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Abstract

In this paper, it has been proposed to use Pythagorean fuzzy sets
(PFS), is an extensionof fuzzy sets (FSs), to address uncertainty in
practical decision– making problems. Then the Shortest Path Prob-
lem (SPP) is a well– known network improvement issue with numer-
ous practical applications.Then the shortest Path (SP) and the short-
est distance (SD)in an Interval – valued Pythagorean fuzzy graph
(I-VPFG) are foundusing a method in the current communication.
Nodes and connectionsare crisp, while the edge weights are I-V trian-
gular Pythagoreanfuzzy numbers (I-VTPFN). Additionally, a numer-
ical example hasbeen used to demonstrate the suggested strategy.
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1 Introduction
The pair of sets (V, E) that make up a graph are V, which represents the set of

vertices, and E, which represents the set of edges that connect the pair of vertices.
Numerous domains, including computer, social and natural research, among oth-
ers, use graph theory. Any mathematical, scientific, or engineering problem can
be represented as a graph. Leonard Euler first introduced the idea of graph theory
in the year 1736. In order to address the issue of the seven Konigsberge bridges
constructed across the Pregel River of Prussia, he produced the first graph. The
key factor contributing to graph theory’s explosive growth is its application across
a variety of disciplines. Even though graphs can be used to simulate events that
happen in real-world problems, graph theory became interesting. Graphs are use-
ful for studying these issues.

In the graphs are a very crucial model for networks. The SPPs are very useful
and are used in various areas, applications for the road network, transportation,
communication channel routing, and scheduling issues are a few examples. The
weights of the edges in the basic network issue are taken to be actual numbers.
After all, in most constructive applications, the bounds are generally not precise.
Therefore, they can be considered fuzzy numbers (FN) in the real world.

Zadeh, 1965 extracted the idea of a Fuzzy Set (FS) as a way to identify un-
certainty in 1965. As a generalisation of FSs, Zadeh introduced the idea of I – V
fuzzy sets (I-VFS). Intuitionistic fuzzy sets (IFS), which Atanassov [1986] sug-
gested in 1986, look more exactly at uncertainty dimension and give the chance to
precisely model the issue based on the available data and consideration I-VFS was
introduced three years later by Atanassov and Gargov [1989]. Then the definition
of an I-V fuzzy graph (FG) was given by Kumar et al. [2009]. On Intuitionistic
fuzzy graph (IFGs), Mohamed and Ali [2018] defined several new applications.
Dubois and Prade [1980] were the first to investigate the SPP in an ambiguous and
unreliable surroundings. They claim that while the length of the shortest way may
be determined, the network may not contain a path that corresponds to it. Numer-
ous academics have looked into the SPP in literature, each in a different way. Lin
and Chen proposed the Fuzzy SP length in a network created using fuzzy linear
programming. Furthermore, Yao and Lin [2003] created two distinct fuzzy SP net-
work challenges, the first of which makes use of triangular fuzzy integers. Okada
[2004] proposed an algorithm to complete the degree of incident for each arc in
the network and introduce the similarity index among the sums of Fuzzy numbers
(FN) by taking into consideration interactivity with FNs. Kumar and Kaur [2011]
suggested one such approach for locating the SP in a network flow with imprecise
arc lengths. A based on model the idea of dynamic scripting was presented by
Karunambigai et al. [2007]et al. to locate the SP in IFGs. Additionally, Gani and
Jabarulla [2010] created a technique for finding the IFSP in a network.
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To handle the complex, imprecise, and ambiguity in challenges with effective
decision-making, Yager [2014] introduced the concept of the PFSs, as a generali-
sation of the IFS. The key feature of the PF model is that it relaxes the action that
the sum of its mem-ship degree and non-mem-ship degree i.e., (0.5+0.4 ≤ 1) with
the squar sum of its mem-ship and non-mem-ship degree i.e., (0.62 + 0.72 ≤ 1).
Following Yager [2013] invention of the PFS, Xu and Zhang [2014] granted the
mathematical form of the PFS as well as the concept of the PFN. Then the idea
of a PFGs was proposed by Naz et al. [2013]. As a generalisation of PFSs, pre-
sented the idea of I-VPF sets Xindong and Young [2016]. The idea of an I-VPFG
was suggested by Mohamed and Ali [2018]. In order to accomplish this, we first
offer a mathematical formulation for SP issues where contradiction costs of arcs
are expressed in terms of I-VPF numbers. Then, in order to construct a solution
algorithm, we present the optimality in I-VPF networks. To compare the costs of
several pathways, whose arc are expressed by I-VPF numbers, an improved score
function (SF) is employed.

In this study, we present a novel method for finding the SP using I-VPFSs.
Using the suggested approach, a decision maker can determine the SP and the SD
between each node and the SN. The following is how the study is structured. Sec
2 goes over some fundamental ideas such as I-VTPFNs, arithmetic operations,
and RFs. In sec 3, a algorithm for determining the SP and the SD in an I-VPFG is
proposed. Sec 4 contains an example of determining the SP and SD between the
SN and the DNs. The final section includes some closing remarks.

2 Preface
This chapter discusses some fundamental ideas, operations in mathematics,

and rank order functions for I-VTPFNs are covered.
Definition 2.1. (I-VPFS)Xindong and Young [2016]
An I-VPFS ÃP̃ , in the global set Z ′ is defined by

ÃP̃ = 〈x, µ̌Ã
P̃

(x), λ̌Ã
P̃

(x)〉 : x ∈ Z ′

where µ̌Ã
P̃

= [µ̌Ã
P̃L

(x), µ̌Ã
P̃U

(x)] ⊆ [0, 1] and λ̌Ã
P̃

=
[
λ̌Ã

P̃L

(x) , λ̌Ã
P̃U

(x)
]
⊆

[0, 1] are interval numbers satisfied as 0 ≤
[
µ̌Ã

P̃U
(x)
]2

+
[
λ̌Ã

P̃U
(x)
]2
≤ 1 for

separate element x ∈ Z ′ . For each I-VPFS ÃP̃ and x ∈ X ′ ,

π̌Ã
P̃

(x) =

[
π

′

Ã
P̃L

(x) , π
′

Ã
P̃U

(x)

]
=

[√
1−

[
µ̌Ã

P̃U
(x)
]2
−
[
λ̌Ã

P̃U
(x)
]2
,

√
1−

[
µ̌Ã

P̃L

(x)
]2
−
[
λ̌Ã

P̃L

(x)
]2]
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is called the hesitancy interval of x to ÃP̃ . For an I-VPFS ÃP̃ is defined the

pair
〈[
µ̌Ã

P̃L

(x) , µ̌Ã
P̃U

(x)
]〉
,
〈[
λ̌Ã

P̃L

(x) , λ̌Ã
P̃U

(x)
]〉

is called an I-VPFN is

denoted by ÃP̃ =
〈[
µ̌Ã

P̃L

, µ̌Ã
P̃U

]〉
,
〈[
λ̌Ã

P̃L

, λ̌Ã
P̃U

]〉
.

Definition 2.2:- (Interval - valued Pythagorean fuzzy graph)Mohamed and Ali
[2018]

An I-VPFG with the underneath set v′′ is defined as a pair of G′
=
(
P̌ , Q̌

)
where,

(i) In the functions µ̌P̃ : v
′′ → [0, 1] and λ̌P̃ : v

′′ → [0, 1] express the
degree of membership and nonmembership element of the x′ ∈ v′′,
respectively, such that 0 ≤ µ̌P̃ (x′) + λ̌P̃ (x′) ≤ 1, ∀ x′ ∈ v′′.

(ii) In the functions µ̌Q̃ : E ′ ⊆ v
′′ × v′′ → [0, 1] , λ̌Q̃ : E ′ ⊆ v

′′ × v′′ → [0, 1]
is,

µ̌Q̃L
((x′, y′)) ≤ min

(
µ̌P̃L

(x′) , µ̌P̃L
(y′)
)
and

µ̌Q̃L
((x′, y′)) ≥ max

(
λ̌P̃L

(x′) , λ̌P̃L
(y′)
)

µ̌Q̃U ((x′, y′)) ≤ min
(
µ̌P̃U (x′) , µ̌P̃U (y′)

)
and

µ̌Q̃U ((x′, y′)) ≥ max
(
λ̌P̃U (x′) , λ̌P̃U (y′)

)
such that,

0 ≤ µ̌2
Q̃U

((x′, y′)) + λ̌2
P̃U

((x′, y′)) ≤ 1, ∀ (x′, y′) ∈ E ′.

Definition 2.3 Kumar et al. [2015]
Let ÃP̃ = (ã1, ã2, ã3)

〈[
µ̌Ã

P̃L

, µ̌Ã
P̃U

]〉
,
〈[
λ̌Ã

P̃L

, λ̌Ã
P̃U

]〉
and

B̃P̃ =
(
b̃1, b̃2, b̃3

)〈[
µ̌B̃

P̃L

, µ̌B̃
P̃U

]〉
,
〈[
λ̌B̃

P̃L

, λ̌B̃
P̃U

]〉
be two I-VPTFNs,

Then defined as,
(i)

ÃP̃ ⊕ B̃P̃ = 〈
(√

ã1
2 + b̃1

2
,

√
ã2

2 + b̃2
2
,

√
ã3

2 + b̃3
2
)

√(
µ̌Ã

P̃L

)2
+
(
µ̌B̃

P̃L

)2
−
(
µ̌Ã

P̃L

)2
.
(
µ̌B̃

P̃L

)2
×
√(

µ̌Ã
P̃U

)2
+
(
µ̌B̃

P̃U

)2
−
(
µ̌Ã

P̃U

)2
.
(
µ̌B̃

P̃U

)2
×
[(
λ̌Ã

P̃L

)
.
(
λ̌B̃

P̃L

)
,
(
λ̌Ã

P̃U

)(
λ̌B̃

P̃U

)]
〉 .
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Definition 2.4 (Score and accuracy functions) Garg [2016]
The SF and the AF of any I-VPTFN

ÃP̃ =
〈(
ã, b̃, c̃

) [
µ̌Ã

P̃L

, µ̌Ã
P̃U

]
.
[
λ̌Ã

P̃L

, λ̌Ã
P̃U

]〉
are defined as,

S
(
ÃP̃

)
= 1

2

[(
µ̌Ã

P̃L

)2
+
(
µ̌Ã

P̃U

)2
−
(
µ̌Ã

P̃L

)2
−
(
µ̌Ã

P̃U

)2]
, S

(
ÃP̃

)
∈

[−1, 1] and

H
(
ÃP̃

)
= 1

2

[(
µ̌Ã

P̃L

)2
+
(
µ̌Ã

P̃U

)2
+
(
µ̌Ã

P̃L

)2
+
(
µ̌Ã

P̃U

)2]
, H

(
ÃP̃

)
∈

[0, 1].
Remark 2.5Kumar et al. [2015]
Let ÃP̃ and B̃P̃ be two I-VTPFVs the collection of real numbers. Then we

define a method of ranking is,
(i) If S

(
ÃP̃

)
> S

(
B̃P̃

)
, then

(
ÃP̃

)
>
(
B̃P̃

)
, that is

(
ÃP̃

)
is sup to

(
B̃P̃

)
,

denoted by
(
ÃP̃

)
>
(
B̃P̃

)
.

(ii) If S
(
ÃP̃

)
= S

(
B̃P̃

)
and H

(
ÃP̃

)
> H

(
B̃P̃

)
then

(
ÃP̃

)
>
(
B̃P̃

)
,

that is
(
ÃP̃

)
is sup to

(
B̃P̃

)
denoted by

(
ÃP̃

)
>
(
B̃P̃

)
.

I-VTPF distance 2.6Mohamed and Ali [2018]
Let F be any connected I-VPFG. For any path

{
P̃ : ũ1, ũ2, . . . , ũn

}
length of

P̃ is described as the weights added together.
(
W̃i

)
those arcs in P̃ , in which the

weight among two adjacent I-VTriPFNs vertices are J
(
P̃ ′
)

=
∑n

i=1 (W̃ ′
i−1, W̃

′
i ).

any two nodes u, v ∈ F , let P̃ = {P̃i is a u− v path, i = 1, 2, 3, . . .} The defini-
tion of the I-VTriPF distance is, IP̃ {u, v} = min

{
J
(
P̃ ′i

)
; P̃ , i = 1, 2, . . . , n

}
.

3 Algorithm for SP
An algorithm is suggested in this section for the SP and SD of each node from

the source node (SN) Okada [2004].
The following steps for algorithm are defined by
Step – 1: Surmise IP̃i

= [0, 0, 0] ; [0, 0] [1, 1] and label the SN is,

[0, 0, 0] ; [0, 0] [1, 1] J
(
G̃
)

= −−.

Step – 2: Calculate I
P̃ ′
j

= min{I
P̃ ′
i
⊕ I

P̃ ′
j
/ i ∈ G̃P̃ (j)}; j = 2, 3, . . . , n.

Step – 3: A minimum value appearing from step 2 and matching the unique
value of i, the label node next j as IP̃i

(x). If the minimum value appears to be
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equal to one of the values of i, then it indicates that there is just one remaining path
between the SN as well as the node jbecause the separation between all pathways
is IP̃j

, choose any value for i.
Step – 4: The DN is denoted by IP̃n

γ, then the SD between the SN and the
DN is IP̃n

.
Step – 5: The DN is now marked IP̃n

γ. Check the marking of node γ to find
the SP between the SN and the DN. Let it be IP̃n

η, now check the marking of node
q, and so on. Repeat the process until node 1. The SP can be found by combining
all nodes.

4 Numerical explanation
Consider an I-VPF – scaled graph, in Fig. 1, where the I-VTPFNs represents

the distance between any two vertices. The problem is find to the SD and the path
enclosed by SN and the DN in network.

1

2

4

5

6

7
3

Figure 1: I-VTPF directed graph..

The below (fig 1) network shall be formed in each edges to evaluate the I-
VTPFN as follows:

Explanation
Let node 7 is the DN is defined as, n = 7.
Let us deal with the initial distance is d̃′′1 = [0, 0, 0] ; [0, 0] [1, 1] and the SN

[declared nod 1] as
[
[0, 0, 0] ; [0, 0] [1, 1] , J

(
G̃
)

= −−
]
, the values of d̃′′j′ ; j =

2, 3, 4, 5, 6, 7 can be assigned the network terminology:
Iteration – I Let taken away from fig.1 PN 2 is node 1, so place the values

from i = 1 & j = 2 appropriately in the St – 2 being the above algorithm.
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Edges I-VTPF distance
1− 2 [0.3, 0.5, 0.5] ; [0.4, 0.6] [0.6, 0.8]
1− 4 [0.4, 0.5, 0.6] ; [0.5, 0.6] [0.7, 0.8]
2− 3 [0.3, 0.5, 0.7] ; [0.6, 0.7] [0.6, 0.7]
2− 5 [0.4, 0.5, 0.7] ; [0.4, 0.6] [0.7, 0.8]
3− 4 [0.3, 0.5, 0.6] ; [0.6, 0.7] [0.7, 0.7]
3− 5 [0.5, 0.5, 0.5] ; [0.5, 0.6] [0.6, 0.8]
4− 6 [0.4, 0.5, 0.6] ; [0.6, 0.7] [0.6, 0.8]
5− 6 [0.5, 0.6, 0.5] ; [0.5, 0.6] [0.6, 0.8]
5− 7 [0.4, 0.5, 0.7] ; [0.4, 0.7] [0.7, 0.7]
6− 7 [0.5, 0.6, 0.7] ; [0.5, 0.7] [0.6, 0.7]

Table 1: I-VTPFNs edge weights

From the path for d̃′′2 is, d̃′′2 = min{d̃′′1 ⊕ d̃′′12}
= min {[0, 0, 0] ; [0, 0] [1, 1]⊕ [0.3, 0.5, 0.5] ; [0.4, 0.6] [0.6, 0.8]}

d̃′2 = min {[0.3, 0.5, 0.5] ; [0.4, 0.6] [0.6, 0.8]}

d̃′2 = {[0.3, 0.5, 0.5] ; [0.4, 0.6] [0.6, 0.8]}

From the above calculation, there is a min that corresponds to node 1, and then
node 2 is considered to be

{
[0.3, 0.5, 0.5] ; [0.4, 0.6] [0.6, 0.8] , J

(
G̃
)

= 1
}

Iteration – II The PN for node 3 is node 2, then the distance between the SN
and node 3 according to the above procedure is

d̃′′
3 = [0.424264, 0.707107, 0.860233] ; [0.68, 0.820731] [0.36, 0.56]

and the node 3 is

{
[0.424264, 0.707107, 0.860233] ; [0.68, 0.820731] [0.36, 0.56] , J

(
G̃
)

= 2
}

Iteration – III The PN nodes for node 4 are nodes 1 and 3, then the value of
d̃′′

4 is given,

d̃′′
4 = min {d̃′′

1 ⊕ d̃′′
14, d̃′′3 ⊕ d̃′′34}

= min


[0, 0, 0] ; [0, 0] [1, 1]⊕ [0.4, 0.5, 0.6] ; [0.5, 0.6] [0.7, 0.8] ,

[0.424264, 0.707107, 0.860233] ; [0.68, 0.820731] [0.36, 0.56]
⊕ [0.3, 0.5, 0.6] ; [0.6, 0.7] [0.7, 0.7]
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= min

{
[0.5, 0.707107, 0.781025] ; [0.60828, 0.768375] [0.42, 0.64] ,

[0.519645, 0.86602, 1.048809] ; [0.809899, 0.912968] [0.252, 0.396]

}
Applying the ranking method (based on the SF) results in the following value

for d̃′′
4.

[0.5, 0.707107, 0.781025] ; [0.60828, 0.768375] [0.42, 0.64]

and the term for d̃′′
4 is{

[0.5, 0.707107, 0.781025] ; [0.60828, 0.768375] [0.42, 0.64] , J
(
G̃
)

= 1
}

.

Iteration – IV The PNs for node 5 are nodes 2 & 3, then the value of d̃′′
5 is

d̃′′
5 = min {d̃′′

2 ⊕ d̃′′
25, d̃′′3 ⊕ d̃′′35}

Using the rank order method, the value of d̃′′
5 is

d̃′′
5 = [0.5, 0.707107, 0.860233] ; [0.542586, 0.768375] [0.42, 0.64]

d̃′′
5 and the name for d̃′′

5 is,{
[0.5, 0.707107, 0.860233] ; [0.542586, 0.768375] [0.42, 0.64] , J

(
G̃
)

= 2
}

.
Iteration – V The PN nodes for node 6 are nodes 4 and 5, then the value of

d̃′′
6 is
d̃′′

6 = min {d̃′′
4 ⊕ d̃′′

46, d̃′′5 ⊕ d̃′′56}
Using the ranking approach, d̃′′

6 value is
d̃′′

6 = [0.707107, 0.92279, 0.994988] ; [0.686148, 0.858986] [0.252, 0.512] and
its label is
{[0.707107, 0.92279, 0.994988]; [0.686148, 0.858986][0.252, 0.512], J(G̃) =

5}.
Iteration – VI The PN nodes for node 7 are nodes 5 and 6, then the value of

d̃′′
7 is
d̃′′

6 = min {d̃′′
5 ⊕ d̃′′

57, d̃′′6 ⊕ d̃′′67}
Using the ranking approach, d̃′′

7 value is
d̃′′

7 = [0.640312, 0.86602, 1.109028] ; [0.809919, 0.931328] [0.252, 0.448] and
its label is{

[0.640312, 0.86602, 1.109028] ; [0.809919, 0.931328] [0.252, 0.448] , J
(
G̃
)

= 5
}

.
Path 1→ 2→ 5→ 7 is determined to be the SP from the computations above,

and the distance between the SN and DNs is
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[0.640312, 0.86602, 1.109028] ; [0.809919, 0.931328] [0.252, 0.448].
The following table lists the SP taken by all nodes from the SN using the

suggested algorithm:

Node IP̃j
W

2 [0.3, 0.5, 0.5] ; [0.4, 0.6] [0.6, 0.8] 1→ 2
3 [0.424, 0.707, 0.860] ; [0.68, 0.821] [0.36, 0.56] 1→ 2→ 3
4 [0.3, 0.5, 0.7] ; [0.6, 0.7] [0.6, 0.7] 1→ 4
5 [0.5, 0.707, 0.860] ; [0.543, 0.768] [0.42, 0.64] 1→ 2→ 5
6 [0.707, 0.923, 0.995] ; [0.686, 0.859] [0.252, 0.512] 1→ 5→ 6
7 [0.640, 0.866, 1.109] ; [0.809, 0.931] [0.252, 0.448] 1→ 2→ 5→ 7

Table 2: SP and SD

where W = SP between the SN and the jth node

5 Conclusions
In a SPP, the SD and I-VPFSP provide useful information for making deci-

sions. The distance function, which aids in determining the SP, has been defined
for I-VTPFNs in this study. On a network with I-VTPF length, a new approach
for resolving the I-VPFSP issue has been suggested. The ranking of the paths is a
very helpful decision-making tool for selecting the best alternative path. The pro-
cess of determining the SP has been adequately explained. Furthermore, a used to
explain how the suggested algorithm can be implemented.

References
K. Atanassov. Intuitionistic fuzzy sets. Fuzzy sets Systems, 20:87–96, 1986.

K. Atanassov and G. Gargov. Interval – valued intuitionistic fuzzy sets. Fuzzy
sets and Systems, 31:343–349, 1989.

D. Dubois and H. . Prade. Fuzzy sets and systems. academic Press, New York,
NY, USA, 1980.

A. Gani and M. M. Jabarulla. On searching intuitionistic fuzzy shortest path in a
network,. Applied Mathematical Sciences,, 4:3447–3454, 2010.

H. Garg. A novel accuracy function under interval – valued pythagorean fuzzy
environment for solving multicriteria decision making problems. J Intell Fuzzy
Systems, pages 529–540, 2016.

125



M. Asim Basha and M. Mohammed Jabarulla

M. Karunambigai, P. Ranagasmy, K. Atanassov, and N. N. An intuitionistic fuzzy
graph method for finding the shortest paths in networks. Advances in soft Com-
puting, pages 3–10, 2007.

A. Kumar and M. Kaur. A new algorithm for solving network flow with fuzzy
arc lenths. An official Journal of Turkish Fuzzy systems Association, pages 1–3,
2011.

G. Kumar, R. Bajaj, and N. Gandotra. Interval – valued fuzzy sub semi – groups
and subgroups associated by interval – valued fuzzy graphs,. in Proceedings
of the WRI Global congress on Intelligent Systems (GCIS’09), pages 484–487,
2009.

G. Kumar, R. K. Bajaj, and N. Gandotra. Algorithm for shortest path problem in
a network with interval – valued intuitionistic trapezoidal fuzzy number,. Inter-
national Conference on Eco-friendly Computing and Communication Systems,,
2015.

S. Y. Mohamed and A. M. Ali. On strong interval – valued pythagorean fuzzy
graph,. Journal of Applied Science and Computations., 5, 2018.

S. Naz, S. Ashraf, and M. Akram. A novel approach to decision making with
pythagorean fuzzy information,. Mathematics, 5:37–46, 2013.

S. Okada. Fuzzy shortest path problems incorporating among paths. Fuzzy sets
and Systems, 142:335–357, 2004.

P. Xindong and Y. Young. Fundamental properties of interval – valued
pythagorean fuzzy aggregation operators. International Journal of Intelligent
Systems, 31:444–487, 2016.

Z. Xu and Zhang. Extension of topsis to multiple criteria decision making with
pythagorean fuzzy sets. Int. J. Intell. Systems., 29:1061–1078, 2014.

R. Yager. Pythagorean fuzzy subsets. In Proceedings of the joint IFSA World
congress and NAFIPS Annual Meeting, Edmonton, AB, Canada,, pages 24–28,
2013.

R. Yager. Pythagorean membership grades in multi-criteria decision making.
IEEE Trans. Fuzzy Systems, 22:958–965, 2014.

J. Yao and F. Lin. Fuzzy shortest – path network problems with uncertain edge
weights. Journal of Information Science and Engineering, 19:329–351, 2003.

L. Zadeh. Fuzzy sets,. Information and Control,, 8:338–353, 1965.

126


