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Abstract

A Strong interval — valued Pythagorean fuzzy soft sets (SIVPFSS)
an extending the theory of Interval-valued Pythagorean fuzzy soft
set (IVPESS). Then we Propose Strong interval valued Pythagorean
fuzzy soft graphs (SIVPFSGs). We also present several different
types of operations on Strong interval- valued Pythagorean fuzzy soft
graphs and explore of their analysis.
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1 Introduction

Fuzzy set is a analytical imitation to grips the exciting and insufficient details.
consider a differentiating that uncertainty is also independently, FS was contin-
ued to intuitionistic fuzzy set (IFS) by Atanassov and Gargov [1989]. If assigned
a membership value o and a non membership value 5 to the conditions, satis-
flying this results « + f < 1 and uncertainty elements, vy = 1 — a — . In
decision-making problems, the membership value 0.7 and non membership value
0.4 for some information, then IF fails in this situation because 0.7 + 0.4 > 1, but
(0.7)% + (0.4)? < 1. To overcome this situation, the notion of Pythagorean fuzzy
set (PFS) was satisfying the condition a® + 32 < 1. A PFS has more potential
as compared to IFS is solving decision-making problems. The Pythagorean fuzzy
number (PFG) was determinate by Zhang ( see S.Shahzadi and Akram [2020]).
Zhang provided the Pythagorean fuzzy weighted averaging operator.

The theory of IVFS was introduced by Zadeh [1965] as a perpetuation of fuzzy
sets. Because they present more adequate description for uncertainty, interval-
valued fuzzy sets more useful than conventional fuzzy sets. Soft set theory was
started by Molodstov [1999] for the parameterized point of view for uncertainty
modeling and soft computing. The iterpretation of IFSGs was given by Akram
[2011]. The explanation of novel intuitionistic fuzzy soft multiple — decision-
making methods of grips by Akram. Pythagorean fuzzy soft graphs with appli-
cations was proposed by S.Shahzadi and Akram [2020].The SIVPFSG is defined
and some results on SIVPFSG are studied. Also explore of their analysis.

2 Preliminaries

Definition 2.1. An IVFSG over the set Vis given by ordered 4 tuple € = (£*, X,Y, A)
such that

(i) A is of parameters.

(ii) (X, A) is an IVFSS over V.

(iii) (Y, A) is an IVFSS over E.

(iv) (X(e),Y (e)) is an IVFSG for all e € A.

That is,

ay (o ((pg)) < minfary ) (p), oy () and

af o, ((pg)) < min(ak ., (p), %, (q)) forall pg € E.

We denote & = (V,E) a crisp graph H(e) = (X(e),Y (e)) an IVFSG and

&= (&,X,Y,A) an IVFSG.

Definition 2.2. An IVFSG over the set V is defined to be a pair ¢ = (X,Y’) where
1) The conditions ax 'V — D|0,1] and Sx : V — D|0, 1] denote the degree of
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membership and non membership of the element p € V. such that
0<ax(p) + Ax(p) < 1¥(p.g) € V.

2) The conditions ay : E CV x V — DJ[0,1] and By : ECV xV — DJ0, 1]

defined by

oyl (0.) o 0 a0 and () > mas(a ) o)
q)) =z m

O‘)tU((Z% q)) < mm(a}U(maa}U(Q))a”dﬁl—tU((pa ) ax( )J’(_'U(p)7a;_(U(q))’
such that 0 < o5 (p, q) + Byu(p, q) < 1¥(p,q) € E.

We the notation pq for (p, q) an element of E.

Definition 2.3. An IVPFSG over the set V is given by € = (€*, X, Y, A) such that

1) The conditions ax : V. — D|0,1] and Bx : V — D|0,1] standered for the
degree of membership and non membership of the element p € V. such that

0 < ax(p,q) + Bx(p,q) < 19(p,q) € V.

2)(i) A is set of parameters
(ii) (X, A) is an IVPFSS over V.
(iii) (Y, A) is an IVPFSS over E.
(iv) (X (e),Y (e)) is an IVPFSG for all e € A.

The conditions &y : E CV x V — D[0,1]and By : EC V x V — D[0, 1]
defined by
oty ((p. ) < min(ay (), By (@) and B4 (9, ) > maz(BLy (), BLu(@),
oy o(p,9)) < min(axy (p), By (@) and By ((p,0)) > maz(By(p), By 0),
such that 0 < o3, (p. q) + F7y(p,q) < 1¥(p, q) € E.

3 Strong intervel-valued Pythagorean fuzzy Graphs

Definition 3.1. An SIVPFSG over the set V is given by € = (€*,X,Y, A) such
that

1) The conditions ax : V — D[0,1] and Sx : V' — D|0, 1] denote the degree of
membership and non membership of the element x € V. such that

0 < ax(p,q) + Bx(p,q) < 1¥(p,q) € V.

2)(i) A is set of parameters
(ii) (X, A) is an SIVPFSS over V.
(iii) (Y, A) is an SIVPFSS over E.
(iv) (X (e),Y (e)) is an SIVPFSG for all e € A.
The conditions &y : E CV x V — D[0,1]and By : ECV x V — D[0, 1]
defined by
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altU«pa q)) = mm(a}U(P)v ﬁ)JEU(Q)) and 5;5U((p> q)) = max(ﬁ;U(p)v 5)J?U(Q))’

ay 1 ((p;q)) = min(ay, (p), ax(q)) and By ((p, q)) = maz(ax ., (p), BxL(q)),
such that 0 < a3 (p, q) + B3y (p, q) < 1¥(p, q) € E.

Example 3.1. If * = (X,Y) is a simple graph with X = {a,b,c,d} and Y =
{ab,be, cd, ad}. Let A = {eq, es} be a parameter set and (X, A) be an SIVPFSS
V' determine

=

X1 (e) :{<a, [0.3,0.4][0.2,0.7]), (b, [0.2,0.5][0.3,0.7]), (¢, [0.1,0.6][0.2, 0.5]),
and(D[0.2,0.7][0.3,0.5])
Xo(e) :{<a, [0.2,0.7][0.3, 0.5}, (b[0.1,0.6][0.2, 0.5]), (¢, [0.3, 0.4][0.2, 0.7]>}
Take (Y, A) be an SIVPFSS E determine

Yi(e) :{<ab[0.2, 0.5][0.3,0.7]), (be[0.1,0.6][0.3,0.7]), (ad[0.2,0.7][0.3, 0.7]),
and(cd[0.1,0.6][0.3, 0.5])}
Ya(e) :{<ab[0.1, 0.5][0.4,0.6]), (bc[0.1,04][0.4, 0.8]), (ac[0.1,0.3][0.4, 0.8]>}

It is clearly seen that H(e;) = (X(e1),Y (e1)) and H(ey) = (X(e2),Y (e2))
are SIVPFSGs comparable to the parameters e, and e3 accordingly, by Figure 1.
Hence £ = (£*, X,Y, A) SIVPFSGs.

03,04][02,0.7] (0.2,05]{03,0.7] [02,0.77[0.3,05] (0.1, 0.6 (0.2, 0.3]

2 [02,05][03,07] b 20008 b

[02,07]03,07] [0.1,06][03,07] [03,04][03,07) 03.0402,07

¢ [01,06[03,05] ¢
[02,07[03,05]  [0.,06][02,03] [03,04][02,0.7)

Hie) Hie)

Figure 1: SIVPFSGs G.

Definition 3.2. If ¢, = (&, X1, Y1, A) and & = (&, Xo, Ys, B) be double SIVPF-
SGs of & = (X1,Y1) and & = (Xs,Y3) accordingly. The cross product of &, and
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éQ is denoted by él X 52 = (X1 x X5,Y] x Y5) and is defined by

1) (ax,r % ax,r)(p1,p2) = min(ax,.(p1), Bx.rn(p2)),

(xu X ax,u)(p1, p2) = min(ax,u(p1), ax,u(p2)),

(Bxiz X Bxyr) (1, p2) = min(Bx,.(p1), Bx.r(p2)),

(Bx,u % Bx,v)(P1,02) = maz(Bx,u(p1), Bxov(D2)), Vo1 € Vi,p2 € Va.
2) (aviL X ay,)(p, p2)(p, g2) = min(ay, L(p), v, (P2, ¢2)),

(ayvir X ay,u)(p, p2)(p; p2) = min(ay,u(p), avu (P2, 42)),

(Bviz X Byar)(p, p2)(p, @2) = maz(By, .(p), Brar (P2 ¢2)),
(Briv X Byov)(p; p2)(P; G2) = max(By,u(p), Byav (P2, ¢2))
3) (v X ayyr)(p1,7)(qr, 1) = min(ay,(p1q1), av,1(r)
(aviu X o) (p1,7)(qr, ) = min(ay,u(P1a1), ay,u (1)),
(Bviz % Byor)(p1,7)(q1,7) = max(By,(p1¢1), Byar(r)),
(Bviv X Byav) (01, 7) (a1, 1) = maz(By,u (p1¢1), Byav (1))

,Vp € Vi, p2qo € Eb.
),

,V?” € ‘/Qaplq1 S El-

Example 3.2. Let Consider a graph & = (X1,Y1) and & = (X2,Y2) be two
graphs such that X1 = {ay1,b1,c1,d1 }, Y1 = {a1by, c1dy } and Xo = {az, bs, 2, ds },
Yo = {agby, cady }. Let A = ey be a set of parameters and let (X1, A) and (Y1, A)
be two SIVPFSSs over X, and Y; accordingly, defined by

102,03][04, 0 01,04 (04,05 [0,04][02,0 %wmw
(! | A )
— —

[01,04],[04,08] (01,04, [07,06]
[02,06],[03,03] %MMM 103,07]04,03] %MMM
C\ | Cf )
— —
[01,03][04,06] (03,07, [04,06]
fie) H(e)

Figure 2: SIVPFSGs §~1 and 52.

Xife) ={(a1[0.2,0.5][0.4, 0.8]), (b1[0.1,0.4][0.4,0.5]), {e1[0.2,0.6][0.3,0.5]),
<mammmuam40@%

K@ﬁ:%mmmLQMDAOa%@mmlﬂﬂm&Oﬂ%
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[0.1,0.4] [0.2, 0.6] [0.3,0.3][0.4,0.5] [0.2, 0.4] [0.4, 0.6] [0.2,0.5][0.4,0.8]
a3, [0.1,0.4][0.4,0.6] ab, ad, [0.4,0.5][0.4,0.5] ac,
[0.2,0.4] [0.4,0.5] [0.3,0.3] [0.4,0.5] [0.4,0.7] [0.4, 0.6] [0.2,0.6] [0.4, 0.6]
ba, [0.1,04][0.7,03] bb, bd, [0.3.0.7][0.4,05] b,
[0.1,0.4] [0.4,0.5] [0.3,0.3][0.7,0.3] [0.3,0.7] [0.4, 0.5] [0.3,0.4] [0.4,0.5]
[0.1, 0.4] [0.4, 0.6] [0.1, 0.5] [0.4, 0.6] [0.1, 0.4] [0.4, 0.6] [0.1, 0.5] [0.4, 0.6]
da, [0.1,04][0.2,0.6] dc, dd, [0.1,0.5][0.4,0.6] dc,
[0.1,0.4] [0.4, 0.6] [0.3,0.3][0.7,0.3] [0.1, 0.4] [0.4, 0.6] [0.1, 0.6] [0.4, 0.6]
cd, [0.1,04][0.2,07] ¢, cd, [0.1,0.6][0.4,05] cc,
[0.1,0.4] [0.4, 0.5] [0.3,0.6] [0.4,0.5] [0.1,0.4] [0.4, 0.5] [0.3, 0.6] [0.4, 0.5]

Figure 3: Cross product of 51 and 52.

Take B = ey be a set of parameters and let (Xo, B) and (Y3, B) be two SIVPFSSs
over Xy and Y, accordingly, Find out

Xo(e) :{<a2[0.1, 0.4][0.2,0.6]), (52[0.3,0.3][0.7, 0.3]), {c[0.3, 0.7][0.4, 0.5)),
and(ds[0.3,0.4][0.1, 0.6]>}

Ya(e) :{<a2b2[0.1, 0.4][0.7,0.6]), {c2d:[0.3,0.7][0.4, 0.6])}

Clearly H(e;) = (X(e1),Y(e1)) and H(ey) = (X(ez)),Y (e2)) are SIVPFSGs.
Hence & = (&, X1,Y1,A) and & = (&, Xo,Ys, B) are SIVPFSGs & and &3,
accordingly, as shown in the Figure 2.

Definition 3.3. If &, = (£5, X1, Y1, A) and Gy = (&, X2, Ya, B) be two SIVPF-
SGs of € = (X1, Y1) and & = (X4, Y5) accordingly. The composition of & and
52 is standed by él o 52 = (X 0 X5, Y] oY5) and is defined by

1) (ax, 1 o ax,r)(p1, p2) = min(ax,L(p1), Bx,(p2)),

(xu 0 ax,u)(p1, p2) = min(ax,u(p1), ax,u(p2)),

(Bx,L © Bx,r)(P1,p2) = min(Bx, (1), Bx,r(p2)),

(Bx,v © Bxov) (1, p2) = maz(Bx,v(p1), Bx,u(p2)), Vo1 € Vi, p2 € Va.

2) (ayiz © ay,1) (P, p2) = min(ayL(p), v, (P2, ¢2)),

(aviv © ay,u) (P, p2) = min(ay,u(p), av,u(p2; ¢2)),

(Bviz © Brar) (ps g2) = maz(By,L(p), Byar (P2, ¢2)),

(Briv © Brov) (P, @2) = max(By,u(p), Brov (P2, 42)), Vo1 € Vi, p2Go € Eo.
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3) (ay, © ayyr)(p1, 1) (@1, 1) = min(ay, L (prqr), ay, (1)),
(ay,v © ay,r)(p1,7)(q1, ) = min(ay,u(p1q1), ay,u (1)),

(Byir © Byor) (p1,7)(q1,7) = max(By,L(p1q1), Byor(1)),

(Bviv © Byov) (1, 7)(q1, 1) = maz(By,v(p1¢1), Brov (1)), Vr € Va, prqi € En.
4) (ovi 1 0 oy, ) (1, P2) (1, 2) = min(ax,r(p2), ax,r, x, 1.(P1, ¢1)),

(ay,0 0 ayyu) (1, 7) (g1, ) = min(ax,u (p2), ax,u(42), vy (P, @1)),

(Byiz © Byyr) (1. 7) (g1, ) = maz(Bxyr(p2), Bxar (@), Byir(p1, q1)),

(/BY1U o 5Y2U)(p1; T)(Qh T) = max(ﬁXgU(pQ% ﬂXQU(QQ), Ble)(plapQ)((h, Q2))7
V(p1,p2)(q1,q2) € E° — E.

where E° = E U {(p1,p2)(q1, @2)|p1¢1 € Ev,p2 # @2}

Definition 3.4. Ler &, = (5, X1, Y1, A) and & = (€5, Xy, Ys, B) be two SIVPF-
SGs of & = (X1, Y1) and & = (X3, Y5s) accordingly. If & and & is standed by
51 U 52 = (G*, X, Y, AU B) where (X1 U X5,Y; UY5) and is replace

1) (i) (ax, 1 U ax,1)(p) = maz(ax,1)(p), ax,.)(p))ifp € ViNVa

(ax,v U ax,r)(p) = maz(ax,v)(p), ax,v)(p))ifp € ViN Ve

(ii) (Bx,. U Bx,1)(p) = maz(Bx,v)(p), Bx,r)(p))ifr € ViN Vs

(Bx,0 U Bx,v)(p) = maz(Bx,v)(p), Bx,v)(p))ifp € ViNVa

2) (i) (ayy 2 U ayy)(p, q) = maz(ax,(p, q), ax,0(p, q))if pg € EvN Es
(avio U av,r)(p, @) = max(ax,u(p, 0), ax,u(p, q))if pg € ExN By

(ii) (By, U Byar) (P, @) = max(Bx,(p), Bxr(@))if pg € By N E,

(Bviv U By,v)(p, @) = maz(Bx,u(p), Byu(q))if pq € By N Ey

Definition 3.5. Ler Gy = (&, X1, Y1, A) and & = (£, X, Ya, B) be two SIVPF-
SGs of & = (X1,Y1) and & = (X,,Ys) accordingly. If & and & is standed by
E1+ 6 = (&, X1,Y1, A+ B). Where € = (X1 + X, Y1 + Y) and is defined by
1) (ax,1 + ax,)(p) = (ax,r Uax,r))(p)

(ax,v + ax,v)(p) = (ax,u Uax,w)(p)if peliuls

(Bxir + Bxor)(p) = (Bxir U Bx,1) (P)

(Bx,v + Bx,v)(p) = (Bx,v U Bx,u)(0)if pe ViUV,

2)(aviL + av,n) (P @) = (i U ay,n) (p, q)

(aY1U + aYzU)(p7 Q) = (Oéle U aYzU)(pv Q)Zf pE El N E2

(6Y1L + 6Y2L)(p7 Q) - <BY1L ) /BYQL)(p7 Q)

(Byiv + Brov) (0, @) = (Bviv U Byev) (0, @)if  (p,q) € By N Es.

3 aviz + av,n) (P, q) = min(ax,£(p), ax,1(q))

(v + avo) (P, @) = min(ax,v(p), ax,v(q))

(Byr + Byar) (ps ¢) = maz(Bx,1.(p), Bx,1(q))

(Bviv + Brov)(p, @) = maz(Bx,u(p), Bx,v(q))if pg € E
Where E is the set of all edges joining the vertices of V, and V5.

Theorem 3.1. Iffl and 52 are SIVPFSGs, then so is 51 X fg.
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proof Let & = (67, X, Y1, A) and & = (&, X3, Y3, B) be two SIVPESGs of
simple graphs £ = (X1,Y7) and & = (X3, Y>) accordingly. for all e; € A and
es € B, there are some results. Let &; and & be SIVPFSGs

Let £ = {(p,p2)(p,q2)/p € Vi, p2q2 € Ea} U{(p1,7)(q1,7) /7 € Vo, p1qn € Er}.
Consider (p, p2)(p, ¢2) € E, we have

(ay, % aYQL)(p7p2)(p, G@2) = mm(&le(p), ay,1(p2q2))
=min(ax,.(p), ax,r(p2).ax,5(q2))
=min(min(ax,r(p), ax,r(p2))min(ax,.(p), ax,(q2)))

(yyz X ay,n) (P, p2) (P, @2) = min((ax,r X ax,r)(P,p2); (@x,1 X ax,1)(p, ¢2))
Similarly,
(aviv X avv) (P, p2) (P, g2) = min((ax,v X ax,v)(p, p2); (av;v X avu) (P, ¢2))
Now,
(Byviz % Bror) (P, p2) (P, @2) = maz((Bx,z X Bx,1)(Psp2), (Bxiz X Bx,r)(Ps 42))
Similarly,
(Bviv X Byv) (P, P2) (P, @2) = maz((Bx,v X Bx,v) (P, p2): (Bx,v X Bx,v) (P, 42))
Consider, (p1,)(q1,r) € E, we have

vy X avyn) (P, 7)(qu, 1) = min(ay, £(P1q1), (ax,L(r))
=min(ax,r(p1), ¥x,0(q1)-ax,1(r))

=min(min(cx,(p1), @x,r (1)) min(ax,r(y1), ax,n(r)))
(i X avyr)(p1,7) (a1, 7) = min((ax, L X ax,p)(p1,7), (ax, L X ax,r) (@1, 7))
Similarly,
(aviv X av,r) (p1,7) (g1, 7) = min((ex,u X ax,u) (P, 1), (axv X axe)(q,7))
Now,
(Byiz X Byiv)(p1, ) (@1, ) = max((Bx, L X Bxor)(P1,7), (Bxiz X Bxar) (a1, 7))
Similarly,

(Bviv X Byou)(p1,7)(q1, ) = maz((Bx,v X Bx,v)(P1,7), (Bx,v X Bxov)(q1,7))

Hence &; x & is an SIVPFSGs.
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Theorem 3.2. If &[] be SIVPFSGs &, and & of £ and & is an SIVPFSGs.
Proof Take (p, p2)(p, q2) € E, we get

(i © v, ) (P, p2)(P, 42)) = min((ax, L(p), av,1)(P2g2)
=min(ox,(p), ax,r(p2), ax,r(q2))
=min(min(oax,(p), ax,r(p2)), min(ax, .(p), ax,.(q)))

(yyz 0 ay,n)((p; p2)(p; g2) = min(ax, 1, © ax,n) (P, P2), (ax,1 © ax,L)(P; ¢2))-

Similarly,

(ay,v 0 ay,) (P, P2) (P, G2) = min(ax,v © ax,v)(p, p2), (ax,v © ax,u) (P, ¢2))

Consider (p1,7)(q1,7) € E,

(i 0 avyr)((p1,7)(q1, 7)) = min(aviL(p1, q1), ax,r(r))
=min(ax,L(p1), ax,0(q1), ¥x,r(r))
=min(min(ax,(p1), ax,n(r)), min(ax,.(q1), ax,o(r)))

(ayviz o ayyr)((p1,7)(q1, 7)) = min(ax,z o ax,r)(p1,7), (x, L © ax,r)((q1,7))
Similarly,

(ax,v 0 axu)((pr,7)(n, 7’) = min(ax,u © ax,w)(p1,7), (axvax,u) (g, 7))
Consider (p1,p2)(q1,¢2) €
(OéylL © aYQL)((Pl p2)(€l1> CI2)) = mm(OéXQL(pz), anL(QQ)a OéYIL(P1Q1))

=min(ax,r(p2), x,1(q2)), min(ax, £(p1), ax,r(q1))
=min(min(ax,(p1), ax,r(p2)), min(ax,.(q1), ax,(q2)))
(i © v, ) ((p1, p2)(q1, q2)) = min(ax,z © ax,1)(p1,p2), (x,L © ax,r1)

((q1,2))
Hence &, [£,] be SIVPFSG .
Theorem 3.3. If &, U &, be SIVPFSGs €1 and & of € and & is an SIVPFSGs.

Proof Take ¢, and & be the SIVPESGs of &; and &, accordingly. Since all
conditions for X;U X, are obviously satisfied. It is enough to verify the conditions
for Y U Y, Consider (p, q) € E; U Es. Then

max(ay,L(p, @), av,L(p; )
s ax,£(q)), (min(ax,.)(p), ax,1(q))
,ax,1(p)), (maz(ax, L(p); ax,r(q))))
(p), (ay,z U ayyr)(q))

min((ay, L U ay,1)(p), (aviz U ay,r)(q))-

(aviL Uay,n)(p,q) =
=max(min(ax,(p)
=min(max(ax,r(p)
=min((ay,r U ay,r)

q) =

(aY1L ) aYzL)(pa
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Similarly,

(v, U ayo) (P, q) = min((ay,o U ay,u)(p), (ayvio U ay,r)(q))
If (z,y) € Fy and (z,y) ¢ Es,

(o, U ayyr) (s q) =min((ay,n U iy, ) (p), (v U o) (q))
(avyv U avor) (p, @) =min((aviv U av,u) (p), (aviu U avyo)(g))-

If (p,q) € Esand (p,q) € Fi,

(i U ayyr) (0, @) =min((oy, U ayar) (p), (avir U o) (q))
(ay;v U ayo)(p, q) =min((ayv,u U av,o) (p), (v U avo)(q))-

Theorem 3.4. If &, + & be SIVPFSGs &, and & of & and & is an SIVPFSGs.

Proof Take fl + & be the SIVPESGs of &} and & accordingly. , it is enough
to find that &; + & = (X7 + Xs, Y7 + Y5) is an SIVPFSGs. Then Let (p,q) € E

(i + ayyr)(p; @) =min(ax, (p), ax,.(q))
=min((ax,r Uax,r)(p), ((ax,z Uax,r)(q)))
(aviz + av,n)(p, @) =min((ax, L + ax,1)(p), ((ax,z + ax,1)(q)))-

Similarly,

(ayyv + avo) (P, @) = min((ax,v + ax,u)(p), ((ax,v + ax,u)(q))).

4 Conclusions

Graph theory is a very helpful mathematical tool for tackling challenging is-
sues in a variety of disciplines. The IVPFSs model is appropriate for modeling
issues involving uncertainty and inconsistent data when human understanding and
evaluation are required. In contrast to IVFS models, IVIFS models, and, IVPFS
models provide systems with sensitivity, flexibility, and conformance. SIVPFSGs
are a novel idea that is introduced in this work. We also defined for the Cartesian
product as well as some information about its composition on SIVPFSGs. We
plan to use this data to create some algorithms and models shortly soon.
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