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Abstract: Pseudo-random sequence generalors are Lhe heart of stream-cipher systems. This work presents
some design criteria for such generators, based on innovative methods. To Lhis aim Lhe Lucas Sequences,
reduced modulo a prime p, are taken and suitably manipulated. Modular Exponentiation is the function
used 1o attain the output sequences. The periodicily of the Lucas Sequences allows (o define a lower
bound for the period of the generated sequences; actually our purpose is (o ensure thal the sequences which
are generated have a period greater than a prefixed value. Furthermore the cryptographic strength of these
sequences relies on the one-wayness of the discrete logarithm problem.

1. INTRODUCTION

The pseudorandom sequence generators are the main part of stream-cipher
cryptographic devices '],

Several studies pertaining the definition of pseudo-randomness of a sequence, lead to
a large number of works both theoretical and applicative [1.23:45] where tools belonging
to different branches of mathematics are used.

We address to specific publications for the different definitions of pseudorandom
sequence and we suppose that the reader is familiar with the meaning and implications of
the cryptographic algorithms, and in particular of stream-ciphers.

The aim of this work is to define some non conventional pseudorandom sequence
generator, based on mathematical and implementative hypotesis different from those of
most generators proposed in the past.

In this work some generator based on modular exponentiation will be examined,
utilizing the special sequences of the Lucas Numbers. In these generators the minimum
period of the sequences can be taken as a design parameter. For this purpose some
elements of Number Theory and the properties of the Lucas Sequences are recalled in
section 2; the generators we propose are described and analyzed in section Jand 4.

Work carried oul in the framework of the agreement between the lalian PT Administration and the
Fondazione "Ugo Bordoni".
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2. FUNDAMENTALS OF NUMBER THEORY REQUIRED FOR THE GENERATOR DESIGN

In this section some definition and fundamental theorem of Number Theory which
will be necessary in the generator design, are recalled. Notice that it is not our intention to
give here a systematic treatment, which would need much more than only one section; we
wish to give the reader a set of notions which are necessary to the following of this
paper. We refer to the literature (67.8] for a deep insight of the subject.

Let us define Generalized Lucas Sequence with parameter s the sequence:

o Vi(s) =sVii(s) +Via (s)

being s an integer and with the initial conditions
2) Vo()=2 , V1 (8)=s
It is proved [6.9.10] that the sequence defined by (1) and (2), reduced modulo an

integer n , is periodic, with period T.
Some interesting consideration can be made regarding such period. In particular:

- the sequence V; (s) mod 2%, k 2 1, has period T = 3-2¢!, when s is odd;
- the sequence V; (5) mod 2 has period T = 1, when s is even;

- the sequence V; (5) mod 4 or mod 8 has period 7 = 1 or T = 4 respectively , when
§=2(2r+ 1)

- the sequence V; () mod 2* has:

T=2F2 whens=22t+ 1), k=4
T=2, whens=2V(2r+1), v22, 2<k<v;
T=2¢Y whens=2V(2r+1), v22, k>v;

- givenaprimep > 2:

« the period T of V; (s) mod p is always an even number greater than 2;
+  if 52+ 4 is a Quadratic Residue! (QR) mod p, then the period T of V; (s) mod p
is p -1 or a divisor of p-1;

1 Given a prime p, the integer a is said to be a quadratic residue mod p , if the congruence x? = a mod p

has solutions,
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« if s2 + 4 is not a Quadratic Residue (NQR) mod p, then the period T of
Vi (s) mod p is 2(p+1) or a divisor of 2(p+1). Furthermore, if p+1 =2%(2k +1)
with a2 1, then T 2 2%+1 always;

+ letT the period of V; (5) mod p, then the period of V; (s) mod p*, k 2 1,is a
divisor of T -pk! .

3. GENERATORS BASED ON MODULAR EXPONENTIATION OF LUCAS SEQUENCES

The content of previous works [453] allows to design pseudorandom number
generators, taking the period of the generated sequences as a design parameter. Actually
the periodicity of the generalized Lucas Sequences when taken modulo a prime p, can be
a very useful tool for our purposes. Moreover modular exponentiation of these
sequences, as it will be considered in the sequel of this work, allows us to attain
unpredictability of the generated sequences and their cryptographic strength, with respect
to the previous defined parameter s of the eqns. (1) and (2), when it is considered as a
part of the cryptographic key.

Let us consider the two following Lucas Sequences

3) Vi (m) = mVy(m) +Vpa (m) ;s h=hg, hg+1,hot2,... and m 21

(4) Vi (n) = nVia(n) +Via (n) 3 k=ko, ko+1,ko+2,... and n 21.

Notice that the values V), (m) and Vy, () can be reached, for every hgand kg in a
logarithmic number of steps, according to the results given in 1112 instead of applying
the recursion indicated by (3) and (4).

Let us consider the sequence given by the following formula

(5) C; = Vu(m)Vim (mod p); i=0, 1, 2,...; h=ho+i; k=ko+i ;

substituting in egn. (5) the expressions (3), (4) we get

(6) Ci = (mVaa(m)+Vaalm) YV @+ialn) =

nVi (n)+Vialn)
2 [ﬂv.k—l(”)+vk—’2{ﬂ) (m Vh_](m) )r:‘/,,.:(n)+‘-’a.z(n}-l(vh-2(m})r=

1=0 :
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Vialn)

maVia(Cry)" Y,
=0

nv,t-l(h)"’vt-‘z{”)J (m Vi (m) V5201 (Vi a(m)Y +
!

nVi(n)+Vya(n)
+ z [nv"'ltn)JrV"'Z(ﬂ)) (m Viy(m) yVerlm+Vea®-t () o(m) )!

t=Vya(n)+1 !

From the above expression (6) we can see how the symbol C; is a function of the
previous generated symbol C;; and of the parameters m and n.
Notice that, if we take m and n as a part of the cryptographic key, the difficulty to
find them, given C; and C},, is the same as solving the discrete logarithm problem.
Actually, further algebraic manipulation of (6) can lead to a general expression of (5)

having the form
o)) Ci=f(Ciy.Cia,m,n) (modp),

but it could be seen that finding m and n, given C; ,C; . and C; 5, implies always an
inversion of several modular exponentiations.
The equation (5) can be rewritten by Fermat little theorem [6), as follows

® Ci = <<Vi(m)>pVim2si>,

where <x >, denotes the residue of x mod p.

In order to define the period of the sequence (C;)}, p must be chosen in an
appropriate way; according to the choice of p, the parameters m and n play a fundamental
role to allow a period long enough for cryptographic purposes.

In the sequel, different possibilities will be shown as far as the expression of p is
concerned, and the period will be determined according to the quadratic residuosity of
m?2 + 4 and n? + 4. To this regard it is important to notice that a good level of freedom cn
the choiche of m and n with respect to p, still remains. Actually, for a given p, it can be
proven that the number of values of m, 0 <m <p - 1, for which it results m? + 4
quadratic residue mod p, is (p+1)/2 or (p-1)/2 depending on p. The demonstration
of this assertion is straightforward and we omit it for sake of brevity.

In the following two examples are given to show how the choiche of p, m and n can
be utilized for the design of our generators based on the modular exponentiation of the
Lucas Sequences, and how a lower bound for the period of the generated sequences can
be attained.
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3.1 Generator withp=2g +1
If p = 2q + 1, with ¢ prime, the formula (8) takes the expression

9) Ci= {<Vh(m)>2q+1qv'w>">?q+l .
The choice of the parameters m and n, makes possibie the following four cases

Case I: m2+4 QR mod2g+1
n+4 QR modg

In such a case the period of the sequence V; (m) mod 2q + 1 is a divisor of 2g, and,
being ¢ a prime, it is equal to 2¢g.
For the period of V; (n) mod 2g the following considerations can be made: it is the least
common multiple between the periods of V; (n) mod 2 and V; (n)ymod ¢ ; the first of
such periods is 1 or 3 depending on the fact if n is even or odd respectively, while the
second period is equal to g-1 or to one of its divisors, then it is greater than or equal 1o 4.

Hence the sequence defined by the eqn. (9) has a period T which equals the least
common multiple between the periods of the Lucas sequences respectively base and

exponent of the expression (%), and for the above considerations, it results that:
(10) T24qg ~p

Case 2: m2+4 QR mod2g+1
nZ+4 NQR modg

Then, for the period of V| (m) mod 2¢ + 1, all the considerations of case 1 hold
again, while for the period of the sequence V;(n) mod 29 we have: the period of
Vi(n)mod 2, is 1 or 3 depending on the fact if n is even or odd; the period of the
sequence V; (n) mod g is greater than or equal to 2%*!, being g + 1 = 202k + 1), a2 1.
It is possible to conclude that the period T of the sequence defined by the (9) is

(11) T22071g24q ~p
Case 3: mi+4 NQR mod2g+1
nZ+4 QR modg

The period of the sequence Vi (m) mod 2¢ + 1 is greater than or equal to 2042,
being again g + 1 = 28 (2k + 1), & 2 1; the period of the sequence Vi(n) is 2 4. In this
case it is possible only to say that the period T defined by eqn (9) is:
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(12) T=>20¢2>8
Case 4: m? + 4 NQR mod2g+1
n2+4 NQR modg;

then, again under the hypotesis that g + 1 =22 (2k + 1), o 2 1, the period of the
sequence V;(m) mod 2 ¢ + I is > 2%+2 and the period of the sequence V;(n) mod g is
2 2041,

Hence for the period T of the sequence defined by the (5) we have

(13) T2204238

3.2 Generator withp=2¢q -1

If p=2q - 1 the equation (8) takes the expression

(14) Ci = <<Vy(m)>oq VP25,

In order to attain a long period of the sequence generated by eqn. (14) it is sufficient,
in this case, to consider only the case m? + 4 NQR mod p. According to this choiche(10]
the sequence V(m) has a period equal to 4q.

Hence the period T of the sequence generated by (14) is

(15) T24q ~p .

From the above considerations it turns out that the generators based on modular
exponentiation of Lucas Sequences, defined by equations (8), (1) and (2), generate
sequences whith a period greater than or equal to a prefixed value, if the parameters m, n
and p are properly chosen (as in the cases 1 and 2 of sec. 3.1 and in sec. 3.2)

To give an idea of the magnitude order of the acceptable values for cryptographic
purposes, the sequence generated by the algorithm expressed by (8), has a period of the
order 1019 if ;m , n and p are chosen around 10109
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4, PSEUDORANDOM GENERATOR

The above generators could be used for cryptographic purposes, because of the
unpredictability of the generated sequences. Moreover the possibility of controlling their
period is a highly desirable property. Nevertheless a good statistical balancement must be
guaranteed. This can be easily obtained by a self-synchronizing scrambler!13], whose

input-output equoation is

L
(16) y (k) = 2, ciyk-i) + u(k)

i=1
where u(k) and y (k) are the input and the output sequences respectively, ¢;, i=1,.., L,
are p-ary multipliers, and all the calculations are performed mod p .

Globally the final scheme of the pseudorandom generator is represented in fig. 1,

where p, m and n are the cryptographic key and the scrambler is completely defined by its
characteristic polynomiall(}4], which can also be con:idered as a part of the cryptographic

key.

Key: (m, n, p)

GENERATOR BASED |—— SCRAMBLER —>
ON MODULAR
EXPONENTIATION

PSEUDORANDOM GENERATOR

Fig. 1

5. CONCLUSIONS

By the results presented in this work it turns out that the use of the generalized Lucas
Sequences allows to attain a pseudorandom number generator, having the period of the
generated sequence greater than a prefixed value. This property can be used to generate
sequences for cryptographic purposes. Nevertheless the difficulty of designing fast
modular exponentiators on large numbers is still to be solved; a great amount of works in

this area is being in progress, mainly for VLSI implementation of RSA co-decoders [13).
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