2α2 ,                                                   (13) 

where the variable  v  is replaced with a generic random variable x with x ≥  0 

and it can be noted that the parameter  α ≥ 0 is a real quantity.   

 

Typical shape of Maxwell-Boltzmann distribution is given in Figure-2, for 

a value of =30. One can clearly see from Figure-2 that the ascend phase is of 

47 units and the descent phase is 85 units. There by, a skew symmetrical 

process or phenomenal could be modelled by the Maxwell-Boltzmann 

distribution. Our interest is in modelling the sunspot cycle. By observing all 

the cycles individually one can easily see that the rise time (starting minimum 

to maximum sunspot number) and fall time (maximum sunspot number to 

cycle end) are not equal or not symmetrical about the peak sunspot number 

occurring epoch during the 11 year sunspot cycle period.    
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Figure-2. Maxwell-Boltzmann distribution for a value of =30.0 

 

 

7 Modified Maxwell-Boltzman probability 

distribution function (MMPDF) 

Since equation (13) being a probability density function, we know that, 

mathematically the area under the probability density function is 1, that is, 

∫ f(x)dx = 1,                                                           (14)
∞

−∞

 

So, if we want to fit this equation (13) into an arbitrary set S of N data points, 

S = {(xi, yi);  xi ∈ R, yi ∈ R,   i = 1,2, … , N}, where R is the set of real 

numbers, we need to de-normalise the property of f(x) given by equation (14). 

This is because; the area under the curve determined by the set of points in S 

need not be equal to one. That is, 

∑ [(xi − xi−1)
(yi + yi−1)

2
]

N

i=2

= A,                                      (15) 

where A need not be equal to 1. In this case we can modify equation (13) 

to fit into any arbitrary set as equation (16) by introducing a new parameter 

called area parameter A. 

f(x; α; A) =
A

α3
√

2

π
  x2e

−
x2

2α2 ,                                          (16) 
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Now, it may be noted that, 

 

∫ f(x)dx = A,                                                        (17)
∞

−∞
  

 

Modified model for the sunspot cycles is 

 

f(x; α; A) =
A

α3
√

2

π
  x2e

−
x2

2α2 ,                                            (18)          

                                         

where A is the area parameter. 

 

Modified Maxwell-Boltzmann distribution with a value of =30 and A=6000 

is given in Figure-3. 

 
Figure-3. Modified Maxwell-Boltzmann distribution for a value of =30 and 

A=6000. 
 

8 Estimation of model parameters 
The function in which parameters to be estimated is, 

f(x; α; A) =
A

α3
√

2

π
  x2e

−
x2

2α2 .                                                (19) 

The maximum likelihood estimate of the parameters α and A are considered to 

be the best unbiased, consistent and sufficient estimate of the parameters 
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(Sorenson, H.W., [1980]). Practically, the least square estimate is considered 

to be the maximum likelihood estimate. The simple mathematical procedure to 

estimate the parameters is to minimise the sum of squared error function J, 

J = ∑ er
2

r

 ,                                                                 (20) 

Where er is the error. 

The minimum of J can be found by differentiating J with respect to the 

parameters α and A.  

In the present study, if we consider without loss of generality, a sunspot 

cycle having a length of 132 months( 11 year), and if we assume {sn: n =
1,2, … ,132} as the realised sunspot number values, then the J function can be 

written as, 

J = ∑[sn − f(xn, α, A)]2

132

n=1

,                                               (21) 

where, xn = 1,2, … ,132, represents the months for each n = 1,2, … . ,132. 
Then our objective is to compute and solve α and A from  

∂J

∂α
= 0,                                                                 (22) 

∂J

∂A
= 0,                                                                 (23) 

 

Analytically solving the equations (22) and (23) for α and A is not possible 

due to the nonlinear terms involved in the equations. Hence we go with 

numerical procedures for estimating the parameters. Monte Carlo based simple 

random search based procedure is considered here to estimate the parameters. 

This procedure is described below as an algorithm. 

Step-1. Start with a search region α and A. Let Sα and SA are the bounded 

search regions of α and A. Our objective is to find an α0 ∈ Sα and A0 ∈ SA, 

such that, 

Jα0,A0
= ∑[sn − f(xn, α0, A0)]2

132

n=1

,                                     (24) 

is minimum or 

Jα0,A0
≤ Jα,A                                                            (25) 

for any α ∈ Sα and A ∈ SA. 

Step-2. Start with a random initial value of α in Sα and A in SA. Compute J and 

in each iteration keep the minimum value of J, α and A. After a very large 

number of iterations take the value of, α and A corresponds to the global 

minimum value of J. 
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9 Fitting of MMPDF on sunspot cycles 

Using the method described in section 8, the model parameters are 

estimated for all the past 24 cycles. It is noticed that the fit is very much close 

to the actual sunspot numbers. This is evident in the goodness of fit computed 

for each of the 24 cycles, which is discussed in the next section in detail. 

Figure 4 and 5 shows the model and actual data of sunspot cycles 20 and 22.  

 

 
Figure-4. Fitting of sunspot cycle 20 by the model 
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Figure-5. Fitting of sunspot cycle 22 by the model 

 
Figure-6. The parameters α and A for all the 24 cycles. 
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10 Models of sunspot cycles 1 to 24 

The estimated model for all the past 24 cycles is given in Table-1. In 

Figure-6, the variation trends of the parameters α and A for all the 24 cycles 

are plotted. It may be noted that, the average of the parameters are 36.25 units 

of α  and 7095.76 of A. 

 

Table-1. Estimated parameters of cycles 1 to 24 

Cycle No α A 

1 48.76 5883.33 

2 33.40 6251.65 

3 30.56 7309.46 

4 35.80 8619.41 

5 43.79 3525.58 

6 48.75 3067.09 

7 48.16 5322.72 

8 32.65 7552.73 

9 44.70 8234.25 

10 40.63 6410.82 

11 33.80 7381.50 

12 37.13 4433.49 

13 32.55 4933.80 

14 38.57 4356.00 

15 36.00 5390.27 

16 35.73 4882.42 

17 38.95 7341.83 

18 36.35 9228.41 

19 33.79 11420.62 

20 40.02 7959.33 

21 35.49 9907.72 

22 31.48 9075.22 

23 38.99 8006.39 

24 38.65 5023.60 

Mean 1 to 24 38.11 6729.90 

Mean 11 to 24 36.25 7095.76 

 

It may be noted that variation in α is less and variation in A is more. So A is a 

more sensitive parameter than α. Variation in A is not much significant as its 

sensitivity is less. 
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10.1 Goodness of fit 

Goodness of fit by Hathaway, Wilson, and Reichmann [1994] is measured by 

the following function 

χ =
√

(
∑ (Ri − fi)2N

i=1

si
2⁄ )

N
 ,                                                    (26) 

where, Ri and  si is the monthly averaged sunspot number and its standard 

deviation respectively , fi gives the functional fit value,  N is the number of 

months in the cycle. Using this equation, computed χ value for all the 23 

cycles. For Checking the Goodness of fit of the proposed model we have to 

consider other popular methods available in the literature.  The second column 

of Table 2 gives the goodness of fit of the proposed Modified Maxwell-

Boltzmann distribution function; the third and the fourth column gives the 

goodness of fit by three and two parameter fit of Hathaway, Wilson, and 

Reichmann [1994], respectively; the fifth column gives the goodness of fit by 

the five parameter function of Elling and Schwentek[1992] who considered 

cycles 10 to 21 for their study. Figure-7, shows the goodness of fit of 3 

different models along with the Modified Maxwell-Boltzmann distribution 

function model. 

It may be observed from the goodness of fit value, that the present model 

proposed in this study has a very good fitness compared with other models. 

Especially the modern cycles (cycles 11 to 24) shows very good fitness for the 

Modified Maxwell-Boltzmann distribution function model.  

 
Figure-7. The goodness of fit of 3 different models and MMPDF model 
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Table 2: Hathaway, Wilson and Reichmann χ -measure of the goodness of fit 

value computed for all the 22 sunspot cycles with different models. MMPDF 

shows good fit compared with other models.  

Cycle 

Number 

MMPDF 

model 

Three-

parameter fit 

by Hathaway 

et.al. 

Two-

parameter fit 

by Hathaway 

et.al. 

Elling-

Schwentek  

F-distribution 

fit 

1 0.69 0.71 0.75  

2 1.38 1.42 1.50  

3 1.64 1.70 1.56  

4 0.93 0.89 0.95  

5 2.87 2.34 2.50  

6 1.72 1.90 2.14  

7 1.80 0.94 1.01  

8 1.16 0.96 0.99  

9 0.86 0.99 0.97  

10 0.72 0.74 0.76 0.70 

11 0.75 0.88 0.83 1.35 

12 2.06 2.08 2.12 2.17 

13 0.70 0.90 0.91 0.90 

14 0.97 1.11 1.09 1.12 

15 0.80 0.88 0.89 1.16 

16 0.76 0.89 0.97 0.89 

17 0.98 0.86 0.87 1.10 

18 1.21 1.05 1.04 1.27 

19 0.90 0.91 0.89 1.61 

20 0.79 0.87 0.95 0.66 

21 0.94 0.89 0.89 1.11 

22 0.82 1.05 1.06  

23 0.79    

 

 

11 Prediction of sunspot cycle 25 

As an attempt to predict the sunspot cycle 25, we consider the average of 

the model parameters by considering cycles-11 to 24. This computed average 

is given in Table-1. Thus, the parameter values of cycle 25 are: α = 36.25, and 

A = 7095.76. Hence the model is,  



Sabarinath.A, Beena.G.P, Anilkumar.A.K 

 

50 

 

f(x; α; A) =
A

α3
√

2

π
  x2e

−
x2

2α2 ,                                                 (27) 

 

where, α = 36.25, and A = 7095.76. That is,  

 

    f(x; 36.74; 6608.04) = 0.119 x2e−0.00038x2
,                                     (28)         

                     

is the model for cycle-25. Figure-8 shows the shape of cycle 25 in an average 

sense. It may be observed that cycle 25 may peak up to 105 units and it is also 

fairly a slow cycle as cycle 24. 

 
Figure-8. Preliminary level prediction of sunspot cycle 25 

 

. 

12 Prediction error and simulated sunspot cycles 

Any prediction or forecast is partial, if it is not supplemented with a 

prediction error. Here, for our study we propose a prediction error band based 

on the statistical variation of all the cycles. For this, consider all the monthly 

averaged cycles. We propose the error band each month data as ±s, where s is 

the standard deviation of the sunspot numbers for that month.  Figure-9 shows 

the mean along with the mean+s, the upper bound, and mean-s, the lower 

bound profile.  
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Figure-9. Mean cycle from the actual monthly sunspot cycle along with the 

mean+s, the upper bound and mean-s, the lower bound profile 

 

Once we are having a prediction error and a prediction model, we can generate 

any number of forecast profile based on simple Monte Carlo method. Here we 

consider the envelop derived above as the envelope with 99.7% confidence or 

3sigma confidence level, since all the realised cycles falls inside the proposed 

confidence interval band. Hence in the Monte Carlo simulation a typical 

profile will be generated using equation (29). 

 

sn
′ (i) = mn(i) + rand(i) × (

env(i)

3
),                                          (29) 

 

where sn
′ (i) , is the simulated n-th sunspot cycle, i =  1,2, … , Cycle length, 

mn(i) is the model value, rand(i) is the random number and env(i) is the 

envelop value given in Figure-10. 
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Figure-10. Simulated sunspot cycle 20 by the model 

 

The same methodology proposed in the study can be implemented to the 

F10.7 cm solar flux value and one can easiliy forecast an entire cycle and 

subsequently it can be applied in the life time computation of satellites. 
 

13 Conclusions 

The 11-year sunspot number cycles have been a fascinating phenomenon 

for many in the last three centuries. Different mathematical models have been 

derived for modelling the shape of the 11-year sunspot number cycles. In the 

present study, we introduced a new model which is derived from the well 

known Maxwell-Boltzmann probability distribution function. The 

modification has been carried out by introducing a new parameter, called area 

parameter. The new model has been fitted in the original monthly averaged 

sunspot cycles data and it is found that a very high goodness of fit through the 

Hathaway, Wilson and Reichmann measure. The models estimated for all the 

sunspot cycles from 1 to 24 have been presented. Detailed discussion on the 

nonlinear parameter estimation carried out for fitting the function in the 

original data is also summarised. An attempt has been carried out for 

predicting the next sunspot cycles 25. The sunspot cycle 25 may peak up to 

105 units and it is also fairly a slow cycle as the previous cycle 24.  



Modelling the shape of sunspot cycle using a modified Maxwell-

Boltzmann probability distribution function 

53 

 

 

References  
 

[1].Balakrishnan, N., Nevzorov, V.B., A primer on statistical distributions, 

John Wiley & Sons, Inc., Hoboken, New Jersey. 2003. 

[2].De Mayer, F., Mathematical Modelling of the sunspot cycle, Solar Phys., 

Vol. 70, 259-272,1981. 

[3].David, A. Vallado, David Finkleman, A Critical Assessment of Satellite 

Drag and Atmospheric Density Modeling. 2014. 

[4].Elling, W., Schwentek, H., Fitting the sunspot cycles 10-21 by a modified 

F-distribution density function, Solar Phys., Vol. 137, 155-165, 1992. 

[5].Hathaway, D.H., The solar cycle, Living reviews in Solar Physics, 7, 1. 

2010. 

[6].Hathaway, D.H., Wilson, R.M., Reichmann, E.J., J. Geophys. Res., Vol. 

104,   No. A10, 1999. 

[7].Hathaway,D.H., Wilson, R.M., Reichmann, E.J., The shape of the sunspot 

cycle, Solar Phys., April 1994, Vol. 151, No.1, pp 177-190.1994. 

[8].McNish, A.G., Lincoln, J.V., Prediction of sunspot numbers, Eos Trans. 

AGU, 30, 673–685.1949. 

[9].Nordemann, D.J.R., Sunspot number time series: exponential fitting and 

solar behavior, Solar Phys., Vol.141, 199-202.1992. 

[10].Nordemann, D.J.R., Trivedi, N.B., Sunspot number time series: 

exponential fitting and solar behavior, Solar Phys., Vol.142, 411-414.1992. 

[11].Petrovay, K., Solar cycle prediction. Living reviews in solar physics, 

7(1):6.2010. 

[12].Press, W, H., The art of scientific computing. Cambridge university 

press.1992. 

[13].Sabarinath, A., Anilkumar, A.K., Modelling of sunspot numbers by a 

modified binary mixture of Laplace distribution functions, Solar Phys., Vol. 

250, 183-197.2008. 

[14].Seeds, M.A, Backman, D, The solar system. Nelson Education.2015. 

[15].Sello, S., Solar cycle forecasting: a nonlinear dynamics approach. 

Astronomy & Astrophysics, 377(1):312–320. 2001. 

[16].Schwabe, H. von Herrn Hofrath Schwabe, Sonnen -Beobachtungen im 

jahre 1843. in dessau. Astronomische Nachrichten, 21:233. 1844. 



Sabarinath.A, Beena.G.P, Anilkumar.A.K 

 

54 

 

[17].Sorenson, H.W., Parameter Estimation-Principles and Problems, Marcel 

Dekker, New York.1980. 

[18].Stewart, J.Q., Panofsky, H.A.A., The Mathematical Characteristics of 

Sunspot Variations, Astrophys. J., Vol. 88, 385–407. 1938. 

[19].Volobuev, D.M., The shape of the sunspot cycle: A one parameter fit, 

Solar Phys., Vol. 258, 319-330.2009. 

[20].Whitlock, D, Modeling the effect of high solar activity on the orbital 

debris environment, Orbital Debris Quarterly News, 10(2):4.2006. 

 

 


