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Abstract

In this paper, we introduce the concepts of homomorphism of type 1, 2 and
3 and good homomorphism . Then we investigate some properties of them.
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1 Introduction and Preliminaries

The concept of hyperstructure was first introduced by Marty [13] in 1934 . He
defined hypergroups and began to analysis their properties and applied them to
groups and rational algebraic functions . Tallini introduced the notion of hyper-
vector spaces [14] , [15] and studied basic properties of them . Homomorphisms
of hypergroups are studied by several authers ([2] - [12]) . Since some kinds of
homomorphisms on hypergroup were defined , we encourage to define them on
hypervector spaces . In this paper , we introduce the concept of homomorphism
of type 1, 2 and 3. And give an example of a homomorphism that is not a ho-
momorphism of type 1, 2 and 3. We show that if f be a homomorphism of type
1, 2 and 3, then f is a homomorphism and every homomorphism of type 2 or 3
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is a homomorphism of type 1. Also, we define a good homomorphism and obtain
that every homomorphism of type 2 is a good homomorphism and every good
homomorphism is a homomorphism. Finally, w e prove that every onto strong
homomorphism is a good homomorphism.

Let us recall some definitions which are useful in our results .

Definition 1.1. A hypervector space over a field K is a quadruplet (V,+,0, K)
such that (V,+) is an abelian group and

o: K xV — PJ(V)

is a mapping of K X V into the power set of V (deprived of the empty set) , such
that

(a+b)ox C (aox)+ (box), Va,be K, Vx €V, (1)
ao(x+y) C (aox)+(aocy), Va€ K, Vr,y€eV, (2)
ao(box) = (ab)ox, Va,be K,Vz eV, (3)

r € lox, VxelV, 4)
ao(—x) = —aox, Ya€e K, VreV. 5)

Definition 1.2. Ler (
subspace of V', if

<

.+,0, K) be a hypervector space . Then H C V is a

1) the zero vector, 0, isin H ,
2) UV eH, thenU+V e H,

3) Ue Hre K,thenroU C H .

Definition 1.3. Ler (V, +, 0, K) and (W, ®, *, K) be two hypervector spaces . A

mapping
f: V=W

is called

1) a homomorphism , if Vr € K, Vx,y e V :

flzt+y) = [fl@) f(y), (6)

flroz) C rxf(x). (7)
2) a strong homomorphism, if Vr € K, VYx,y € V :

flet+y) = f@) & f(y), (8)

flroxz) = rxf(x). 9)
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2 The main results

In this paper, the ground field of a hypervector space V' is presented with K,
This field is usually considered by R or C. Let (V,+,0) and (W, ®, %) be two
hypervector spaces and f : V' — W be a mapping. We employ for simplicity of
notation z; = f~!(f(z)) and for a subset A of V, Ay = f~1(f(A)) = U{z; :
x € A}

Lemma 2.1. Letr € K and x € V. Then the following statements are valid:

i) rox C(roux)y,

ii) ror Crouxy,
iii) (rox); C (rowxy)y,
) roxy C (roxy)y.

Definition 2.1. Let (V,+, 0, K) and (W, @, x, K') be two hypervector spaces and
f:V — W be amap such that f(x +y) = f(z) ® f(y),forall a,b € V. Then,
foranyr € K and x,y €V, f is called a homomorphism of

i) type 1, if f7H(r* f(x)) = (roxy)y,
ii) type 2, if f'(rx f(x)) = (rox)y,
iii) type 3, if f~'(r % f(x)) = (roxy).

Theorem 2.1. Let (V,+,0, K) and (W, ®, x, K) be two hypervector spaces, A
be a non-empty subset of V and f : V. — W be a map such that f(a + b) =
f(a) ® f(b), forall a,b € V. Then, f is a homomorphism of

i) type 1 implies f(rx f(A)) = (ro Ay);.
ii) type 2 implies f~'(r x f(A)) = (ro A)y,
iii) type 3 implies f~*(r x f(A)) = (ro Ay).
Proof. Each part is established by a straightforward set theoretic argument. [

Example 2.1. Let (W, +,-, K) be a classical vector space, P be a proper sub-
space of W, Wy = (W, +, -, K) and Wy = (W, ®,0,K) thatroa = r-a+ P for
r € K and a € W. Then Wy and W5 are hypervector spaces.

Let f : Wy — W, be the function defined by f(x) = k - x, where k € K. We show

87



Elham Zangiabadi and Zohreh Nazari

that f is a homomorphism, but not a homomorphism of type 1, 2 and 3.

For every r € K and x € W, we have
f(r-z)=rk-xCrk-a+ P =ro f(x).

Thus f is a homomorphism. Since f is one to one, we obtain vy = x, for x € W.
It followes that

(r-xp)p=(r-a)y=_(r-z) = (r-z).
On the other hand,

frfrof(@)=fkr -2+ P)={teW,: f(t) €Ekr-x+ P}

={teW:k-tekr-o+P}={teW,:k-t—kr-z€ P}

Hence,
o f(z) # 7w
Therefore, f is not a homomorphism of type 1, 2 and 3.

Theorem 2.2. Let (V,+,0, K) and (W, ®, x, K) be two hypervector spaces and
f V. — W be a homomorphism of type n, for n=1,2,3. Then [ is a homomor-
phism map.

Proof. If f be a homomorphism of type 1. Then by using Lemma 2.1, we have
flrox) C f(rowxy) C f(rowys)s) = f(f7'(r*f(z)) Srx*fla).

Suppose f is a homomorphism of type 2. Then

flroxz) C f((row)p) = f(f7'(r* f(x)) Crx* f(z).

Similarly, if f is a homomorphism of type 3, then

flrox) C f(rowy) = f(f7'(rx* f(x))) Crx* f(z).

Lemma 2.2. Let f be a homomorphism. Then
(rowys)y C f7(r* f(2)).
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Proof. Since f is a homomorphism, for all » € K and x € V, we have
flroxy) Crx f(xy).
Since r * f(xy) = r* f(f1(f(x)) C r=* f(x), hence, f(roxs) C rx* f(x).
Therefore,
(roxp)y C fH(r* f(x)).
O]

Proposition 2.1. Let (V,+,0, K) and (W, ®, x, K) be two hypervector spaces
and f .V — W be a homomorphism of type 2 or 3. Then fis a homomorphism

of type 1.

Proof. Suppose thatr € K,z € V and f : V — W be a homomorphism of type
2, then by Lemma 2.2 we have

(roa); C(rows); C [~ (r*f(x)) = (rox);.
Similarly, if f is a homomorphism of type 3, then
roxy C(roxs); C fl(rxf(z)) =rox;.
]

Proposition 2.2. Let (V,+,0, K) and (W, +®, *, K) be two hypervector spaces
and f 'V — W be an onto mapping. Then, givenr € K and x € V, f is a
homomorphism of

i) type 1 ifand only if f(r o z;) = r* f(x),
i) type 2 if and only if f(r o z) = r * f(x).
Proof. Since f is onto, we obtain
FI7H = f(x) =7 * f(a).
Thus, (i) and (i) are trivial. N

Corolary 2.1. Let (V,+,0, K) and (W, ®, %, K) be two hypervector spaces, A
and B be non-empty subsets of V and f : V — W be an onto mapping.Then, f is
homomorphism of

i) type I implies f(r o Ay) =1 f(A),
ii) type 2 implies f(ro A) =rx f(A).
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Remark 2.1. On onto homomorphisms between hypervector spaces, a homomor-
phism of type 2 is equivalent with a strong homomorphism.

Theorem 2.3. Let (Vi,+1,01, K), (Va, 42,09, K) and (V3, +3, 03, K) be hyper-
vector spaces. Forn = 1,2, 3, let f be a homomorphism of type n of Vi onto V,
and g be a homomorphism of type n of Vy onto V3. Then, gf is a homomorphism
of type n of Vi onto V5.

Proof. Letz,y € V. Wehave gf(z+1y) = g(f(x) +2 f () = 9/ (x) +39/(y))-
One can easily seen that z,; = f~(f(2),).
Let n = 1. By above relation, we obtain

gf(roags) =gf(ro f(f(x)g)).

Since f is onto, there exists a subset A of V such that f(A) = f~'(f(z),). By
Corollary 2.1, we obtain

gf(roy f7H(f(2)g)) = g(r 02 f(2),).
Then, by Proposition 2.2, we have
g(rog f(x)g) =1 o3 gf(x).

Let n = 2. Similar to the previous case, but simpler.
Let n = 3. Since g is of type 3,

(9f) " (ros (9f) (@) = [T g™ r o5 (gf)(@)) = [ (r * f(x),)-

Since f is onto, the item (iii) of Theorem 2.1 implies

JHr oy f(x)g) =701 fﬁl(f@)g) =T O1Xgf.

Definition 2.2. Leta € V and r € K. We define
a/r={z eV :aerox}.

Proposition 2.3. Let (V,+,0, K) and (Va, ®, %, K) be two hypervector spaces.
If f : Vi — V5 be an onto mapping. Then we have

1) f(a/r) = f(a)/r,if f is a homomorphism of type 2.
2) f(a)/r C f(ay)/r, if f is a homomorphism of type 3.
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Proof. 1) We know that an onto homomorphism of type 2 is a strong homomor-
phism. Suppose that y € f(a/r). Then, there exists ¢ € a/r such that f(t) = y,
soa € rotand f(a) € r* f(t). It implies that y = f(¢) € f(a)/r. Therefore,
f(a/r) C f(a)/r. Note that the inverse inclusion is always true. 2) If y € f(a)/r,
there is ¢ € V; such that f(¢) = y. Since f is homomorphism of type 3, we have
ay € roty, which means that t; € ay/r, therefore y € f(ays)/r. O

Definition 2.3. Let (V,+, 0, K) and (W, x, ®, K) be two hypervector spaces and
f:V — W be a map such that f(a + b) = f(a) ® f(b). Then f is called a good
homomorphism if

fla/r) = fla)/r,
foranya, be Vandr € K.

Remark 2.2. According to Proposition 2.3, if f is a homomorphism of type 2,
then f is a good homomorphism.

Theorem 2.4. Let (V,+,0, K) and (W, ®, %, K) be two hypervector spaces. If
f:V = W be a good homomorphism then, f is a homomorphism.

Proof. Letr € K anda € V5. If y € f(roa), then, there exists ¢ € r oa such that
y = f(t). Hence, f(a) € f(t/r) = f(t)/r. Abviously, y = f(t) € r* f(a). O

Theorem 2.5. Let (Vi,+1,01, K), (Va, 42,09, K), and (V3,+3, 03, K) be hyper-
vector spaces. Let f be a good homomorphism of Vi to Vo and g be a good
homomorphism of V5 to V. Then, gf is a good homomorphism of Vi to V.

Proof. Forevery r € K and a € Vi, we have
9f(a/r) = g(f(a)/r) = gf(a)/r.
O

Proposition 2.4. Let V and W be two hypervector spaces over K and f : V — W
be a good homomorphism. Then

JA/K) = f(A)/ K,
where ACVand A/K = J{a/r :a € A;r € K}.

Proof. Lety € f(A/K). There exist r € K and a € A such thaty € f(a/r) =
f(a)/r C f(A)/K. Conversely, let y € f(A)/k. Then, there exist r € k and
a € Vsuchthaty € f(a)/r = f(a/r)andsoy € f(A/K). O

Theorem 2.6. Let (V,+, 0, K) and (W, ®, %, K) be two hypervector spaces, | be
onto strong homomorphism from V to W. Then f is a good homomorphism.
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Proof. Let f(t) € f(x/r). Sox € rot. It followes that f(¢) € f(x)/r. Therefore
fx/r) C f(z)/r.

On the other hand, let y € f(x)/r. Since f is an onto mapping, there exists a
t € V such that y = f(t). Hence, f(z) € r* f(t) = f(rot). Thusx € r ot and
then we have t € z/r and y = f(t) € f(x/r). Therefore f(z)/r C f(x/r). This

implies that f(x/r) = f(x)/r.

]
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