ON IRREDUCIBLE BLOCKING SETS IN PROJECTIVE PLANES (*)

Stefano Innamorati and Antonio Maturo

Summary. - In a paper of Bruen and Silverman [7], it is proved that in a Desarguesian projective plane of square order q, q>4, in the interval of the admissible cardinalities of irreducible blocking sets there are integers k such that there is no irreducible blocking set with k points. In this paper we prove that in a finite projective plane there is a sub-interval in which for any integer k there is at least one irreducible blocking set with k points.

1. INTRODUCTION

Throughout this note, we denote by $\pi = \pi_q$ a finite projective plane of order q, where q is not necessarily a power of a prime.

A blocking set of π is a set K of points which contains no line but intersects every line. A blocking set is said to be irreducible if it contains no blocking set properly, otherwise it is said to be reducible. The index of a blocking set K is the minimum number of lines whose union contains K.

The following results are well-known (see [5], [6], [11]).

1.1 RESULT .- Let K be an irreducible blocking set in π . Then

(a)
$$q + \sqrt{q} + 1 \le |K| \le q \sqrt{q} + 1$$
.
(b) $|K| = q + \sqrt{q} + 1$ iff q is a square and K is a Baer subplane.

^(*) Communicated at Conference "Giornate di Geometrie Combinatorie" Pescara, Marzo 1989.

(c) $|K| = q \sqrt{q + 1}$ iff q is a square and K is a Hermitian arc.

Examples and other results concerning the blocking sets in finite projective planes can be found in [1], [2], [4], [8], [9].

In particular, in [l] it is proved that:

1.2 RESULT .- Let π be a Desarguesian projective plane of order q, where $q=p^h$, p a prime, q>2. Let m(q) be the function defined as follows:

$$m(q) = \begin{cases} \sqrt{q} & \text{if q is a square;} \\ (q+1)/2 & \text{if q is a prime;} \\ p^{h-d} & \text{otherwise, where d denotes the} \\ & \text{greatest divisor of h different from h.} \end{cases}$$

Then for any integer k, with $q+m(q)+1 \le k \le q^2-m(q)$, there exists a blocking set with k points.

An obvious question is, whether there exist irreducible blocking sets in π for each cardinality belonging to the interval $(q + \sqrt{q} + 1, q \sqrt{q} + 1)$. In [7] is proved the following:

1.3 RESULT. - If π is a Desarguesian projective plane, q square, q>4, then in the interval $(q + \sqrt{q+1}, q + \sqrt{2q+1-1}/(2q))$ there is no irreducible blocking set.

In order to give an answer to this question we shall prove the following assertions:

- (I) For q>4, a finite projective plane has at least one irreducible blocking set of index 4 of cardinality k for any integer k with $2q-1 \le k \le 3q-5$.
- (II) For q>4, a Desarguesian projective plane has at least one irreducible blocking set of index 4 of cardinality k for any integer k with $2q-1 \le k \le 3q-3$.

We note that a complete characterization of irreducible blocking sets in the case q=3 can be found in [11], in the case q=4 in [2], in the case q=5 in [3]. Moreover we recall the following two results, see [8], [10], on the lower bound of the interval of (II).

1.4 RESULT.- In a Desarguesian projective plane of order q, for every proper divisor d of q or of q-1, there exists an irreducible blocking set of index 3 having 2q+1-d points.

1.5 RESULT. - If in a Desarguesian projective plane of order q there is an irreducible blocking set B of index 3 whose cardinality is less than or equal to 2q-1, then B has 2q+1-d points exactly, where d is a proper divisor of q or of q-l.

2. IRREDUCIBLE BLOCKING SETS

We begin with the following

2.1 THEOREM. - In a finite projective plane of order q, q>4, for any integer k with $2q-1 \le k \le 3q-5$ there exists at least one irreducible blocking set of index 4 having k points.

Proof.- Let z and z be two lines of a finite projective plane, let V be their intersection point, let R_i, i=0, 1, ..., q-1, be the points on z different from V and let S_o , j=0,1,...,q-1, be the points on α different from V. Denote by α the line R_oS_o . The set

$$K = r \cup s \cup t - \{V, R_0, S_0\}$$

is a well-known irreducible blocking set, with 3(q-1) points called a triangle without vertices. Let T_r , r=1, 2, ..., q-1, be the points of ϵ distinct from R_0 and S_0 . Consider an arbitrary point S on a, different from V and S_0 , and an arbitrary point T_1 on ϵ , different from R_0 and S_0 . Denote by R the intersection point of the line ST, with & . Put

$$U_1 = R_0 S \cap VT_1$$
, $U_2 = R_0 S \cap RS_0$.

There are two possible cases:

- (a) $U_1 = U_2$;
- (b) $U_1 \neq U_2$.

Let n be an integer such that $0 \le n \le q-3$ if case (a) holds and $0 \le n \le q-4$ if case (b) holds. Moreover let U_{24i} , i = 1,...,n be n arbitrary points of R_0S , distinct two by two, and different from R_0 , S, U_1 , U_2 . Denote by R_i and by T_i the intersection points of the line S_0U_i with ϵ and ϵ respectively, for any i=1, 2, ..., n+2 ϵ The set

$$K' = K - \{R_1, R_2, ..., R_{n+2}, T_1, T_2, ..., T_{n+2}\} \cup \{U_1, U_2, ..., U_{n+2}\}$$

is an irreducible blocking set of index 4 with 3 (q-1)-(n+1) points if case (a) holds and with 3(q-1)-(n+2) if case (b) holds. If case (a) holds, since $0 \le n \le q-3$, we obtain irreducible blocking sets of cardinality 3(q-1)-r for any integer r such that $1 \le r \le q-2$. If case (b) holds, since $0 \le n \le q-4$, we have irreducible blocking sets of cardinality 3(q-1)-r for any integer r such that $2 \le r \le q-2$.

Now we deal with Desarguesian case.

2.2 COROLLARY.-In a Desarguesian projective plane of even order greater than 2 for any integer k with $2q-1 \le k \le 3q-3$ there exists at least one irreducible blocking set of index 4 having k points.

Proof.- The assertion follows by the proof of the previous theorem and by observing that in a Desarguesian projective plane the order is even if and only if case (a) holds.

Finally we prove the following:

2.3 PROPOSITION .- In a Desarguesian projective plane of odd order greater than 3 for any integer k with $2q-1 \le k \le 3q-3$ there exists at least one irreducible blocking set of index 4 having k points.

Proof.- By using the same notation as in the proof of the previous theorem, since in a Desarguesian projective plane the order is odd if and only if case (b) holds, we prove that if $U_1 \neq U_2$ it is possible to construct an irreducible blocking set of index 4 with 3(q-1)-1 points, so the assertion follows by the proof of the theorem. Let we denote by R_p , i=1,2, the intersection points of the line S_0U_i with ϵ and by T_i , i=1,2, the intersection points of the line U_iV with ϵ . Put $Q=S_0U_2\cap T_1V$ and $S''=R_0Q\cap \epsilon$. The set

$$K'' = K - \{T_1, R_1, R_2\} \cup \{U_1, Q\}$$

is a blocking set of index 4 with 3(q-1)-1 points. In order to prove that K'' is irreducible, since the line ST_1 contains R_2 , it is sufficient to prove that the line S'' T_1 passes through the point R_1 . Put

$$X = S'' T_1 \cap \tau$$
.

Denote by (ABCD) the cross-ratio of four collinear points A, B, C and D and by (P) the perspectivity of centre a point P. It results:

$$(VR_2R_0X) = (VSS_0S'') = (S''S_0SV).$$

Moreover we have:

$$(U_1)$$
 (S) (R_0)
 $(VR_2R_0R_1) = (QR_2U_2S_0) = (QT_1U_1V) = (S''S_0SV)$

It follows that

$$(VR_2R_0R_1) = (VR_2R_0X)$$

and then

$$R_{\perp} = X$$
.

REFERENCES

- 1. L.Berardi-F.Eugeni, On the cardinality of blocking sets in PG(2,q), J. Geom. 22 (1984), 5-14.
- 2. L.Berardi-F.Eugeni, *Blocking sets in projective plane of order four*, Annals of Discrete Math. 37 (1988), 43-50.
- 3. L.Berardi-S.Innamorati, *Irreducible blocking sets in a projective plane of order five*, Atti Sem. Mat. Fis. Univ. Modena, (to appear).
- 4. A.Beutelspacher-F.Eugeni, Sui blocking sets di dato indice con particolare riguardo all'indice tre, Boll. U.M.I., 4 A (1985), 441-450.
- A.A.Bruen, Blocking sets in projective planes, Siam. J. Appl. Math. 21 (1971), 380-392.
- 6. A.A.Bruen-J.A.Thas, Blocking sets, Geom. Dedicata 6 (1977), 193-203.
- 7. A.A.Bruen-R.Silverman, *Arcs and blocking sets II*, Europ. J. Combinatorics 8 (1987), 351 356.
- 8. P.J.Cameron, Four lectures on finite geometry, Finite Geometries (ed. C.A.Baker, L.M.Batten) Lecture Notes in Pure and Appl. Math. 103, M.Dekker, New York, 1985, 27-63.
- 9. J.W.P. Hirschfeld, *Projective geometries over finite fields*, Clarendon Press, Oxford, (1979).
- 10. T.Szonyi, Combinatorial problems for abelian groups arising from geometry, to appear in Periodica Polytechnica.
- 11. G.Tallini, *On blocking sets in finite projective and affine spaces*, Annals of Discrete Math. 37 (1988), 433-450.