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Abstract

The purpose of this paper is the study of multivalued linear trans-
formations of hypervector spaces (or hyperspaces) in the sense of
Tallini. In this regards first we introduce and study various multi-
valued linear transformations of hyperspaces and then constitute the
categories of hyperspaces with respect the different linear transforma-
tions of hyperspaces as the morphisms in these categories. Also, we
construct some algebraic hyperoperations on Hom g (V, W), the set of
all multivalued linear transformations from a hyperspace V into hy-
perspaces W, and obtaine their basic properties. Finally, we construct
the fundamental functor F' from HV g, category of hyperspaces over
field K into Vg, the category of clasical vector space over K.
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1 Introduction

The theory of algebraic hyperstructures is a well-established branch of
classical algebraic theory. Hyperstructure theory was first proposed in 1934
by Marty, who defined hypergroups and began to investigate their properties
with applications to groups, rational fractions and algebraic functions [15]. Tt
was later observed that the theory of hyperstructures has many applications
in both pure and applied sciences; for example, semi-hypergroups are the
simplest algebraic hyperstructures that possess the properties of closure and
associativity. The theory of hyperstructures has been widely reviewed ([11],
[12], [13],[14] and [20])( for more see [2, 3, 5, 6, 7, 8, 9]).

M.S. Tallini introduced the notion of hyperspaces(hypervector spaces)
([17], [18] and [19]) and studied basic properties of them. R. Ameri and O.
Dehghan [2] introduced and studied dimension of hyperspaces and in [16]
M. Motameni et. el. studied hypermatrix. R. Ameri in [1] introduced and
studied categories of hypermodules. In this paper we introduce and study
various types of multivalued linear transformations of hyperspaces. We will
proceed by constructing various categories of hyperspaces based on various
multilinear linear transformations of hyperspaces. Also, we construct some
hyperalgebraic structures on (Homg (V, W). Finally, we construct the fundu-
mental functor from category of hyperspaces and multilinear transformations,
as morphisms into the category of vectorspces.

2 Preliminaries

The concept of hyperspace, which is a generalization of the concept of
ordinary vector space.

Definition 2.1. Let H be a set. A map . : H x H — P.(H) is called
hyperoperation or join operation, where P,(H) is the set of all non-empty
subsets of H. The join operation is extended to subsets of H in natural way,
so that A.B s given by

A.B:U{a.b:aeAandbeB}.

the notations a.A and A.a are used for {a}.A and A{a} respectively. Gen-
erally, the singleton {a} is identified by its element a.

Definition 2.2. [17] Let K be a field and (V,+) be an abelian group. We
define a hyperspace over K to be the quadrupled (V,+,0, K), where o is a
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mapping
o: K xV — PJ(V),

such that the following conditions hold:

(H)Vae K, Vz,yeV, ao(x+y) Caox+aoy, right distributive law,
(Hy)Va,be K, VxeV, (a+b)ox Caox+boux, left distributive law,
(H3) Va,be K, Yz €V, ao(box) = (ab) o x, associative law,
(H)Vae K, VeV, ao(—x)=(—a)oxr=—(aox),

(Hs) Vo eV, zelox.

Remark 2.3. (i) In the right hand side of (Hy) the sum is meant in the
sense of Frobenius, that is we consider the set of all sums of an element of

a o x with an element of a oy. Similarly we have in (Hs).
(1) We say that (V, 4,0, K) is anti-left distributive, if

Vabe K, VxeV, (a+b)oxDaox+boux,
and strongly left distributive, if
Vabe K, VxeV, (a+box=aocx+boz,

In a similar way we define the anti-right distributive and strongly right dis-
tributive hyperspaces, respectvely. V' is called strongly distributive if it is both
strongly left and strongly right distributive.

(1i1) The left hand side of (H3) means the set-theoretical union of all the sets
a oy, where y runs over the set box, i.e.

(iv) Let Qy = 000y, where Oy is the zero of (V,+), In [17] it is shown if V
is either strongly right or left distributive, then Qy is a subgroup of (V,+).

Let V be a hyperspace over a field K. W C V is a subhyperspace of V,
if
W#Q, W-WCW, Vae K, aoW CW.
Example 2.4. [2] Consider abelian group (R?, +). Define hyper-compositions

o:R xR — P,(R?)
ao(z,y) =axr xR

and
o:R xR? — P,(R?)
ao(z,y) =R x ay.
Then (R?,+,0,R) and (R%, +,0,R) are a strongly distributive hyperspaces.
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Example 2.5. [2] Let (V,+,.,K) be a classical vector space and P be a
subspace of V. Define the hyper-composition

{o:KxV—>P*(V)

aox =a.x+ P.
Then it is easy to verify that (V,+, 0, K) is a strongly distributive hyperspace.
Example 2.6. [?] In (R?, +) define the hyper-composition o as follows:

line ox if x # Oy
{Ov} Zf r = Ov,

where Oy = (0,0). Then (R?, +,0,R) is a strongly left, but not right distribu-
tive hyperspace.

Va € R,Vz € R? aox:{

Proposition 2.7. [?] Every strongly right distributive hyperspace is strongly
left distributive hyperspace. Let (V,+) be an abelian group, 2 a subgroup of
V and K a field such that W = V/Q is a classical vector space over K. If
p: V. — W is the canonical projection of (V,+) onto (W,+) and set:

{mev—uum
aox=p ap()).

Then (V,+,0,K) is a strongly distributive hyperspace over K. Moreover
every strongly distributive hyperspace can be obtained in such a way.

Proposition 2.8. [?] If (V,+,0,K) be a left distributive hyperspace, then
foralla e K and x € V

1) 0oz is a subgroup of (V,+);

2) Qy is a subgroup of (V,+);

3) CLOOV :QV :(IOQV;

4) Qy C0ouxy

S)r€lox<=lox=0o0x<=aox=00uz Vac€ K.

Remark 2.9. Let (V,+,0, K) be a hyperspace and W be a subhyperspace of
V. Consider the quotient abelian group (V/W,+). Define the rule

«: K x V/W —s P.(V/W)
(a,2+W)r—aox+W.

Then it is easy to verify that (V/W,+, %, K) is a hyperspace over K and it
15 called the quotient hyperspace of V' over W.
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3 Multivalued linear transformations

Definition 3.1. Let V and W be two hyperspaces over a field K. A mul-
twalued linear transformation (MLT) T : V. — P.(W) is a mapping such
that :

Ve,y € V,Va € K

1) T(x+y) CT(x) +T(y);

2) T(aox) CaoT(x);

3) T(—a) =—T(a).

Remark 3.2. (i) In Definition 3.1(1) and (2), if the equality holds, then T
is called a strong multivalued linear transformation (SMLT).

(13) In Definition 3.1, if we consider T as a mapping T : V. — W, then
15 1t is called a linear transformation. Here we consider only inclusion and
equality cases.

(13i) If T is a MLT, then 0 € T(x), since T(x) # 0, so Iy € T(x); 0 =
y—yeTl(x)—T(x)=T(x)+T(—x) =T(x+ (—x)) =T(x — z) = T(0).

Definition 3.3. [1] Let V' and W be two hyperspaces over a field K and
T:V — P(W) be a SMLT. Then multivalued kernel and multivalued
image of T', denoted by KerT and ImT', respectively, are defined as follows:

KerT ={zx eV | 0w € T(z)};

and
ImT ={ycW |yecT(x) for somex € V}.

Remark 3.4. (i) Note that KerT # (), by Remark 3.2(iii).

(it) For hyperspaces V- and W over a field K, by Homg(V,W) and
Homs(V,W), we mean the set of all MLT and SMLT, respectively and
sometimes we use morphism instead multivalued linear transformation, re-
spectively. Also, by homg(V,W) and hom3,(V,W), we mean the set of all
linear transformation LT and strong linear transformation SLT respectively
and sometimes we use morphism instead multivalued , respectively.

In the following we briefly introduced the categories of hyperspaces and
study the relationship between monomorphism, epimorphism, isomorphism
andmonic, epic and iso objects in these category.

Definition 3.5. The category of hyperspaces over a field K denoted by HV i
is defined as follows:
1) The objects of HV i are all hyperspaces over K ;
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2) For the objects V- and W of HVk, the set of all morphisms from V' to W
denoted by Homy (V, W), is the set of all MLT from V to W.

3) The composition ST : V. — P.(W) of morphisms T : V — P.(L) and
S: L — P, (W) is defined as follows:

ST(x)= ] S().

tel'(x)

4) For any object V, the morphism 1y : V. — P(V), © — {x} is the
identity. 5) The category of hyperspaces over a field K with (resp. SLT)LT
is denoted by ( resp. (Vi) (V-

Remark 3.6. If in Definition 3.5 part (2) we replace Homx (V, W) by Hom3,
(V,W), the set of all SMLT, then we will obtain a new category, which
it denotes by HVj.. In fact, HV5 = HVik (by A = B we mean A is a
subcategory of B). Also, denote the category of all vector spaces over a field
K by Vi. Clearly, Vi = (Vo < (Vi X HV% <X HV, (for more details see
[1))

Definition 3.7. Let T : V. — P, (W) be a SMLT of hyperspaces. We say
that T 1is weakly injective if

Vae,yeV, T(x)NT(y) # 0=z =y.
We say that T is strongly injective if
Ve,yeV, T(x)=T(y) =z =v.

Remark 3.8. Clearly, every weakly injective morphism is also strongly in-
jective. Note that T 1s strongly injective, means that T is injective as a
function with values in P,(W). In the following example we show that a
strongly injective morphism need not to be weakly injective.

Example 3.9. Consider the abelain group (R,+). Define a mapping

o:RxR— P(R)
aob={—ab,ab}.

Then (R, +,0,R) is a hyperspace. The mapping T : R — P.(R) defined
by T'(a) = {0,a} is a MLT, since T'(a +b) = {0,a + b} and T'(a) +T(b) =
{0,a} +{0,b} = {0,a,b,a + b}, so T(a+b) C T(a) +T(b). Also, T(ao
b) = Useao I'(x) = T'(—ab) UT(ab) = {0, —ab} U {0,ab} = {—ab,ab} and
aoT(b) =aoc{0,b} = U,cqopp @0z =ao00Uaob={0}U{—ab,ab}, hence
T(aob) = aoT(b). Then we have —T(a) = {—x : x € T(a)} = T(—a).
Clearly, T is strongly injective, but it is not weakly injective, as desired.
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Proposition 3.10. ([4]) Let V' and W be strongly left distributive hyper-
spaces such that [Lox| =1 for allx € V. If T : V — P,(W) is monic in
HV5, then T is strongly injective.

4 Hyperoperations on Homg(V, W)

Next we proceed to constructs some algebraic hyperstructures on Hom g
(V,W)(resp. Hom3, (V. W)), the set of all MLT (resp. SMLT) as well as
on homg (V, W) and hom3,(V,W)), the set of all linear transformation LT
(resp. strong linear transformation SLT') respectively and study some basic
properties of them.

We start by homg (V, W). Defin the operations & and @ on homg(V, W)
as follows:

TodS(x)=T(x)+S(x); and (aoT)(x)=aoT(x).

Clearly, in general 7'® S and aol’ are not members of homg (V, W), but they
are members of Homy(V,W). These shows that the study of multivalued
linear transformations are more useful than the linear transformations in a
hyperspace. As by Remark4.6 we can consider morphisms in homy(V, W)
as morphisms of Homg (V, W), we will prefer to work by multivalued linear
transformations as a general case. Also, for T' € Homy(V, W), —T is defined
by —T'(x) = =T'(x). Then the following holds:

Lemma 4.1. For S,T € Homg(V,W). The following statements are satis-

fies:

(¢) (Hom(V,W),®) is a monoid;

(i) 0 -T®T;

(1it) (Homg(V, W), ®, ©K), is a quasi vector space(that is a monoid (M, +)
by a function . : K x V. — V that satisfies the all axioms of a K-vector
space).

Proof. The proof is strightforward. O

Now we define a hyperoperation @, and operation ® on Homg (V, W) as
follows:

(T'© 8)(x) = {U] Ux) € T(x)+ S(x)}.
(aeT)(x)=aocT(z).
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Theorem 4.2. The following statements are satisfies for every S, T € Hom
(VW) and every a,b € K:

(1) (Homg(V,W),®) is a commutative hypergroup, with the zero map
as identity element ;

(1) (Homy(V,W),®) is a commutative hypergroup;

(i1i) (Homg(V,W),®,®,K) is a general hypervector space( that is a
commutative hypergroup with an scalar identity, together with function © :
K xV — V that satisfies the all azioms of a vector space over field K ).

Proof. The proof is routin and omitted. ]

5 Fundamental relation of hyperspaces

Let (V,+, 0, K') be a hypervector space over K. The smallest equivalence
relation £* on V, such that the quotient V/e* is a vector space over K is
called the fundamental relation of V. T. Vougiouklis in [20] introduced and
studied the fundamental relation of H,-vector space (a general class of hy-
pervector spaces). In the following we characterize the fundamental relation
on hypervector spaces (in the sense of Tallini) and study the relationship
between V' and V/e*( for more detailes see [2]). In the following we consider
the category HV , the category of hyperspaces( with basis) and multivalued
linear transformations to construct the fundamental functor from HV7j into
Vi, the category of vector spaces over K.

Let U be the set of all finite linear combinations of elements of V' with
coefficient in K, that is

U:{Zaioxi:aiEKandxiEV,nE N}.
i=1
Define the relation € over V' by

rey <= Ju e U:{z,y} Cu, Vz,yeV.

Then &* is the transitive closure of . Define addition operation and scalar
multiplication on V/e* by

{ & :V/jer x Vet — V/e*
() ©er(y) = {e7(t) : t e e”(x) +£°(y)},
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and { O: K xV/e* — V/e*
a@e(r) = {="(2) 2 € a0 e*(w)},

Lemma 5.1. (/2]) The following statement are satisfied:

(i) e*(aox) =e*(y) for ally € aox, Va € K, YV € V, where e*(aox) =

U = (b).

beaox

(ii) e*(z) & e*(y) = *(x + v).

(111) €*(0) is the identity element of (V/e*, D).

() (V/e*, @, ®, K) is a vector space over K.

The vector space (V/e*, @, ®, K) is called the fundamental vector space
of V.

Theorem 5.2. ([2]) Let (V,+, 0, K) be a hypervector space and (V/e*, &, ®, K)
be the fundamental vector space of V.. Then

dimV = dim V/s*.

Lemma 5.3. Let V and W be two hypervector spaces and T :'V — W be
a SM. Then

(i) Vo € V, T(=*(x)) € (T(x));

(i) The map

{ T*:V/e* — W/e*
T*(e*(z)) = e*(T(x))

is a linear transformation.

Proof. First note that since 7'(x) is a nonempty subset of V' for every z € V.
Then e*(T'(z)) = U, er@) €"(y) = €7(y), Yy € T'(z). Now since " maps every
linear combination of V' to a linear combination of W. Then (i) follows. (i7)
is strightforward. O

Theorem 5.4. The mapping F :HV5,— Vi is defined by F(V) = V/e* is
a functor. Moreover, the functor F preserves the dimension.

Proof. The proof is similar to the proof of [2] by some manipulation. O

Corollary 5.5. Let T : V. — W be a morphism in HVY.. Then the follow-
ing diagram is commutative:

v L pw)
v low
V/e* AN W/e*

where py and oy are the canonical projections of V. and W, respectively.
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Proof. Let x € V. Then

pw(T(x)) = (T'(x)

O
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