Some Kinds of Homomorphisms on Hypervector Spaces

ISSN: 1592-7415

eISSN: 2282-8214

Elham Zangiabadi, Zohreh Nazari†

Received: 24-05-2018 . Accepted: 24-06-2018. Published: 30-06-2018

doi: 10.23755/rm.v34i0.416

Abstract

In this paper, we introduce the concepts of homomorphism of type 1, 2 and 3 and good homomorphism. Then we investigate some properties of them. **Keywords**: Hypervector space, Homomorphism, Homomorphism of type 1, 2 and 3, good homomorphism.

2010 AMS subject classifications: 20N20, 22A30.

1 Introduction and Preliminaries

The concept of hyperstructure was first introduced by Marty [13] in 1934. He defined hypergroups and began to analysis their properties and applied them to groups and rational algebraic functions. Tallini introduced the notion of hypervector spaces [14], [15] and studied basic properties of them. Homomorphisms of hypergroups are studied by several authers ([2] - [12]). Since some kinds of homomorphisms on hypergroup were defined, we encourage to define them on hypervector spaces. In this paper, we introduce the concept of homomorphism of type 1, 2 and 3. And give an example of a homomorphism that is not a homomorphism of type 1, 2 and 3. We show that if f be a homomorphism of type 1, 2 and 3, then f is a homomorphism and every homomorphism of type 2 or 3

^{*}Department of Mathematics, Vali-e-asr University, Rafsangan, Iran. e.zangiabadi@vru.ac.ir

[†]Department of Mathematics, Vali-e-asr University, Rafsangan, Iran. z.nazari@vru.ac.ir

Elham Zangiabadi and Zohreh Nazari

is a homomorphism of type 1. Also, we define a good homomorphism and obtain that every homomorphism of type 2 is a good homomorphism and every good homomorphism is a homomorphism. Finally, we prove that every onto strong homomorphism is a good homomorphism.

Let us recall some definitions which are useful in our results.

Definition 1.1. A hypervector space over a field K is a quadruplet $(V, +, \circ, K)$ such that (V, +) is an abelian group and

$$\circ: K \times V \to P_*(V)$$

is a mapping of $K \times V$ into the power set of V (deprived of the empty set), such that

$$(a+b) \circ x \subseteq (a \circ x) + (b \circ x), \quad \forall a, b \in K, \ \forall x \in V, \tag{1}$$

$$a \circ (x+y) \subseteq (a \circ x) + (a \circ y), \quad \forall a \in K, \ \forall x, y \in V,$$
 (2)

$$a \circ (b \circ x) = (ab) \circ x, \quad \forall a, b \in K, \ \forall \ x \in V,$$
 (3)

$$x \in 1 \circ x, \quad \forall x \in V, \tag{4}$$

$$a \circ (-x) = -a \circ x, \quad \forall a \in K, \ \forall x \in V.$$
 (5)

Definition 1.2. Let $(V, +, \circ, K)$ be a hypervector space. Then $H \subseteq V$ is a subspace of V, if

- 1) the zero vector, 0, is in H,
- 2) $U, V \in H$, then $U + V \in H$,
- 3) $U \in H, r \in K$, then $r \circ U \subseteq H$.

Definition 1.3. Let $(V, +, \circ, K)$ and $(W, \oplus, *, K)$ be two hypervector spaces . A mapping

$$f:V\to W$$

is called

1) a homomorphism, if $\forall r \in K, \ \forall x, y \in V$:

$$f(x+y) = f(x) \oplus f(y), \tag{6}$$

$$f(r \circ x) \subseteq r * f(x). \tag{7}$$

2) a strong homomorphism, if $\forall r \in K, \ \forall x, y \in V$:

$$f(x+y) = f(x) \oplus f(y), \tag{8}$$

$$f(r \circ x) = r * f(x). \tag{9}$$

2 The main results

In this paper, the ground field of a hypervector space V is presented with K, This field is usually considered by $\mathbb R$ or $\mathbb C$. Let $(V,+,\circ)$ and $(W,\oplus,*)$ be two hypervector spaces and $f:V\to W$ be a mapping. We employ for simplicity of notation $x_f=f^{-1}(f(x))$ and for a subset A of V, $A_f=f^{-1}(f(A))=\bigcup\{x_f:x\in A\}$.

Lemma 2.1. Let $r \in K$ and $x \in V$. Then the following statements are valid:

- i) $r \circ x \subseteq (r \circ x)_f$,
- *ii)* $r \circ x \subseteq r \circ x_f$,
- iii) $(r \circ x)_f \subseteq (r \circ x_f)_f$,
- *iv*) $r \circ x_f \subseteq (r \circ x_f)_f$.

Definition 2.1. Let $(V, +, \circ, K)$ and $(W, \oplus, *, K)$ be two hypervector spaces and $f: V \to W$ be a map such that $f(x + y) = f(x) \oplus f(y)$, for all $a, b \in V$. Then, for any $r \in K$ and $x, y \in V$, f is called a homomorphism of

- i) type 1, if $f^{-1}(r * f(x)) = (r \circ x_f)_f$,
- *ii)* type 2, if $f^{-1}(r * f(x)) = (r \circ x)_f$,
- iii) type 3, if $f^{-1}(r * f(x)) = (r \circ x_f)$.

Theorem 2.1. Let $(V, +, \circ, K)$ and $(W, \oplus, *, K)$ be two hypervector spaces, A be a non-empty subset of V and $f: V \to W$ be a map such that $f(a + b) = f(a) \oplus f(b)$, for all $a, b \in V$. Then, f is a homomorphism of

- i) type 1 implies $f^{-1}(r * f(A)) = (r \circ A_f)_f$,
- ii) type 2 implies $f^{-1}(r*f(A)) = (r \circ A)_f$,
- iii) type 3 implies $f^{-1}(r * f(A)) = (r \circ A_f)$.

Proof. Each part is established by a straightforward set theoretic argument. \Box

Example 2.1. Let $(W, +, \cdot, K)$ be a classical vector space, P be a proper subspace of W, $W_1 = (W, +, \cdot, K)$ and $W_2 = (W, \oplus, \circ, K)$ that $r \circ a = r \cdot a + P$ for $r \in K$ and $a \in W$. Then W_1 and W_2 are hypervector spaces.

Let $f: W_1 \to W_2$ be the function defined by $f(x) = k \cdot x$, where $k \in K$. We show

Elham Zangiabadi and Zohreh Nazari

that f is a homomorphism, but not a homomorphism of type 1, 2 and 3.

For every $r \in K$ and $x \in W_1$ we have

$$f(r \cdot x) = rk \cdot x \subsetneq rk \cdot x + P = r \circ f(x).$$

Thus f is a homomorphism. Since f is one to one, we obtain $x_f = x$, for $x \in W$. It follows that

$$(r \cdot x_f)_f = (r \cdot x)_f = (r \cdot x_f) = (r \cdot x).$$

On the other hand,

$$f^{-1}(r \circ f(x)) = f^{-1}(kr \cdot x + P) = \{t \in W_1 : f(t) \in kr \cdot x + P\}$$

$$= \{ t \in W_1 : k \cdot t \in kr \cdot x + P \} = \{ t \in W_1 : k \cdot t - kr \cdot x \in P \}.$$

Hence,

$$f^{-1}(r \circ f(x)) \neq r \cdot x$$
.

Therefore, f is not a homomorphism of type 1, 2 and 3.

Theorem 2.2. Let $(V, +, \circ, K)$ and $(W, \oplus, *, K)$ be two hypervector spaces and $f: V \to W$ be a homomorphism of type n, for n=1,2,3. Then f is a homomorphism map.

Proof. If f be a homomorphism of type 1. Then by using Lemma 2.1, we have

$$f(r \circ x) \subseteq f(r \circ x_f) \subseteq f((r \circ x_f)_f) = f(f^{-1}(r * f(x)) \subseteq r * f(x).$$

Suppose f is a homomorphism of type 2. Then

$$f(r \circ x) \subseteq f((r \circ x)_f) = f(f^{-1}(r * f(x)) \subseteq r * f(x).$$

Similarly, if f is a homomorphism of type 3, then

$$f(r \circ x) \subseteq f(r \circ x_f) = f(f^{-1}(r * f(x))) \subseteq r * f(x).$$

Lemma 2.2. Let f be a homomorphism. Then

$$(r \circ x_f)_f \subseteq f^{-1}(r * f(x)).$$

Proof. Since f is a homomorphism, for all $r \in K$ and $x \in V$, we have

$$f(r \circ x_f) \subseteq r * f(x_f).$$

Since $r * f(x_f) = r * f(f^{-1}(f(x)) \subseteq r * f(x)$, hence, $f(r \circ x_f) \subseteq r * f(x)$. Therefore,

$$(r \circ x_f)_f \subseteq f^{-1}(r * f(x)).$$

Proposition 2.1. Let $(V, +, \circ, K)$ and $(W, \oplus, *, K)$ be two hypervector spaces and $f: V \to W$ be a homomorphism of type 2 or 3. Then f is a homomorphism of type I.

Proof. Suppose that $r \in K$, $x \in V$ and $f : V \to W$ be a homomorphism of type 2, then by Lemma 2.2 we have

$$(r \circ x)_f \subseteq (r \circ x_f)_f \subseteq f^{-1}(r * f(x)) = (r \circ x)_f.$$

Similarly, if f is a homomorphism of type 3, then

$$r \circ x_f \subseteq (r \circ x_f)_f \subseteq f^{-1}(r * f(x)) = r \circ x_f.$$

Proposition 2.2. Let $(V, +, \circ, K)$ and $(W, +\oplus, *, K)$ be two hypervector spaces and $f: V \to W$ be an onto mapping. Then, given $r \in K$ and $x \in V$, f is a homomorphism of

- i) type 1 if and only if $f(r \circ x_f) = r * f(x)$,
- ii) type 2 if and only if $f(r \circ x) = r * f(x)$.

Proof. Since f is onto, we obtain

$$ff^{-1}(r * f(x)) = r * f(x).$$

Thus, (i) and (ii) are trivial.

Corolary 2.1. Let $(V, +, \circ, K)$ and $(W, \oplus, *, K)$ be two hypervector spaces, A and B be non-empty subsets of V and $f: V \to W$ be an onto mapping. Then, f is homomorphism of

- i) type 1 implies $f(r \circ A_f) = r * f(A)$,
- ii) type 2 implies $f(r \circ A) = r * f(A)$.

Remark 2.1. On onto homomorphisms between hypervector spaces, a homomorphism of type 2 is equivalent with a strong homomorphism.

Theorem 2.3. Let $(V_1, +_1, \circ_1, K)$, $(V_2, +_2, \circ_2, K)$ and $(V_3, +_3, \circ_3, K)$ be hypervector spaces. For n = 1, 2, 3, let f be a homomorphism of type n of V_1 onto V_2 and g be a homomorphism of type n of V_2 onto V_3 . Then, gf is a homomorphism of type n of V_1 onto V_3 .

Proof. Let $x, y \in V$. We have $gf(x+_1y) = g(f(x)+_2f(y)) = gf(x)+_3gf(y))$. One can easily seen that $x_{gf} = f^{-1}(f(x)_g)$.

Let n = 1. By above relation, we obtain

$$gf(r \circ x_{af}) = gf(r \circ f^{-1}(f(x)_a)).$$

Since f is onto, there exists a subset A of V such that $f(A) = f^{-1}(f(x)_g)$. By Corollary 2.1, we obtain

$$gf(r \circ_1 f^{-1}(f(x)_q)) = g(r \circ_2 f(x)_q).$$

Then, by Proposition 2.2, we have

$$g(r \circ_2 f(x)_g) = r \circ_3 gf(x).$$

Let n=2. Similar to the previous case, but simpler.

Let n = 3. Since g is of type 3,

$$(gf)^{-1}(r\circ_3(gf)(x))=f^{-1}g^{-1}r\circ_3(gf)(x))=f^{-1}(r*f(x)_g).$$

Since f is onto, the item (iii) of Theorem 2.1 implies

$$f^{-1}(r \circ_2 f(x)_g) = r \circ_1 f^{-1}(f(x)_g) = r \circ_1 x_{gf}.$$

Definition 2.2. Let $a \in V$ and $r \in K$. We define

$$a/r = \{x \in V : a \in r \circ x\}.$$

Proposition 2.3. Let $(V_1, +, \circ, K)$ and $(V_2, \oplus, *, K)$ be two hypervector spaces. If $f: V_1 \to V_2$ be an onto mapping. Then we have

- 1) f(a/r) = f(a)/r, if f is a homomorphism of type 2.
- 2) $f(a)/r \subseteq f(a_f)/r$, if f is a homomorphism of type 3.

Proof. 1) We know that an onto homomorphism of type 2 is a strong homomorphism. Suppose that $y \in f(a/r)$. Then, there exists $t \in a/r$ such that f(t) = y, so $a \in r \circ t$ and $f(a) \in r * f(t)$. It implies that $y = f(t) \in f(a)/r$. Therefore, $f(a/r) \subset f(a)/r$. Note that the inverse inclusion is always true. 2) If $y \in f(a)/r$, there is $t \in V_1$ such that f(t) = y. Since f is homomorphism of type 3, we have $a_f \in r \circ t_f$, which means that $t_f \in a_f/r$, therefore $y \in f(a_f)/r$.

Definition 2.3. Let $(V, +, \circ, K)$ and $(W, *, \oplus, K)$ be two hypervector spaces and $f: V \to W$ be a map such that $f(a + b) = f(a) \oplus f(b)$. Then f is called a good homomorphism if

$$f(a/r) = f(a)/r,$$

for any $a, b \in V$ and $r \in K$.

Remark 2.2. According to Proposition 2.3, if f is a homomorphism of type 2, then f is a good homomorphism.

Theorem 2.4. Let $(V, +, \circ, K)$ and $(W, \oplus, *, K)$ be two hypervector spaces. If $f: V \to W$ be a good homomorphism then, f is a homomorphism.

Proof. Let $r \in K$ and $a \in V_1$. If $y \in f(r \circ a)$, then, there exists $t \in r \circ a$ such that y = f(t). Hence, $f(a) \in f(t/r) = f(t)/r$. Abviously, $y = f(t) \in r * f(a)$.

Theorem 2.5. Let $(V_1, +_1, \circ_1, K)$, $(V_2, +_2, \circ_2, K)$, and $(V_3, +_3, \circ_3, K)$ be hypervector spaces. Let f be a good homomorphism of V_1 to V_2 and g be a good homomorphism of V_2 to V_3 . Then, gf is a good homomorphism of V_1 to V_3 .

Proof. For every $r \in K$ and $a \in V_1$, we have

$$gf(a/r) = g(f(a)/r) = gf(a)/r.$$

Proposition 2.4. Let V and W be two hypervector spaces over K and $f:V\to W$ be a good homomorphism. Then

$$f(A/K) = f(A)/K,$$

where $A \subseteq V$ and $A/K = \bigcup \{a/r : a \in A, r \in K\}.$

Proof. Let $y \in f(A/K)$. There exist $r \in K$ and $a \in A$ such that $y \in f(a/r) = f(a)/r \subseteq f(A)/K$. Conversely, let $y \in f(A)/k$. Then, there exist $r \in k$ and $a \in V$ such that $y \in f(a)/r = f(a/r)$ and so $y \in f(A/K)$.

Theorem 2.6. Let $(V, +, \circ, K)$ and $(W, \oplus, *, K)$ be two hypervector spaces, f be onto strong homomorphism from V to W. Then f is a good homomorphism.

Proof. Let $f(t) \in f(x/r)$. So $x \in r \circ t$. It follows that $f(t) \in f(x)/r$. Therefore $f(x/r) \subseteq f(x)/r$.

On the other hand, let $y \in f(x)/r$. Since f is an onto mapping, there exists a $t \in V$ such that y = f(t). Hence, $f(x) \in r * f(t) = f(r \circ t)$. Thus $x \in r \circ t$ and then we have $t \in x/r$ and $y = f(t) \in f(x/r)$. Therefore $f(x)/r \subseteq f(x/r)$. This implies that f(x/r) = f(x)/r.

References

- [1] R. Ameri, O. R. Dehghan, *On dimension of hypervector spaces*, Eur. J. Pure Appl. Math, 1 (2008), 32-50.
- [2] P. Corsini, *Recent results in the theory of hypergroups*, Boll. Unione Mat. Ital. (9), 2 (1983), 133-138.
- [3] P. Corsini, V. Leoreanu, *Applications of hyperstructure theory*, Kluwer Academic Publishers, Advances in Mathematics, 2003.
- [4] B. Davvaz, *Isomorphism theorems of polygroups*, Bull. Malays. Math. Sci. Soc. (2), 33 (2010), 385-392.
- [5] B. Davvaz, *Groups in polygroups*, Iran. J. Math. Sci. Inform., 1 (2006), 25-31.
- [6] J. E. Eaton, *Theory of cogroups*, Duke Math. J., 6 (1940), 101-107.
- [7] D. Freni, Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory, Comm. Algebra, 32 (2004), 969-988.
- [8] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra, 30 (2002), 3977-3989.
- [9] T. W. Hungerford, *Algebra, graduate texts in mathematics*, 73. Springer-Verlag, New York-Berlin, 1980.
- [10] J. Jantosciak, *Homomorphisms, equivalences and reductions in hypergroups*, Riv. Mat., 9 (1991), 23-47.
- [11] M. Koskas, *Groupoides, demi-hypergroupes et hypergroupes.* (French), J. Math. Pures Appl. (9), 49 (1970), 155-192.
- [12] M. Krasner, A class of hyperrings and hyperfiels, internat. J. Math. Math. Sci., 6 (1983), 307-311.

Some Kinds of Homomorphisms on Hypervector Spaces

- [13] F. Marty, *Sur nue generalization de la notion do group*, 8nd congress of the Scandinavic Mathematics, Stockholm, (1934), 45-49.
- [14] M. S. Tallini, Weak hypervector space and norms in such spaces, Algebraic Hyper Structurs and Applications, Jast, Rumania, Hadronic Press, (1994), 199-206.
- [15] M. S. Tallini, *Hypervector spaces*, Proceedings of the fourth international congress of algebraic hyperstructures and applications, Xanthi, Greece, (1990), 167-174.