Ideals in a semihypergroup and Green's relations

A. Hasankhani

Department of Mathematics, Sistan and Baluchestan University

Zahedan, Iran

Abstract:

The concept of ideal in a right (left) semihypergroup is defined. Then some connections between ideals and the hyper versions of Green's relations are discussed.

1.Introduction

Marty in 1934[2] Introduced the notion of hypergroup.

We begin by recalling some definitions from [1].

A hyperopration of a non-empty set H, is a function from $H \times H$ into $P^{\bullet}(H) = P(H) \setminus \{\emptyset\}.$

If "*" is a hyperoperation on H, then (H, *) is called a hypergroupoid.

Let (H, *) be a hypergroupoid and A, B two non-empty subsets of H, then A * B is defined by

$$A*B = \bigcup_{a \in A, b \in B} a*b$$

By x*A, and A*x we mean $\{x\}*A$ and $A*\{x\}$ respectively, for all $x \in H$, $\emptyset \neq A \subseteq H$.

2.Main results

Definition 2.1. Let (H,*) be a hypergroupoid. Then H is said to be a right (left) semihypergroup (or r.s (l.s)) if

$$(x*y)*z \subseteq x*(y*z), \forall x, y, z \in H$$

$$(x*(y*z)\subseteq (x*y)*z, \forall x, y, z\in H).$$

An hypergroupoid is called a semihypergroup if it is both a left and a right semihypergroup.

Definition 2.2[2]. Let (H, *) be a semihyprgroup. Then H is called a hypergroup if x * H = H * x = H, for all $x \in H$.

Definition 2.3. Left (H*) be a hypergroupoid and $A \in P^*(H)$. Then A is called

(i) a right ideal in H if

$$x \in A \Longrightarrow x * y \subseteq A, \forall y \in H$$

(ii) a left ideal in H if

$$x \in A \Longrightarrow y * x \subseteq A, \forall y \in H$$

(iii) an ideal in H if it is both a left and a right ideal in H.

Example 2.4. If H is a totally ordered set and the hyperoperation "*" on H is

No 13 - 1999 Ratio Mathematica A. Hasankhani

defined by

$$x * y = y * x = \begin{cases} \{z \in H : x \le z\} & \text{if} \quad y \le x \\ \{z \in H : y \le z\} & \text{if} \quad x \le y, \end{cases}$$

for all $x,y \in H$. Then we can show that (H,*) is a semihypergroup. Infact if $x,y,z \in H$, and $w \in (x*y)*z$ are arbitrary, then we have $w \in a*z$, for some $a \in x*y$. If $x \le y$, then $y \le a$. Now we have two cases.

Cases 1: Let $z \ge a$. Then since $w \in a * z$, we have $w \ge z$. On the other hand, since $y \le a$, we obtain that $x \le y \le z$. In other words $z \in y * z$ and $w \in x * z$. Now we get that $w \in x * z \subseteq x * (y * z)$.

Case 2: Let a > z. Then, since $w \in a * z$, we conclude that $w \ge a > z$. Now if $z \ge y$, then we have

$$w \ge a > z \ge y \ge x$$
.

Hence $w \in x * z \subseteq x * z$ and $z \in y * z$. Thus

$$w \in x * z \subseteq x * (y * z).$$

If y > z, then we have

$$z < y \le a \le w$$
, since $w \in a * z$.

consequently

 $w \in x * y$, since $y \leq w$ and $x \leq y \subseteq x * (y * z)$, since $y \in y * z$. Therefore $(x*y)*z \subseteq x*(y*z)$, if $x \leq y$. Now since x*y = y*x, we have $(x*y)*z \subseteq x*(y*z)$.

Note that, since x*B=B*x. For all $x,y,z\in H$. Thus (H,*) is a semihypergroup. Now Let $A=\{x\in H: a\leq x\}$, where $a\in H$. Then we shall show that A is an ideal of H. To do this let $x\in A,y\in H$ and $z\in x*y$. Then if $x\leq y$, we have

$$z \ge y \ge x \ge a$$
.

Hence $z \in A$. If $y \le x$, we have

$$z \geq x \geq a$$
.

That is $z \in A$. Consequently $x * y \subseteq A$.

Definition 2.5. Let (H,*) be a hypergroupoid. For every $a \in H$ we define

$$aH = (a*H) \cup \{a\};$$
 $Ha = (H*a) \cup \{a\};$
 $HaH = ((H*a)*H) \cup Ha \cup aH.$

The hyper versions of Creen's relations are the equivalence relations $\mathcal{R}, \mathcal{L}, \mathcal{I}$ and \mathcal{K} defined for all $a, b \in H$ by

$$a\mathcal{R}b \Leftrightarrow aH = bH;$$

 $a\mathcal{L}b \Leftrightarrow Ha = Hb;$
 $a\mathcal{I}b \Leftrightarrow HaH = HbH;$
 $\mathcal{K} = \mathcal{L} \cap \mathcal{R}.$

We shall also consider the relations \leq (\mathcal{R}) , \leq (\mathcal{L}) and \leq (\mathcal{I}) defined for all $a,b\in H$ by

$$a \leq (\mathcal{R})b \Leftrightarrow aH \subseteq bH;$$
$$a \leq (\mathcal{L})b \Leftrightarrow Ha \subseteq Hb;$$
$$a \leq (\mathcal{I})b \Leftrightarrow HaH \subseteq HbH;$$

(See[1,page 29]).

Teorem 2.6. Let H be a r.s and $\emptyset \neq A \subseteq H$. Then A is a right ideal iff for every $x, y \in H$.

$$x \le (\mathcal{R})y \text{ and } y \in A \Rightarrow x \in A.$$
 (1)

Proof. Let H be a r.s, $A \in P^*(H)$ and (1) hold. Then for all $x \in A$ and $y \in H$, we will prove that $x * y \subseteq A$. To do this let $z \in x * y$, and $w \in zH$ are abitrary. Then w = z or $w \in z * t$, for some $t \in H$. If w = z, then since $z \in x * y$ we have $w \in x * y$ and hence $w \in xH$. If $w \in z * t$, then since $z \in x * y$ we get that $w \in (x * y) * t \subseteq x * (y * t) \subseteq xH$. Therefore $zH \subseteq xH$. In other words $z \subseteq (\mathcal{R})x$. Hence $z \in A$. That is $x * y \subseteq A$.

Conversly, let A be a right ideal in H, $x \leq (\mathcal{R})y$ and $y \in A$. Then $yH \subseteq A$, since A is a right ideal. Hence

$$x \in xH \subseteq yH \subseteq A$$
.

In other words $x \in A$.

Theorem 2.7. Let H be a r.s $a \in H$. Then aH is the smallest right ideals containing a. Right ideals of this form are called principal right ideals.

Proof. The proof is easy.

Theorem 2.8. If H is a r.s and $a, b \in H$, then the following are equivalent:

- (1) $a \leq (\mathcal{R})b$
- (2) $a \in bH$
- (3) $b \in J \Rightarrow a \in J$ for all principal right ideals J in H,
- (4) $b \in J \Rightarrow a \in J$ for all right ideals J in H.

Proof. Clearly (4) \Rightarrow (3) \Rightarrow (2) and (1) \Rightarrow (2). By Theoem 2.7 we have

 $(2) \Rightarrow (1)$ and $(2) \Rightarrow (4)$.

Corollary 2.9. If H is a r.s and $a, b \in H$, Then the following are equivalent:

- (1) aRb,
- (2) $b \in aH$ and $a \in bH$,
- (3) $a \in J \Leftrightarrow b \in J$ for all principal right ideals J in H,
- (4) $a \in J \Leftrightarrow b \in J$ for all right ideals J in H.

Proof. The proof follows from Definition 2.5 and Theorem 2.8.

Definition 2.10. Let H be a hypergroupoid. A set F of functions on H is separating if, for all distinct x and y in H, there is an $f \in F$ with $f(x) \neq f(y)$.

Notation. Let H be a hypergroupoid $x \in H$. Then R-class, \mathcal{L} - class, \mathcal{I} -class

and K-class of x are denoted by x_R , x_L , x_I , and x_K respectively.

Corollary 2.11. Let H be a r.s. Then the following are equivalent:

- (1) the relation $\leq (\mathcal{R})$ is an order on H.
- $(2) x_{\mathcal{R}} = x, \forall x \in H,$
- (3) The set of all characteristic function of principal right ideals in H is separating,
- (4) The set of all characteristic functions of right ideals in H is separating.

Proof. Obviously $(1) \Rightarrow (2)$ and $(3) \Rightarrow (4)$. Firstly we shall prove $(2) \Rightarrow (3)$.Let x and y be two distinct elements in H. Then by Corollary 2.9,we have $y \notin xH$ or $x \notin H$ ence $\chi_{xH}(x) \neq \chi_{xH}(y)$ or $\chi_{yH}(y) \neq \chi_{yH}(x)$.

It is now sufficient to show that $(4) \Rightarrow (2)$.Let $x \leq (\mathcal{R})y$ and $y \leq (\mathcal{R})x$. Then $x \in yH$ and $y \in xH$. From Corollary 2.9 we have

 $x \in J \Leftrightarrow y \in J$ for all right ideals J.

Hence x = y, by (4). Clearly $\leq (\mathcal{R})$ is reflexive and transitive.

Remark 2.12. For a l.s H there are corresponding theorems and corollaries connecting the relation \mathcal{L} with left ideals. Moreover for a semihypergroup H there are corresponding theorems and corollaries connecting the relation \mathcal{I} with ideals, we shall summarise a few of these results in the next theorem.

Theorem 2.13 Let H be a semihypergroup and $a, b \in H$. Then

(1) aIb iff

 $a \in J \Leftrightarrow b \in J$ for all ideals J in H,

(2) aKb iff

 $a \in J \Leftrightarrow b \in J$

whenever J is a left ideal or a right ideal in H.

Theorem 2.14. Let H be a semihypergroup. Then H is a hypergroup iff $x \in x * H$ and $x_{\kappa} = H, \forall x \in H$.

Proof. The proof is easy.

Definition 2.15. Let H,H' be two hypergroupoid and $f:H\longrightarrow H'$ a function. Then F is called a homomorphism if

$$f(x*y) = f(x)*f(y).$$

Theoerem 2.16. Let H,H' be two hypergroupoids and $f:H\longrightarrow H'$ an onto homomorphism. Then f preserves the relations $\leq (\mathcal{R}), \leq (\mathcal{L})$ and $\leq (\mathcal{I})$. Moreover $f(x_{\mathcal{R}}) = (f(x))_{\mathcal{R}}, f(x_{\mathcal{L}}) = (f(x))_{\mathcal{L}}, f(x_{\mathcal{I}}) = (f(x))_{\mathcal{I}}$. and $f(x_{\mathcal{L}}) = (f(x))_{\mathcal{L}}$. Proof. The proof is easy.

REFERENCES

[1]K.H. Hofman and P.S.Mostert, Elements of compact Semigroups (Charles E. Merrill, Columbus, OH, 1966).

[2]F.Marty, Sur une generalization de la notion de group, Actes d'8me Congres des Mathematiciens Scandinaves. Stockholm (1934) 45-49.