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        Abstract 

The distinction between the Domain of Natural Numbers and the Domain 

of Line gets highlighted. This division provides the new perception to the 

Fermat’s Conjecture, where to place it and how to prove it. The reasons 

why the Fermat’s Conjecture remained unproven for 382 years are 

examined. The Fermat’s Conjecture receives the proof in the Domain of 

Natural Numbers only. The equation an + bn = cn with positive integers a, 

b, c, n is not the Fermat’s Conjecture in the Domain of Line. 

Keywords: Fermat’s Conjecture; Fermat’s Last Theorem; Domain of 

Natural Numbers; Domain of Line 

2010 AMS subject classification: 11D41 

 

1 Introduction 

There are two fundamental domains in mathematics: The Domain of Natural 

Numbers (positive whole numbers or positive integers) and the Domain of Line. They 

appear in Table 1. 
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The Domain of Natural Numbers 

 

 

The Domain of Line 

 

 

One-

dimensional 

filled space 

Numbered Unit Squares (Squarits) 

 

 
 

All Kinds of Line 

 

Euclidian, Hyperbolic, 

Elliptic, dashed, etc.  

 

 

 

 

 

 

 

Two-

dimensional 

filled space 

The Squared Circle  

 

 
 

From the centre, it is the same 

distance equal to a specific integer 

or number of squarits (unit squares). 

A rotation brings the position to the 

same beginning squarit. 

The Lined Circle 

 

 
 

From the centre, it is the 

same distance equal to a 

specific decimal or integer 

number. A rotation brings 

the position to the same 

beginning point. 

 

 

 

 

 

 

 

Three-

dimensional 

filled space 

The Cube 

 

 
From the centre, it is the same 

distance equal to a specific integer 

number of cubits (unit cubes). A 

rotation brings the position to the 

same beginning cubit. 

The Sphere 

 

 
From the centre, it is the 

same distance equal to a 

specific decimal or integer 

number. A rotation brings 

the position to the same 

beginning point. 

 

 

 

 

 

Zero 

It is the impassable wall at the 

bottom. Zero refers to none, 

nothing, no-one. Zero gets used for 

counting the natural numbers to 

mark the new set of 9. Thus, the 

numbers that contain zeros can be 

viewed as multiples of nine plus one 

 

 

 

In all accepted combi-

nations and expressions. 
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digit from 1 to 9, e.g. 10 = 9 + 1, 

103 = 9×9 + 2×9 + 4. 

 

 

 

 

 

 

 

Numbers 

The whole positive numbers and 

their ratios (rational numbers) only. 

The array of even numbers 2n starts 

at zero: 0, 2, 4, 6, 8, … The 

collection of odd numbers 2n-1 

begins at one: 1, 3, 5, 7, 9...  

     

 

On the graph, the positive integers 

constitute a straight collection of 

dots, at the same pace, stretching at 

geometrically 45o, and numbering n-

dots. 

 The real and complex 

numbers, whole and rational 

numbers, positive and 

negative numbers, 

logarithmic and decimal 

numbers, irrational and 

transcendental numbers.  

 

On the graph, the function y 

= x is a continuous line 

stretching at geometrically 

45o and containing an 

uncounted number of dots. 

 

 

 

 

 

Relations 

 

 

 

 

The relations with and for positive 

integers only. 

The algebraic relations and 

mathematical analyses. 

Functions and equations of 

all possible lines, groups, 

rings, and fields. 

Euclidian and non-Euclidian 

geometries. Diophantine and 

algebraic geometry. 

Calculus and analytical 

geometry. 

 

Table 1. The Domain of Natural Numbers versus the Domain of Line 

 

In the Domain of Line, zero gets assigned to the origin or the beginning point. In 

one-dimensional space, the geometry determines the distance within two points or one 

point on the coordinative axis and zero (the origin) and what kinds of lines are passing 

through those points: parallel (Euclidian), hyperbolic (Lobachevskian) or elliptic. In 

two-dimensional space, the geometry determines the inner area between three points 

or one point on each of the two coordinative axes and zero (the origin). In three-

dimensional space, the geometry determines the inner volume between four points or 

one point on each of the two coordinative axes and zero (the origin).  

The Domain of Line makes use of the conclusions that come from the Domain of 

Natural Numbers, but not the opposite. Our existence starts at one. Below zero, n < 0, 

the meaning of life and existence loses. Things, living and self-thinking entities get 

numbered positively. We exist as numbers and get shaped by lines. In the Domain of 

Natural Numbers, the one- or two- or three-dimensional entities are geometrically 
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unconnected objects. Numbers connect them, because of numbers bond numbers. 

After squarits or cubits get packed in their respective spaces, there are no void spaces 

left in between. In one-dimensional space, for example, three connects one and two, 

because 1 + 2 = 3.  

In two-dimensional space, 52 connects 32 and 42, because 9 + 16 = 25. This 

heavenly-existed set 3-4-5 is the first square set in the unique sequence commonly 

called the Pythagorean Triples. These can, for example, be generated by the 

Fibonacci’s method (since the year 1225), by the Michael Stifel’s method (since the 

year 1544) and Jacques Ozanam’s technique (since the year 1694) of the progressions 

of whole and fractional numbers. The Pythagorean Triples get also produced using 

either the Leonard Eugene Dickson’s method (since the year 1920) or Euclid’s 

algebraic quadratic equations or the matrices and linear transformations, etc. The first 

set of positive integers 3-4-5 is followed by 6-8-10, 5-12-13, 9-12-15, 8-15-17, 12-16-

20, 15-20-25, 7-24-25, 10-24-26, 20-21-29, 18-24-30, and so on. [1] Any relationship 

in the Pythagorean Triples can be proved using squared circles. Only for the 

Pythagorean Triples, the three squared circles form between the geometrical shape of 

the right-angled triangle with sides taking integer numbers. Otherwise, the right-

angled triangles are geometrical lines and have the length of at least one of their sides 

taking a non-integer number. 

In three-dimensional space, 63 connects 33, 43 and 53, because 27 + 64 + 125 = 

216. This essentially natural cubic set is the first in the unique cubic sequence 3-4-5-

6, 6-8-01-9, 6-8-10-12, 12-16-02-18, 9-12-15-18, 12-16-20-24, 18-24-03-27, and so 

on.  

A lined circle cannot take positive integers and get converted to a lined 

(geometrical) square with positive integers. Because, a lined square consists of four 

equal sides with either an odd or an even integer number of steps, which so produce 

either an odd or an even integer number of squarits. Thus, a lined square 

fundamentally falls into the Domain of Natural Numbers at a time when the lined 

circle divided into an irrational number π = 3.14159265358… of steps remains in the 

Domain of Line. The geometric irrational number π = 3.14159265358… mirrors the 

ratio 22/7 in the Domain of Natural Numbers. A lined circle and a lined square bond 

only when they have an equal geometrical inner area or by inscribing the lined circle 

inside the lined square and vice versa. 

 

2 The Fermat’s Last Theorem 

Around the year of 1636, Pierre de Fermat (1607-1665) wrote a comment on the 

margin of a page in a copy of 1621 edition of the book Arithmetica, that translations 

since the third century A.D. had brought as written by Diophantus of Alexandria. The 
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first part of the comment stated that four positive integers or natural numbers a, b, c, n 

when n > 2 cannot be a solution to the following equation: 

�� + �� =  �� 1) 

The second part of the comment stated that he, Pierre de Fermat, had the proof for 

Eq. (1) but he could not write it because the page margin did not have enough space 

for it. Likely, Pierre de Fermat had a flash that could prove Eq. (1), because he did not 

write anytime later a general proof of Eq. (1). What he communicated in detail was 

the use of an original logic known as “The Infinite Descent” to derive a contradiction 

to an invented counterexample from himself. [1-10] He stated that if the area of a 

right-angled triangle were equal to the square of an integer, e.g., r2, then there would 

exist two numbers p, q in the fourth power the difference of which equals r2.  [3, 10, 

11] And without his assertion what the numbers p and q were, the following was his 

equation:  

�	 − �	 =  �
 2) 

 

In the Domain of Line, if by wish r2 is chosen equal to s, then Eq. (2) appears as p4 

- q4 = s. If by wish r = t2, then p4 - q4 = t4 which is a form of Eq. (1) for n = 4. If by 

wish t = u2 then p4 - q4 = u8, and so on.  

Eq. (2) is inaccurately taken as the specific case of n = 4 for Eq. (1), because by 

command it puts the condition of r = t2. Also, the counterexample built by Pierre de 

Fermat or his Eq. (2) falls in the Domain of Line, while the mathematical relationship 

bodied in Eq. (1) is in the Domain of Natural Numbers. 

As a sort of indirect proof, the technique of Infinite Descent is more a wording 

logic looking for a contradiction to its start than a mathematical method of proof. 

Though it relies on geometry and numbers, the purpose of this technique is to decide 

by language. The contradiction emerges since the start is either non-existent or untrue 

or unproven. The Infinite Descent by Pierre de Fermat trailed the logic of reductio ad 

absurdum (reduction to absurdity) by ancient Aristotle. Though reductio ad absurdum 

has full power in philosophical perception, it is not enough in the mathematics of 

numbers. It is so because reasoning is subjective (coming or accepted from the 

thinking) and numbers are objective (existing independently of thought). 

He activated his proving approach using the formula of the Pythagorean Triples, 

where the sides of the right-angle triangles are sets of specific positive integers and 

belong to the Domain of Natural Numbers. Also, he guessed that the edges of such 

triangles were relatively prime numbers. Then through further calculations and 

assumptions, e.g., any time the difference of two integers in fourth power was 

assumed a squared integer, a descending spiral of infinite smaller and smaller such 

right-angled triangles emerged. The only way to stop the descending loop or the 
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Infinite Descent was by the wording, as Pierre de Fermat wrote, “…this is impossible 

since there is not an infinitude of positive integers than a given one”. Thus, in accord 

with Pierre de Fermat, the Infinite Descent was in contradiction to the original 

counterexample, and so it proved that a right triangle could not have an area equal to a 

squared integer. [3, 5, 11]  

The proof for a problem that stays within the Domain of Natural Numbers is not 

enough or valid to become credible proof for the Domain of Line. Reversibly, a 

general proof extracted in the Domain of Line is larger than the gate of the Domain of 

Natural Numbers, and thus unacceptable there. 

The Infinite Descent or the descending spiral did not produce anything new, 

except the need to stop it verbally on purpose. The Infinite Descent generated right-

angled triangles with decreasing size and headed to infinitely small such triangles. It 

is equivalent to the direction of the Infinite Ascent, which creates right-angled 

triangles with increasing size and leading to unbelievably big such triangles. 

Geometrically, as Pierre de Fermat created his counterexample and the procedure for 

finding its contradiction, there are not any contradictions going down to infinitely 

small or up to infinitely big right-angled triangles. As such, both the Infinite Descent 

and Infinite Ascent cannot be stopped verbally except than on purpose. 

In the Domain of Line, the area of a right-angled triangle equal to a squared 

integer is possible and can be only when the lengths of the adjacent sides to the right 

angle relates in the ratio 2:1. In which case, the length of the side opposite the right 

angle equals the unit number multiplying √5. It means that such a right-angled 

triangle is not one of the Pythagorean Triples and precisely it appears within the 

Domain of Line.  

In the Domain of Natural Numbers, the sequence of natural numbers begins at one 

and has zero its bottom limit. The chain of natural numbers has no top boundary and 

increases infinitely by an increment of one. The existence of the bottom base cannot 

constitute a contradiction in the process of the Infinite Descent for the invented 

counterexample because it is just an arrival at the lower limit. It is just a trial in the 

engineering optimization. 

After the death of Pierre de Fermat, his son Clément-Samuel examined his father’s 

papers, letters, and notes and published them as a book in 1670. [8] Then, Eq. (1) 

came into sight for other mathematicians who began a pursuit to prove it. Equation (1) 

is known as the Fermat’s Last Theorem or the Fermat’s Conjecture, because since 

then in century XVII it has not been proved in a general form. 
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3 The Endeavours for Proving the Fermat’s  

Last Theorem 

 
The first effort for the specific case n = 4 to prove the relation embodied in Eq. (1) 

appeared in 1676 and accelerated in century XIX and early century XX. Due to its 

outward ease, Eq. (1) attracted all mathematicians and leaders in mathematics. [1, 2, 

6, 8, 12-15] The diving efforts of brilliant minds into the ocean of mathematics for 

solving the Fermat’s Conjecture advanced the science of mathematics in new 

directions. [10, 16, 17]  

There have been many publications related to the efforts for proving the Fermat’s 

Conjecture. They cover a range of peer-reviewed top mathematical journals to the 

simplest personal trials and progress reports posted on the Internet. Such relevant 

publications keep coming into the scientific view. [7-9, 13, 14, 18-29] It is impossible 

to cite for reference all of them. However, it is possible to praise all researchers for 

the time spent for searching to prove the Fermat’s Last Theorem.  

 The shared characteristics of the efforts exerted to prove the Fermat’s Conjecture 

and the root reasons why not a final general proof has been reached unfold below. 

FIRST – The proofs have been searched geometrically (e.g., using elliptic curves) 

or algebraically (e.g., using Bernoulli or complex numbers) in the Domain of Line at a 

time that Eq. (1) is inside the Domain of Natural Numbers; please refer to Table 1 and 

associated elucidations. Likewise, the proof of Eq. (1) has been examined on 

algebraic equations, abstract functions, and conditions noticeable other than Eq. (1). 

[2, 4, 6, 8, 18, 19, 23-26, 29-41] 

SECOND – The logic of conclusion has been the logic of contradiction to the one 

assumed either counterexample or new starting conditions; please refer to Figure 1. 

 

 

 

Figure 1. The two paths of the solution, where: Po is the original point of conditions 

of the problem. Ps is the solution point of the problem. Pa is the point of the assumed 

to-be-original-conditions of the problem. Pca is the contradicting point to Pa. 
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The path or vector of solution PoPs is the path that preserves the original 

conditions of the problem. While the imaginary route PaPca starts with an assumed 

identity of conditions at point Pa that is detached from the point Po, the original status 

of conditions. And sometimes, one counterexample or invented supposition is planted 

at point Pa. Then, a solution is accepted if a contradiction to point Pa comes across in 

the path PaPca. The rejection by contradiction at point Pca proves only that the 

assumed to-be-original-conditions or the counterexample at point Pa were not 

accurate or could not exist. That is, an encounter at a point Pca will undoubtedly 

contradict its self-non-existence that rooted at point Pa. The emerged contradiction 

relates to the false assumption made at point Pa and ruins only the characteristics of 

position Pa, which stays detached from the point Po. Thus, the emerged contradiction 

at point Pca has no connection with path PoPs and conditions of the solution at the 

position Ps. Also, a counterexample is specific, and there is not any general 

counterexample.  

THIRD – The proofs have progressed on steps that incorporated the assumption or 

supposition of specific conditions or properties for variables, equations, and functions. 

[1, 2, 4-8, 10, 12, 14, 16-18, 22, 23, 25, 27, 29, 31-35, 37-48, 50] That is, the 

conditions or properties or counterexamples have been created on purpose, taken for 

granted, personally accepted or assigned, thought or imagined to be that way. The 

examination of the natural Eq. (1) in imaginary systems or the endeavours to reach its 

proof with tools of the imaginative mathematics beget misleading results. It reaffirms 

Figure 1.  

FOURTH – The proofs of the Fermat’s Conjecture have been researched for 

isolated power numbers, for example, n = 3, 4, 5, 7, 6, 10, 14 or ideal numbers, and 

especially for prime numbers. [1, 2, 4, 6, 8, 12, 14, 18, 24-27, 30-39, 41, 42, 46-49]  

The trail of attempts to prove the Fermat’s Conjecture by selecting prime numbers 

for the exponent in Eq. (1) started by Sophie Germain in 1823. Sophie Germain 

grouped in Case One the prime numbers p that cannot divide a, b, c in Eq. (1) and in 

Case Two those that do. Moreover, she reformulated Eq. (1) into the following 

equation, which both had different conditions from Eq. (1) and it was not the Fermat’s 

Last Theorem anymore [18, 24, 31-36, 47]: 

 

�� + �� + �� = 0 3) 

In 1847, Gabriel Lamé tried unsuccessfully to factorize the Fermat’s Last Theorem 

in the cyclotomic field of complex numbers. Based on that experience, Ernst E. 

Kummer developed the theory of ideal numbers in 1849. Within that theory, and 

using the compound Bernoulli numbers, Ernst E. Kummer defined the set of regular 

prime numbers. He used them to prove the first case of Fermat’s Last Theorem. [1, 

2,4, 6, 8, 18, 31, 33, 38, 39, 47-49] 
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The ideal numbers are algebraic integers, which means they are complex numbers. 

They are part of the ring theory studied in the Abstract Algebra. They represent the 

ideals (subsets) in the rings of integers of algebraic number fields, which have finite 

dimensions. As such, the Bernoulli, complex and ideal numbers differ totally from 

natural numbers and do not reside in the Domain of Natural Numbers. Their 

incorporation in the form of regular prime numbers for proving Eq. (1) cannot give 

the proof or at least a general solution. Above all, the past and modern researchers 

that try to find a proof for Sophie Germain’s First Case embodied in Eq. (3) have tried 

to find a proof of a relationship which is not the Fermat’s Conjecture embodied in Eq. 

(1).  

FIFTH – A wording instrument linked to integer numbers, known as modulus 

operandi, has been used in algebraic or number formulas. [2, 4, 7, 18, 24-26, 30, 31, 

33-35,37, 38, 42-44, 47, 49] 

The modulo operation depicts the integer remaining after another integer number 

divides one integer. Thus, for two integers x, y that give the same remainder R after 

divided by another shared integer z, it gets worded that both x and y are congruent 

modulo z and x – y is a multiple of z. It becomes mathematically visible with the 

following wordy phrase: 

x ≡ y (mod z) 4) 

Arithmetically, the relations among the integers x, y, z are generalized as the 

following: 

�
� = � + � 5) 

�
� = � + � 6) 

(� − �)
� = � − � 

7) 

The wording phrase (4) is not a numeral operator, a numeralis operandi, and only 

describes the ratio (x – y)/z in Eq. (7) by implying that it is equal to an integer 

number. As just a notation, the wording phrase (4) does not display the values of v – 

w and R. It is not a mathematical formula or a line equation or a numerical function. 

The wording phrase (4) is a verbum operandi and does not bring anything new 

mathematically. The Eqs. (5-7) give the complete explicit information. In the Domain 

of Natural Numbers, mathematics gets explicitly expressed through numeral operators 

of plus, minus, multiplication, division (ratio), power, equal and sum.  

The use of the verbum operandi (4) in numeralis operandi for proving the 

Fermat’s Conjecture does not fit. It does not offer any specific sets of natural numbers 

that can be examples for Eq. (1). [19, 31, 34, 35] The Arithmetic is an explicit and 

exact science, while modulo operation is both a wording phrase and an implying 
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operator. The modulo itself deals with cyclic numbers and all integers, while the 

natural numbers a, b, c, n in Eq. (1) are only positive integers and not cyclic. A 

modulo solution used for proving Eq. (1) must be congruent with a proof using 

arithmetic operators and mathematical formulas. It just complicates a mathematical 

expression, e.g., Eq. (7), by making invisible and undetermined the integers v-w and R 

in Eqs. (5-7).  

Even when Eq. (1) is arranged in the following rational-number form, 

��
��� + ��

��� = 1 
8) 

there is not any condition in the Fermat’s Conjecture that the first term is congruent to 

the second term or a is congruent to b modulo c in Eq. (8). Anyway, a solution must 

keep or provide the variables a, b, c, n as positive integers. 

SIXTH – The effort to use the elliptic curves and imaginary Galois representations 

to prove the Fermat’s Conjecture gets separately examined here. Between 1955 and 

1967, Goro Shimura, Yutaka Taniyama, and André Weil set forth the modularity 

theorem, also known as the Taniyama-Shimura-Weil conjecture. It claimed that all 

elliptic curves in the field of rational numbers (at rational number coordinates) 

associated with the modular forms; that is, they were modular. [2, 4, 6, 12, 16, 42, 50] 

Yves Hellegouarch in 1974 and Gerhard Frey in 1982 claimed that the following 

algebraic equation of the geometrical semi-stable elliptic curves, where p is an odd 

prime number, is correlated with Fermat’s Last Theorem or Eq. (1). [2, 6, 12, 42, 51] 

 

�
 = �(� − ��)(� + ��) 9) 

Gerhard Frey proposed that if a solution for a, b, c, p exists from Eq. (1) then a, b 

of it would give a semi-stable elliptic curve from Eq. (9), referred to as the Frey-

Hellegouarch curve, which would not be modular. Thus, referring to point Pa in 

Figure 1, Gerhard Frey established a counterexample to Fermat’s Conjecture. In 1985, 

Gerhard Frey deepened the mathematical abstraction by articulating that the 

Taniyama-Shimura-Weil conjecture implied Fermat's Last Theorem. [2, 4, 6, 7, 12] 

So, referring to point Pca in Figure 1, Gerhard Frey laid down the imaginary path of 

solution PaPca. On it, someone could investigate for a proof of the Taniyama-

Shimura-Weil conjecture that would contradict the counterexample flagged at point 

Pa, thus proving the Fermat’s Last Theorem. [46] 

In 1985, Jean-Pierre Serre wrote that a Frey-Hellegouarch curve could not be 

modular and since he did not offer a solid proof for his proposition it turned to be 

known as the Epsilon Conjecture. In the summer of 1986, Kenneth A. Ribet proved 

the Epsilon conjecture for a semi-stable elliptic curve, which meant that the 

Taniyama-Shimura-Weil conjecture implied the Fermat's Last Theorem. [2, 4, 6, 13, 

22, 39, 41, 46] 
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A highlighted effort for proving Eq. (1) emerged when Andrew J. Wiles published 

a final article 108-page-long in parallel with a supportive article co-authored with 

Richard Taylor 19-page-long in the Annals of Mathematics in 1995. [43, 44] Using 

those two pieces, Andrew J. Wiles confirmed the modularity theorem for semistable 

elliptic curves to be adequate for contradicting the Gerhard Frey’s proposition and 

thus implying the truth of Fermat's Last Theorem. Very a few mathematicians seem to 

understand the depths of abstract mathematics contained in those two published 

papers and the connection to the proof of Fermat’s Last Theorem. [2, 7, 13] The 

whole approach summarizes in the following Figure 2: 

 

Figure 2. The paths associated with the efforts to prove the Fermat’s Conjecture using 

geometric elliptic curves. 

 

 

As a preface, the proposed solution first guessed by Gerhard Frey and later laid out 

by Andrew J. Wiles did not provide a general proof because they treated prime 

numbers instead of the natural numbers for the exponent in Eq. (1). Also, the elliptic 

curves, modular forms or Galois representations incorporated by them are tools for 

inside the Domain of Line while the Fermat’s Conjecture is inside the Domain of 

Natural Numbers. 

The counterexample proposed by Yves Hellegouarch and Gerhard Frey was a false 

assumption because the solution to Fermat’s Conjecture never existed. Something 

cannot both exist and not to be at the same time, place, and under the same conditions. 

Ancient Aristotle had summarized this in his principle of non-contradiction, as well. 

That is, a solution cannot be both known and unknown at the same time, place, and 

conditions. That is, it was and is impossible to find a set of four natural numbers a, b, 

c, n that can prove Eq. (1). 

Figure 2 confirms the Figure 1 and both Figures endorse the principle of explosion 

ex contradictione sequitur quodlibet (from a contradiction, anything follows). Since 
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both the right and left paths started from a false point or non-existing key, their time-

shifted final points had neither any connection with nor an authority on the precise 

spot of the Fermat’s Conjecture. Even if both branches are opposite, their 

disagreement is dual and not general. Both right and left routes did not comply with 

the Gottfried W. Leibniz’s principle of the Truth of Reasoning, in which an object is 

resolved into its simplest ideas and truths, into its primitives, to prove it.  

As brilliant mathematicians, Yves Hellegouarch, Gerhard Frey, Jean-Pierre Serre 

and Kenneth A. Ribet on the right route and Yutaka Taniyama, Goro Shimura, André 

Weil, Andrew J. Wiles and Richard Taylor on the left path were correct in their 

conclusions about the modularity of geometrical semis-stable elliptic curves. They 

built their conjectures on detached assumptions, conditions, and tools, independently. 

Therefore, they produced various products (conclusions). Otherwise, they should have 

reached the same conclusions. Their right and left approaches to exploration were not 

even contradicting. Their findings in conceptual mathematics were only different in 

seeing the geometrical semi-stable elliptic curves from diverse viewpoints. Their 

research brought highlighted advancements in theoretical mathematics.  

 As a natural science, mathematics is an explicitly exact science that makes unfit 

the implying proposition that the Modularity Theorem can imply the Fermat's Last 

Theorem. Both routes do not end at the precise point of the Fermat’s Conjecture. The 

course for going to the correct spot of the Fermat’s Conjecture is explicitly apparent. 

Eq. (1) was not born from Eq. (9) or some modular forms, or vice versa. There is no 

genetic connection between Eq. (1) and Eq. (9), independently that the two pairs an, bn 

and ap, bp seem of the same gender. Whatever solution that the values ap, bp can for 

elliptic curves in the field of rational numbers, the pair ap, bp does not deliver the duo 

an, bn. And this, at a time that cn is not known, and so even the sum ap + bp cannot be 

evaluated. Along with Eq. (9), a solution to any other elliptic or non-elliptic equation 

y = f(x) that combines an, bn, cn is not a condition of eligibility for giving any hint how 

to prove Eq. (1). Also, a Galois Field is a theoretic finite-field enclosing a limited 

number of elements, while the array of natural numbers is a chain without end. 

Therefore, any discovery on Eq. (9) has no sway on Eq. (1).  

The elliptic Eq. (9) is a specific equation and the other elliptic curves are two-

dimensional geometric functions y2 = f(x3) that give continuous geometric lines, 

which contain an incalculable amount of numbers of all kinds. The properties that the 

elliptic curves might have at rational number coordinates have no link to Eq. (1), 

which contains only four arrays of positive integers. While Eq. (1) has as variables the 

natural number a, b, c, n, Eq. (9) has geometrical variables x, y, a, b and prime 

number variable p. [4, 6, 22, 46] A solution for Eq. (9) is an optimum solution that 

incorporates and belongs to the set of the geometrical variables x, y, a, b and prime 

number variable p. That is, even when a and b in Eq. (9) are positive integers, they get 
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processed and so lose their originality and individuality as positive integers. 

Therefore, such a solution has no authority over the solution of Eq. (1).  

Also, by definition, a modular form is a complex analytic function (a holomorphic 

function) on the upper half-plane, which itself is a set of complex numbers with the 

positive imaginary part. Furthermore, a meromorphic function, expressed as a ratio 

between two holomorphic functions, is a complex-valued function and unlinked to the 

chain of natural numbers. A modular form is a function that has superior symmetries 

and complexity on a unit disk. [7, 22, 42, 46, 51] Which means that a modular form is 

not an array of natural numbers. A function can be symmetric. On the other side, the 

collection of natural numbers has no symmetries because it is a chain of increasing 

positive integers. The modular forms are absolutely part of the Domain of Line and 

not part of the Domain of Natural Numbers. 

In the article by Andrew J. Wiles, there is no conclusive formula where any 

substitution with concrete natural numbers a, b, c, n would confirm the Fermat’s 

Conjecture. Except mentioning the Fermat’s Last Theorem by name six times in the 

title and introduction, Eq. (1) was not engaged in the article. It was so because 

Andrew J. Wiles theoretically proved using related Galois representations only that 

the semi-stable elliptic curves were modular. [4, 12, 39, 43, 46, 51] Christophe Breuil, 

Brian Conrad, Fred Diamond, and Richard Taylor advanced the path laid down by 

Andrew J. Wiles and proved the modularity theorem for all elliptic curves in 2001 

[45]. Both right and left pathways in Figure 2 constitute a non-constructive proving 

endeavour for the Fermat’s Conjecture because they provide no numeral examples for 

Eq. (1).            

 

4 The Proof of the Fermat’s Last Theorem 

4.1 The Initial Cases for n < 3 

To prove the Fermat’s Conjecture expressed in Eq. (1), initially, means to assume 

(to bear the error) that Eq. (1) will remain the same for all n > 2: two terms on the left 

and one term on the right. But the fact of the unique cubic sequence 3-4-5-6, 6-8-01-

9, 6-8-10-12… is the example just at the beginning for n > 2 that Eq. (1) does not 

exist with two terms on the left and one term on the right when a, b, c are positive 

integers. It means that the efforts for proving the Fermat’s Conjecture have conveyed 

the untruth that Eq. (1) with the natural numbers a, b, c, n has only two terms on the 

left and one term on the right. With the knowledge of this error, summing up Eq. (1) 

side by side for all n gives the following: 
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� ��
�

���
  +   � ��

�

���
 =  � ��

�

���
 

10) 

 

�� � − �
� − 1   +  �� � − �

� − 1   =   �� � − �
� − 1  

11) 

 

The naturalness and conditions of natural numbers a, b, c, n of Eq. (1) are kept 

undisturbed in Eq. (11). However, Eq. (11) cannot be used for proving the Fermat’s 

Conjecture because it is untrue that Eq. (1) will remain with only two terms on the left 

and one term on the right for all n.  

For n = 1, Eq. (1) or Eq. (11) becomes a + b = c that is true for unlimited cases in 

which the numbers a, b, and c form the bond a + b = c. This. This relation also tells 

that always c > {a, b}. 

For n = 1 and a = b Eq. (1) becomes 2a = c, which is true for all cases when c = 

2a. Both cases for n = 1 refers to the situation of one-dimensional array of unit 

squares (squarits) in Table 1. 

For n = 2, a ≠ b, a + b ≠ c and c > {a, b}, Eq. (1) is true only for the Pythagorean 

Triples. These are generated when a, b, and c relate through, for example, Euclid’s 

algebraic quadratic equations with a = k(p2 – q2), b = k(2pq), c = k(p2 + q2) and 

where p, q are coprime and not both odd, and k is an additional positive integer. It 

refers to the situation of a two-dimensional collection of squarits in Table 1 that 

comply with the rule in Figure 3. 

 

 

Figure 3. The Pythagorean Rule in the Domain of Natural Numbers, e.g., 32 + 42 = 52. 

 

When n = 2 and a = b then Eq. (1) becomes 2a2 = c2, which cannot make c be a 

natural number (positive integer) because 21/2 cannot be a positive integer. Since 21/2 

is an irrational number, 21/2 cannot be constructed as a ratio of two integer numbers. 

As such, 21/a cannot give an integer number of squarits for c, which would make the 

dimension of the squared field 21/a an integer number of squarits. In other words, 2a2 

squarits cannot be arranged in a square field.  
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For n ≥ 3, the situation in the Domain of Natural Numbers belong to a n-

dimensional space. For instance, for n = 3, the space is cubic and filled by cubits (unit 

cubes). The three dimensions of the cube are equal to an integer number of cubits. 

Finding the value (a3)1/3 = a means finding the dimension an of the cube that contains 

a3 cubits. In general, the value (an)1/n = a means finding the dimension an of the n-

dimensional body that contains an space units.  

Therefore, for n ≥ 3 and a = b, Eq. (1) becomes 2an = cn. As such, c cannot have 

an integer value because 21/n is an irrational number and cannot be either a positive 

integer or expressed as a ratio of two integers. That is, 21/na cannot give an integer 

number of space units for c. Which means that the dimension of the equally-shaped 

spatial body 21/na cannot bear an integer number of space units. In other words, 2an 

space units cannot be arranged in an equally-shaped spatial body.  

So, the Fermat’s Conjecture is proved for these initial scenarios. The remaining 

general set, which is the epical quest of mathematicians to prove the Fermat’s 

Conjecture, is the case for n ≥ 3, a ≠ b, and a < b < c. 

 

4.2 Eq. (1) Arranged in a Fractional Form 

The Fermat’s Last Theorem provides only one equation, the Eq. (1), with four 

variables and no specific link between them. As such and since there are no fixed pair 

distances in the set {a, b, c, n}, the Eq. (1) does not get measured. The use of modulus 

operandi does not help either because the bonds among a, b, c, n are undefined and 

unconditioned. Staying in the Domain of Natural Numbers and without disturbing the 

identity of natural numbers, the only equations that can be used to prove the Fermat’s 

Conjecture are Eq. (1) or those like Eq. (8). Let’s arrange Eq. (1) as follows: 

 

1 +  ��
��� =  ��

���
 

 

Summing up both side from n = 1 to n = n as follows: 

12) 

� 1
�

���
+ � ��

����

���
=  � ��

����

���
 

It results to: 

13) 

! + ����� � − ���� − 1 =  ����� � − ���� − 1   14) 
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After some arrangements, it becomes the following: 

 

��
��� =  (� − �)(!� − �! + �)

�(� − �)   
or,  

15) 

� = � "(� − �)(!� − �! + �)
�(� − �) #

� �⁄
 

16) 

 

The left side of Eq. (15) is a positive rational number. Since 0 < a < b < c and n ≥ 

3, the right side of Eq. (15) will be positive only if  � � % ≤  3 2% . In this event, it will 

be a rational number too. The nth root of a rational number with at least either its 

nominator or denominator being not at nth power gives an irrational number. Which 

means that, the nth root of the expression inside the square bracket in Eq. (16) is an 

irrational number. The multiplication of an irrational number with an integer produces 

an irrational number as well. Thus, b is an irrational number in Eq. (16), meaning not 

an integer number. It so proves the Fermat’s Conjecture. 

The other event is when  � �% > 3 2%  and thus the right side of Eq. (15) will be a 

negative number. It also proves the Fermat’s Conjecture because the path paved by  

� �% > 3 2%  meets a contradiction with �� �% �� > 0. 

Besides, both these events border at the value 3 2%  that is the perfect fifth interval 

or the tone G in the diatonic musical scale; or the note Sol at the solfeggio system. 

After the fully-consonant octave interval 1 : 2, the next best harmony ratio is the 

perfect fifth 2 : 3. The just perfect fifth and octave intervals are the foundation of the 

Pythagorean musical tuning. The border value 3 2%  holds the number 2 that replicates 

n = 2 in the Pythagorean Triples and the number 3 that replicates n ≥ 3 in the 

endeavour to prove the Fermat’s Conjecture. 

 

4.3 Eq. (1) Arranged in a Squared Form 

With a general setting of a < b < c and n ≥ 3, another technique to verify the 

Fermat’s Conjecture is to start with the following modified Eq. (1): 

+�� 
⁄ ,
 +  +�� 
⁄ ,
 =  +�� 
⁄ ,

 17) 
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Only when the three squared terms are bonded in the Domain of Natural Numbers 

in the form of the Pythagorean Triples through Euclid’s algebraic quadratic equations, 

they can contain integer numbers. That is, they relate to the following equations: 

� =  -.(�
 −  �
)/
 �⁄   18) 

� =  -.(2��)/
 �⁄  19) 

� =  -.(�
 +  �
)/
 �⁄  20) 

In Eq. (18-19), p and q are coprime, not both odd and 0 < q < p, n ≥ 3, while k is 

an additional positive integer. It is enough for proving the Fermat’s Conjecture to 

look only at Eq. (19). Wherein, no matter what the value of (2kpq) is, there will be no 

integer value for b because of the power 2/n at -.(2��)/
 �⁄ . Furthermore, no matter 

what the value of -.��/
 �⁄  will be, b will not be an integer number because 2
 �⁄  is 

an irrational number. This is adequate to affirm that for n > 2, the values of a, b, c 

discovered with Eqs. (17-20) will not simultaneously be all positive integers. 

Therefore, the Fermat’s Conjecture holds true in the Domain of Natural Numbers 

wherein the Eq. (1) does not have a solution for positive integer values of a, b, c, n 

when n > 2.  

 

4.4 Incorporating a New Integer in Eq. (1) 

For a < b < c and n ≥ 3, another approach is to discover, e.g., whether b will be an 

integer when c = a + d and a, c, d are the known integers. Then, Eq. (1) becomes: 

 

�� + �� =  (� + 0)� 

then 

21) 

 

� =  � "�1 +  0��� − 1#
� �⁄

 

and 

22) 

� = -(� + 0)� −  ��/� �⁄ =  
 

=  1!��2�0 +  !(! − 1)
2! ��2
0
 + ⋯ + !�0�2� +  0�5

� �⁄
 

23) 
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In the Domain of Natural Numbers, b is the dimension of an equally-shaped spatial 

body with volume bn space units and unit subsection having an space units. The 

removal of a unit subsection from an equally-shaped spatial body with volume (a + 

d)n space units leaves a number of space units that cannot be finitely divided into an 

integer number of identical unit subsections needed for the new equally-shaped spatial 

body.  

The multiplication of an integer or rational number with an irrational number gives 

an irrational number. Saying it differently from Eq. (22), the dimension b cannot be 

an integer number because 6�1 +  7
8�� − 19� �⁄

is an irrational number; that is, not an 

integer number. Therefore, the spatial units in the resulting spatial body cannot be 

arranged in a way that the spatial body will be equally-shaped, having a dimension b 

equal to an integer number, and containing an integer number bn of spatial units.  

In addition, whatever is the value of the sum inside the bracket in Eq. (23), it 

cannot give an integer value for b because an has been cancelled out and the power of 

the big bracket is 1/n. Which means that b will be an irrational number, so not an 

integer. Thus, Eq. (1) cannot be true for simultaneous integer values for a, b, c and n 

≥ 3 in the Domain of Natural Numbers. This is proof of the Fermat’s Conjecture. 

 

4.5 Incorporating a Multiple in Eq. (1) 

Having a < b < c and n ≥ 3, any such three numbers in the series of natural 

numbers may relate in pairs in the forms of c = ga and b = ha. The positive 

coefficients g, h are larger than one. They can be integers (e.g., a =  3, c = 9, then g = 

9/3 = 3; and e.g., a = 3, b = 6, thus h = 6/3 = 2) or non-integers (e.g., a =  3, c = 8, 

then g = 8/3 > 1; and e.g., a = 3, b = 5, thus h = 5/3 > 1). The search for the proof 

means to discover, using Eq. (1), whether the third term can be an integer when the 

two other terms are integers. 

Let’s take the case of c = ga with g >1. It means that the positive integers a, c are 

known and the discovery will be whether b can be another natural number. Now, Eq. 

(1) appears in the following form: 

��  + ��  =  (:�)� 24) 

then 

� =  �(:� − 1)� �⁄  

 

25) 

With g being either an integer or a non-integer, since gn = ggggggg… n-times and 

(gn – 1) < gn by one, then gn – 1 = egn-1 = gn(e/g), where 1 < e < g or ae < c. The 

quantity e is a non-integer because:  
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; =  :� − 1
:�2�  

 

26) 

Then, the Eq. (25) becomes: 

� = � �:�  ;
:�� �⁄ = �: �;

:�� �⁄ = � �;
:�� �⁄ = 

 

=  (��2��;)� �⁄ =  �� �⁄  �(�2�) �⁄  ;� �⁄  

27) 

While the multiplication of an integer with a non-integer can give either an integer 

or a non-integer number, the Eq. (27) produces only a non-integer value for b. 

Because of no matter whether (��2��;) will give an integer value or not, its power 

1/n omit the option that b will have an integer value. The multiplication of an integer 

or rational number with an irrational number gives an irrational number. It explicitly 

means that b cannot be an integer because �<
=�� �⁄

 is an irrational number; so, 

confirming the Fermat’s Conjecture in the Domain of Natural Numbers. 

The proof of the Fermat’s Conjecture that concluded by using Eqs. (12 - 27) make 

evident that for a < b < c and n ≥ 3 it stays true in the Domain of Natural Numbers 

only. Whereas a general Eq. (1) has its field of the degrees of freedom in the Domain 

of Line where a, b, c, n can be real or complex numbers. In the Domain of Line, Eq. 

(1) can be analysed with all possible mathematical, geometrical, algebraic, analytical, 

complex and imaginary tools. In the Domain of Line, the Eq. (1) is not the Fermat’s 

Conjecture anymore.  

 

5   Conclusion 

A mathematical conjecture or any formula and equation needs be first defined to 

which Domain it belongs: to the Domain of Natural Numbers or the Domain of Line. 

Then, this will determine the point of view and tools directed to the analysed 

conjecture or equation. If a conjecture or equation is entirely on natural numbers (it is 

inside the Domain of Natural Numbers), then the mathematical tools should be 

extracted from the Domain of Natural Numbers. If a conjecture or equation gets 

defined for the Domain of Line, then the precise tools should be derived from the 

Domain of Line and the Domain of Natural Numbers if they fit.  

The Fermat’s Last Theorem preserves its original identity if it is proved within the 

Domain of Natural Numbers and with mathematical tools from this Domain. Pierre de 

Fermat was correct that Eq. (1) having positive integers a, b, c, n cannot be possible 

for n > 2. However, he missed defining both in which Domain he was conjuring the 
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Eq. (1) and any relationship among numbers a, b, c, n. It took 382 years to outline and 

prove the Fermat Last Theorem correctly. 
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