Prime labeling of H- super subdivision of Y-tree related graphs

S. Meena* G. Gajalakshmi[†]

Abstract

A graph G with p points is called a prime labeling, if it possible to label the points $x \in V$ with distinct labels f(x) from $\{1, 2, ..., p\}$ in such a way that for each line $e = uv \operatorname{gcd} (f(u), f(v)) = 1$. In this paper we prove that some classes of graphs related to H- super subdivision of Y-tree are prime graphs.

Keywords: Prime labeling, Y- tree, H- graph, H-super subdivision graph, prime graph.

2020 AMS subject classifications: 05C78⁻¹

^{*}Department of Mathematics, Govt, Arts & Science College, Chidambaram 608 102, India; meenasaravanan14@gmail.com.

[†]Department of Mathematics, Govt, Arts & Science College, Chidambaram; gaja61904@gmail.com.

¹Received on September 15, 2022. Accepted on December 15, 2022.Published on March 20, 2023. DOI: 10.23755/rm.v46i0.1057. ISSN: 1592-7415. eISSN: 2282-8214. ©S. Meena et al. This paper is published under the CC-BY licence agreement.

S. Meena and G. Gajalakshmi

1 Introduction

In this paper, we consider finite, simple, undirected, nontrivial and connected graphs $G = \langle V(G), E(G) \rangle$ where V, E is point set are line set. We refer Bondy and Murthy Bondy and Murthy [1976].

A graph labeling is an assignment the number to the points are lines or both subject to some constraints. For entire survey of graph labeling we refer Esakkiammal et al. [2016]. The idea of prime labeling was introduced by Roger Etringer and studied by many authors Deretsky et al. [1991], Tout et al. [1982].

The super subdivision of graph was defined by Sethuraman and Selvaraju in G.Sethuraman and P.Selvaraju [2001] and further studied by Esakkiammal et.al.Esakkiammal et al. [2016]. S.Meena et.al.Meena and J.Naveen [2016].Prime labeling of \mathcal{HSS} of \mathcal{Y} -tree related graphs.

Definition 1.1. Let $\mathcal{G} = \langle V(\mathcal{G}), E(\mathcal{G}) \rangle$ be a graph with p points. A mapping $\mathcal{G} : V(\mathcal{G}) \rightarrow \{1, 2, ..., p\}$ is known as prime labeling if for every line $e = uv \in E$, greatest common divisor $\langle f(u) \text{ and } f(v) \rangle$ is 1.

Definition 1.2. The tree on 6 points having two points of degree 3 is called a \mathcal{H} -graph. We consider a \mathcal{H} -graph got by adding a line between even degree points of two paths P_2 and P'_2 each of length two.

Definition 1.3. The graph \mathcal{H} -super sub-division of the graph is denote $\mathcal{HSS}(\mathcal{G})$ is the graph got from \mathcal{G} by changing each line \mathcal{H} -graph so that end point of e_i are replaced by end point in P_2 and end point P'_2 .

Definition 1.4. A \mathcal{Y} - tree \mathcal{Y}_{m+1} $(n \ge 2)$ is a graph got from the path \mathcal{Q}_n by appending an line to a point of path \mathcal{Q}_n adjacent to an end point.

Definition 1.5. Let Y_{m+1} be a Y-tree $(m \ge 2)$ with m+2 points and m+1 lines. Let the points of \mathcal{Y}_{m+1} be $v_1, v_2, v_3, \dots, v_m$. The \mathcal{H} - super subdivision of \mathcal{Y} -tree $\mathcal{HSS}(\mathcal{Y}_{m+1})$ is constructed from \mathcal{Y}_{m+1} by replacing each line by the \mathcal{H} - graph. Prime labeling of H- super subdivision of Y-tree related graphs

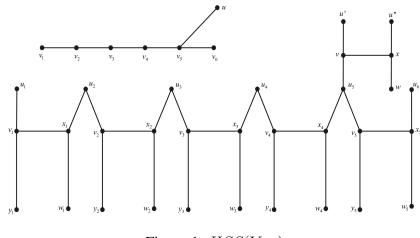


Figure 1: $HSS(Y_{5+i})$

2 Main results

Theorem 2.1. The graph $\mathcal{HSS}(Y_{m+1})$ is a prime graph.

Proof:

Let $\mathcal{G} = \mathcal{HSS}(Y_{m+1})$ be the graph with point set $V(\mathcal{G}) = \{u_l, v_l, x_l, y_l, w_l/1 \le l \le m\} \cup \{u', u'', v, x, w, u_{m+1}\}$ $E(\mathcal{G}) = \{(u_l v_l, v_l x_l, v_l y_l, w_l x_l, x_l u_{l+1}/1 \le l \le m\} \cup \{(vx, vu', u''x, xw)\}$ Define a mapping $\mathcal{G}: V(HSS(\mathcal{Y}_{m+1}) \rightarrow \{1, 2, \dots, 5m+6\})$ for $1 \le l \le m+1$ $f(u_l) = 51-4$ for $1 \le l \le m$ $l \ne 0 \pmod{3}$ $f(v_l) = 51-3$ for $1 \le l \le m$ $l \equiv 0 \pmod{3}$ $f(v_l) = 51-2$ $f(x_l) = 51$ for $1 \leq l \leq m$ $f(y_l) = 51-2$ for $1 \le l \le m$ $l \ne 0 \pmod{3}$ $f(y_l) = 51-3$ for $1 \le l \le m$ $l \equiv 0 \pmod{3}$ for $1 \leq l \leq m$ $f(w_l) = 51-1$ f(v) = 5(m+1)f(x) = 5(m+1)-2f(u') = 5(m+1)+1f(u'') = 5(m+1)-1f(w) = 5(m+1)-3Clearly the point labels are different with this labeling for each $e \in E$. greatest common divisor (f(u) and f(v)) = 1.

Thus \mathcal{G} is a prime labeling. Hence $\mathcal{HSS}(Y_{m+1})$ is a prime graph.

S. Meena and G. Gajalakshmi

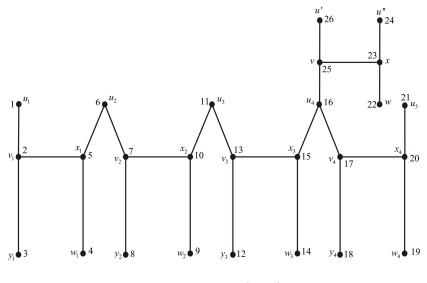


Figure 2: $HSS(Y_{5+i})$

Theorem 2.2. The $\mathcal{HSS}(\mathcal{Y}_{m+1})@K_2$ is a prime graph.

Proof:

Let $G = \mathcal{HSS}(Y_{m+1})@K_2$ be the graph with point set $V(G) = \{u_l, v_l, x_l, y_l, w_l, r_l, p_l, q_l, s_l, t_l/1 \le l \le m\}$ $\cup \{u', u'', r, v, x, y, w, q, t', t''\}$ and the line set $E(G) = \{(u_l v_l, v_l y_l, x_l r_l, v_l x_l, v_l sl, w_l q_l, y_l p_l, x_l w_l/1 \le l \le m\}$ $\cup \{(u'v, u't', vs, vx, xy, u_lt_l, u''x, u''t'', xw, wq, r_nr\}$ Define a mapping $\mathcal{G}: V(\mathcal{HSS}(\mathcal{Y}_{m+1})@K_2 \rightarrow \{1, 2, ..., 10(m+1)+1\})$ $f(u_l) = 101-9$ for $1 \leq l \leq m$ for $1 \le l \le m - 1$ $l \not\equiv 0 \pmod{3}$ $f(v_l) = 101-6$ for 1 < l < m $l \equiv 0 \pmod{3}$ $f(v_l) = 101-7$ for $1 \leq l \leq m$ $f(y_l) = 10l-5$ $f(w_l) = 101-2$ for $1 \leq l \leq m$ $f(t_l) = 101-8$ for $1 \leq l \leq m$ for $1 \le l \le m - 1$ $l \ne 0 \pmod{3}$ $f(s_l) = 101-7$ $l \equiv 0 (mod3)$ $f(s_l) = 101-6$ for $1 \leq l \leq m$ $f(x_l) = 10l-1$ for $1 \leq l \leq m$ for $1 \leq l \leq m$ $f(r_l) = 101$ for $1 \leq l \leq m$ $f(p_l) = 101-4$ $f(q_l) = 10l-3$ for $1 \leq l \leq m$ f(u') = 10m+8f(u'') = 10m+5f(v) = 10m+9

 $\begin{array}{l} f(x) &= 10\text{m}{+}4\\ f(q) &= 10\text{m}{+}2\\ f(s) &= 10(\text{m}{+}1)\\ f(y) &= 10\text{m}{+}7\\ f(t') &= 10(\text{m}{+}1){+}1\\ f(t'') &= 10\text{m}{+}6\\ f(w) &= 10\text{m}{+}3\\ f(r) &= 10\text{m}{+}1 \end{array}$

Clearly the point labels are different with this labeling for each $e \in E$. greatest common divisor (f(u) and f(v)) = 1. Thus \mathcal{G} is a prime labeling.

Hence $\mathcal{HSS}(\mathcal{Y}_{m+1})@K_2$ is a prime graph.

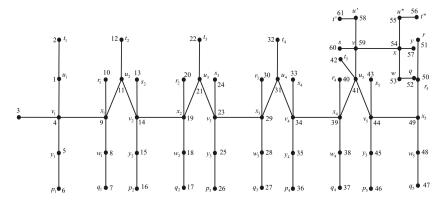


Figure 3: $\mathcal{HSS}(\mathcal{Y}_{m+1})@K_2$

Theorem 2.3. The $\mathcal{HSS}(\mathcal{Y}_{m+1})@2K_2$ is prime graph.

Proof:

Let $\mathcal{G} = \mathcal{HSS}(\mathcal{Y}_{m+1})$ @2 K_2 be the graph with point set $V(\mathcal{G}) = \{u_l, v_l, x_l, y_l, w_l, r_1, r_l, p_l, q_l, s_l, t_l, p'_l, q'_l, s'_l, t'_l/1 \le l \le m\} \cup$ $\{u', u'', r, v, x, y, w, r_{11}, r_{12}, q_{11}, q_{12}, t'_{11}, t'_{12}, t_{11}, t_{12}, s_{11}, s_{12}, u_{n+1}, t_{n+1}t'_{m+1}\}$ and line set. $E(\mathcal{G}) = \{(u_lv_l, v_ly_l, u_lt'_l, v_ls_l, v_ls'_l, y_lp_l, y_lp'_l, v_lx_l, x_lr_l, x_lr'_l, x_lw_l, w_lq_l, w_lq'_l, x_lu_{l+1}/1 \le l \le m\}$ $\cup \{(vx, u''v, vs_{11}, vs_{12}, u''t_{11}, u''t_{12}, u'x, xw, xr_{11}, xr_{12}, wq_{11}, wq_{12}, u_{m+1}t_{m+1}, u_{m+1}t'_{m+1}\}$ Define a mapping $\mathcal{G} : V(\mathcal{HSS}(\mathcal{Y}_{m+1})$ @2 $K_2 \rightarrow \{1, 2, ..., 15(m+1) + 3\}$

$$\begin{array}{ll} f(u_l) = 15l{-}14 & \text{for } 2 \leq l \leq m+1 \ l \equiv 1(mod2) \\ f(u_l) = 15l{-}13 & \text{for } 2 \leq l \leq m+1 \ l \equiv 0(mod2) \\ f(x_l) = 15l{-}1 & \text{for } 1 \leq l \leq m \\ f(v_l) = 3 \\ f(v_l) = 3 \\ f(y_l) = 15l{-}8 & \text{for } 1 \leq l \leq m \ l \equiv 1(mod2) \\ f(y_l) = 15l{-}7 & \text{for } 1 \leq l \leq m \\ f(r_l) = 15l{-}7 & \text{for } 1 \leq l \leq m \\ f(r_l) = 15l{-}13 & \text{for } 2 \leq l \leq m+1 \ l \equiv 1(mod2) \\ f(t_l) = 15l{-}13 & \text{for } 2 \leq l \leq m+1 \ l \equiv 0(mod2) \\ f(t_l) = 15l{-}14 & \text{for } 2 \leq l \leq m+1 \ l \equiv 0(mod2) \\ f(t_l) = 15l{-}14 & \text{for } 2 \leq l \leq m+1 \ l \equiv 0(mod2) \\ f(t_l) = 15l{-}7 & \text{for } 1 \leq l \leq m \\ f(r_l) = 15l{-}8 & \text{for } 1 \leq l \leq m \ l \equiv 0(mod2) \\ f(p_l) = 15l{-}8 & \text{for } 1 \leq l \leq m \ l \equiv 0(mod2) \\ f(p_l) = 15l{-}8 & \text{for } 1 \leq l \leq m \ l \equiv 0(mod2) \\ f(p_l) = 15l{-}8 & \text{for } 1 \leq l \leq m \\ f(q_l) = 15l{-}3 & \text{for } 1 \leq l \leq m \\ f(q_l) = 15l{-}3 & \text{for } 1 \leq l \leq m \\ f(q_l) = 15l{-}3 & \text{for } 1 \leq l \leq m \\ f(s_1) = 4 \\ f(s_1) = 8 \\ f(t_l') = 15(m+1){-}3 & \text{for } 1 \leq l \leq m+1 \\ f(t_l') = 15(m+1){-}1 \\ f(w) = 1 \\ f(w) = 15m{+}4 \\ f(r_{11}) = 15m{+}7 \\ f(r_{12}) = 15m{+}4 \\ f(r_{11}) = 15m{+}5 \\ f(q_{12}) = 15(m{+}1){-}3 \\ f(t_{12}) = 15(m{+}1){-}4 \\ f(t_{11}) = 15(m{+}1){-}2 \\ f(t_{12}) = 15(m{+}1){-}4 \\ f(t_{11}) = 15(m{+}1){-}1 \\ f(s_{12}) = 15(m{+}1){-}1 \\ f(s_{12}) = 15(m{+}1){+}1 \\ f(s_{12}) = 15(m{+}1){+}2 \\ \text{Clearly the point labels are different with this labeling for each e greatest common divisor $(f(u) \ and \ f(v)) = 1. \\ \end{array}$$$

Thus \mathcal{G} is a prime labeling. Hence $\mathcal{HSS}(Y_{m+1})@2K_2$ is a prime graph.

 $\in E.$

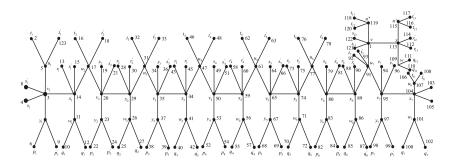


Figure 4: $\mathcal{HSS}(Y_{m+1})@2K_2$

Theorem 2.4. The $\mathcal{HSS}(\mathcal{Y}_{m+1})@(K_3 \cup K_2)$ is a prime graph.

Proof:

Let $\mathcal{G} = \mathcal{HSS}(\mathcal{Y}_{n+1})@(K_3 \cup K_2)$ be the graph with point set $V(\mathcal{G}) = \{u_l, v_l, x_l, y_l, s_l, s_l', t_l, t_l', z_l, p_l, p_l', w_l, q_l, q_l', r_l, r_l', k_l, k_l', l_l, l_l'\}$ $/1 \le l \le m\} \cup \{u, u', v, x, y, w, k, q_{11}, q'_{11}, t_{11}, t'_{12}, r_{11}, r_{12}, r, t'_{11}, t'_{12}, t, z, t'_{11}, t'_{12}, t'_{12}, t'_{11}, t'_{12}, t'_{12}, t'_{11}, t'_{12}, t'_{12}$ $s_{11}, s_{12}, s, t_{m+1}, t'_{m+1}z_{m+1}$ and the line set. $E(\mathcal{G}) = \{u_l v_l, v_l y_l, u_l z_l, u_l t_l, u_l t_l', v_l k_l, v_l s_l, v_l s_l', y_l r_l, t_l t_l', s_l s_l', y_l p_l, y_l p_l', u_l s_l', u$ $w_l r_l, w_l q'_l, x_l w_l, x_l k'_l, x_l l_l, x_l l'_l, p_l p'_l, q_l q'_l, l_l l'_l, x_l u_{l+1} 1 \le l \le m \}$ $\cup \{vu', vs_{11}, vs_{12}, u'z, u't_{11}, u't_{12}, u't, u't_{11}', u't_{12}, u't, u't_{11}', u't_$ $u't'_{12}, vs, vx, u'x, xr, xr_{11}, xr_{12}, xw, wk, wq_{11}, wq'_{11}, r_{11}, r_{12}, q_{11}, q_{12}, wq'_{11}, wq'_{11}, r_{12}, q_{11}, q_{12}, wq'_{11}, wq'_{$ $s_{11}, s_{12}, t_{11}, t_{12}, t'_{11}t'_{12}, t_{m+1}t'_{m+1}, u_{m+1}t_{m+1}, u_{m+1}t'_{m+1}, u_{n+1}z_{n+1}\}$ Define a mapping $\mathcal{G}: V(\mathcal{HSS}(\mathcal{Y}_{m+1})@(K_3 \cup K_2) \rightarrow \{1, 2, \dots, 20(m+1)+3\}$ for $1 \le l \le m+1$ $l \ne 0 \pmod{3}$ $f(u_l) = 201-15$ for $1 \leq l \leq m+1$ $l \equiv 0 \pmod{3}$ $f(u_l) = 201-17$ for $1 \le l \le m$ $l \not\equiv 0 \pmod{3}$ $f(v_l) = 201-13$ $l \equiv 0 \pmod{3}$ $f(v_l) = 20l-11$ for $1 \le l \le m$ $f(x_l) = 201-1$ for $1 \leq l \leq m$ $f(y_l) = 201-9$ for $1 \leq l \leq m$ $f(w_l) = 201-5$ for $1 \leq l \leq m$ $f(s_l) = 201-11$ for $1 \le l \le m$ $f(t_l) = 201-17$ for $1 \leq l \leq m+1$ $l \not\equiv 0 \pmod{3}$ for $1 \leq l \leq m+1$ $l \equiv 0 \pmod{3}$ $f(t_l) = 201-16$ $f(t_l) = 201-16$ for $1 \leq l \leq m+1$ $l \not\equiv 0 \pmod{3}$ $f(t_l) = 201-15$ for $1 \leq l \leq m+1$ $l \equiv 0 \pmod{3}$ $f(z_l) = 201-18$ for $1 \leq l \leq m$ $f(p_l) = 201-8$ for $1 \leq l \leq m$ $f(p_l') = 201-7$ for $1 \leq l \leq m$ for $1 \leq l \leq m$ $f(q_l) = 201-4$

m

mm

$$\begin{split} f(q_l') &= 20l{-}3 & \text{for } 1 \leq l \leq m \\ f(r_l) &= 20l{-}10 & \text{for } 1 \leq l \leq m \\ f(k_l) &= 20l{-}14 & \text{for } 1 \leq l \leq m \\ f(k_l) &= 20l{-}12 & \text{for } 1 \leq l \leq m \\ f(k_l) &= 20l{-}12 & \text{for } 1 \leq l \leq m \\ f(l_l) &= 20l & \text{for } 1 \leq l \leq m \\ f(l_l') &= 20(m{+}1){-}1 & \text{for } 1 \leq l \leq m \\ f(u') &= 20(m{+}1){-}1 & \\ f(u) &= 20(m{+}1){-}5 & \\ f(v) &= 1 & \\ f(x) &= 20m{+}7 & \\ f(k) &= 20m{+}7 & \\ f(k) &= 20m{+}7 & \\ f(k) &= 20m{+}8 & \\ f(q_{11}) &= 20m{+}8 & \\ f(q_{11}) &= 20m{+}8 & \\ f(q_{11}) &= 20(m{+}1){+}1 & \\ f(r_{12}) &= 20(m{+}1){+}1 & \\ f(r_{12}) &= 20(m{+}1){-}4 & \\ f(r_{12}) &= 20(m{+}1){-}3 & \\ f(t) &= 20(m{+}1){-}2 & \\ f(s_1) &= 20(m{+}1){-}2 & \\ f(s_2) &= 20(m{+}1){+}3 & \\ f(s) &= 20(m{+}1){+}4 & \\ \end{split}$$

Clearly the point labels are different with this labeling for each $e \in E$. greatest common divisor (f(u) and f(v)) = 1.

Thus \mathcal{G} is a prime labeling.

Hence $\mathcal{HSS}(\mathcal{Y}_{m+1})@(K_3 \cup K_2)$ is a prime graph.

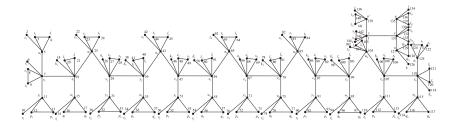


Figure 5: $\mathcal{HSS}(\mathcal{Y}_{m+1})@(K_3 \cup K_2)$

3 Conclusions

Prime labeling of \mathcal{H} - Super Subdivision of \mathcal{Y} - tree related graphs. $\mathcal{HSS}(\mathcal{Y}_{n+1})$, $\mathcal{HSS}(\mathcal{Y}_{n+1})@K_2$, $\mathcal{HSS}(\mathcal{Y}_{n+1})2K_2$, $\mathcal{HSS}(\mathcal{Y}_{n+1})@(K_3 \cup K_2)$ are prime graphs.

References

- J. Bondy and J. Murthy. *Graph Theory and Applications*. North-Holland, New York, 1976.
- T. Deretsky, S. Lee, and J. Mitchem. On vertex prime labelings of graphs, in graph theory, combinatorics and applications, j. alavi, g. chartrand, o. oellerman, and a. schwenk, eds.,. *Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York)*, 1:359 369, 1991.
- E. Esakkiammal, K. Thirusangu, and S. Seethalakshmi. Luck point labeling of hsuper subdivision of path graphs,. *Recent Trends in Graph Theory and Combinatorics GTCOMB*, 1:42 – 49, 2016.
- G.Sethuraman and P.Selvaraju. Gracefulness of arbitrary super subdivi- sion of graphs. *Indian J.Pure App.Math*, 32(7):1059–1064, 2001.
- J. A.Gallian. A dynamic survey of graph labeling. *The Electronics Journal of Combinatorics*, 2009.
- S. Meena and J.Naveen. Some new families of prime labeling of graph. *International Journal of Science and Research (IJSR) ISSN (online*, 5(9):2319–7064, 2016.
- S. Meena and P. Kavitha. Prime labeling of duplication of some star related graphs,. *International Journal of Mathematical Trends and Technology*, 23(11): 26–32, 2015.
- S. Meena, G.Ganalakshmi, and P.Kavitha. proved the prime labeling of h super subdivision of cycle related graph,. *AIP conference proceedings,(communicated).*
- A. Tout, A. N.Dabboucy, and K. Howalla. Prime labeling of graphs. *Nat. Acad. Sci letters.*, 11:365–368, 1982.
- S. Vaidhya and U. M.Prajapati. Prime labeling in the context of duplication of graphs elements,. *International Journal of Mathematics and Soft Computing*, 3(1):13–20, 2013.