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Abstract 

Various investigators such as Leindler [10], Chandra [1], Mishra et al. [7], 

Khan [11], Kushwaha [6] have determined the degree of approximation of  

2 -periodic functions belonging to classes Lip  , ),( rLip  , )),(( rtLip   of 

functions through trigonometric Fourier approximation using different 

summability means.  Recently Nigam [12] has determined that the Fourier 

series is summable under the summability means (C,2)(E,1) but he did not find 

the degree of approximation of function belonging to various classes.  In  this 

paper a theorem concerning the degree of approximation of function f  

belonging to )),(( rtLip   class by (C,2)(E,1) product summability method of 

Fourier series  has been established which  in turn generalizes the result of  H.  

K. Nigam [12]. 
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1. Introduction 

The study of the theory of trigonometric approximation is of great 

mathematical interest and of great practical importance. Broadly speaking, 

signals are treated as function of single variable and images are represented by 

function of two variables. The study of these concepts is directly related to the 

emerging area of information technology. Studies on trigonometric 

approximation of functions in pL -norm using different linear operators such 

Hölder,Nörlund, Euler, Riesz, Borel etc. were made by several researchers like 

Mohapatra & Chandra [9], Holland, Mohapatra & sahney [8], Chandra [2]. 

The degree o approximation of a function belonging to different class of 

functions by product summability methods were made by Lal & Singh [5], Lal 

& Kushwaha [6]. The aim of this paper is to study Fourier series and conjugate 

series by product operators. The advantage of considering product operators 

over linear operators can be understood with the observation that the infinite 

series, which is neither summable by left linear operators nor by right linear 

operators individually, is summable to some number by the product operators 

obtained from the same linear operators placed in the same sequential order. 

Moreover , in studies of error estimates )( fEn  through Trigonometric Fourier 

Approximation, product operators give better approximation than individual 

linear operators. Generalizing the result of Nigam [12], the degree of 

approximation of function f belonging to )),(( rtLip   class by (C,2)(E,1) 

product summability method of Fourier series  has been established.  

Therefore, in this paper, (C,2)(E,1)  product summability method is 

introduced and a theorem on the approximation of functions belonging to 

( )rtL ),(  class has been established. 

Let 


=0n

nu be given infinite series with ns  for its thn  partial sum. 

Let  1E

nt  denote the sequence of (E,1) mean of the sequence  ns . If the 

(E,1) transform of  ns   is defined 
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The series  
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=0n

nu is said to summable to the number s by the (E,1) method 

(Hardy [14]). 
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Let  2C

nt  denote the sequence of (C, 2) mean of the sequence  ns . If the 

(C, 2) transform of  ns   is defined as 
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the series 


=0n

nu  is said to be summable to the number s by (C, 2) method 

(Cesàro method).  

Thus if  
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Where 12 . EC

nt  denotes the sequence of (C,2)(E,1) product mean of the 

sequence ns . The series 


=0n

nu  is said to summable to the number s by 

(C,2)(E,1) method. We observe that (C,2)(E,1) method is regular. 

Let f  be 2 -periodic and Lebesgue integrable function. The Fourier 

series associated with f  at a point x  is defined by               
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with partial sum );( xfsn . 

Throughout this paper, we use following notations: 
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 2. Main Theorem 

We prove the following theorem 

 Theorem . If RRf →:  is 2 -periodic, Lebesgue integrable on ],[ −  

and   belonging to ( )rtLip ),(  class then the degree of approximation of f  by 

the (C,2)(E,1) product means 
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3. Lemmas  
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4.  Proof of the Theorem  

Following Titchmarsh [13] and using Riemann Lebesgue theorem, 
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Combining (4.1)-(4.3), we get 
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This completes the proof of the theorem. 

 

 

5. Conclusions 

The result of main theorem is
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from which the results of H.K. Nigam [12] can be derived directly. 
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