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The aim of this paper is to give some connections between the structure
of an abelian finite group and the structure of its subgroup lattice.

1 Preliminaries

Let (G, 4) be an abelian group. Then the set £(G) of subgroups of G s a

modular and complete lattice.
Moreover, we suppose that G is finite of order n. If L, is the divisors

lattice of n, then the following function is well defined:
ord : L(G) — L,, ord(H) = |H|, for any H € L[G),

where by |H| we denote the order of the subgroup H.

2 Main results
Proposition 1. The following conditions are eguivalent:
(1) G 15 a cyclic group.

(1) ord is an one-to-one function.
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(1) ord is a homomorphism of the semiattice (C(G),N) into the semilattice

(L ().

(iv) ord is a homomorphism of the semilattice (C(G), +) into the semilattice

(La [ ])-

(v) ord is an isomorphism of lattices.

Proof. (1) = (1) Obvious.

(1) = (i) For anv d € L, let A4 be the set of elements r € G having
the order d. Then the family {M, |d € L, } is a partition of G, therefore we
have:

(1) n= Y |Myl|

deL,,
A set M, is nonempty if and only if there exists a cyclic subgroup Hy of G
having the order d. In this situation Hy is the unique subgroup of & with
the order d and we have:

_-Ud:«{;r = G|":’: .I‘:“.-:Hd]'

It results that |Mz| = w(d), where i is the Euler function. Using the relation
(1) and the identity
n= ) ¢ld)

deLln

we obtain that |[Ma| = @(d), for any d € L,. For d = n we have |My| =
w(n) = 1, so that G contains an element of order n.

(1) = (11) Let G1, Gz be two subgroups of G, d; = |Gy, i = 1,2 and
d = |Gy N Gy|. Since Gy N Gy 18 a subgroup of G;, i = 1,2, we obtain that
d/d;, i =1,2. 1 d"1s a divisor of d; and da, then d' € L, so that there exists
G' € £(G) with |G| = d'. Wehave G' C G;, i =1, 2, therefore &' C G, NG,
It results that d'/d, thus d = (dy, da).

(i) = (1) Let G,, G, be two subgroups of G such that ord(G,) =
ord(G;). From (1) we obtain that ord (G1NG2) = ord(G;), 1 =1, 2, therefore
we hEL‘E'E G]_ = G]_ M GE = GE'

(1) = (1) Similarly with (1) = (11).

(iv) = (11) Similarly with (11) = (1).
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(1) = (v) Obvious.

Next aim is to find necessary and sufficient conditions for £(G) in order
to be a distributive lattice, respectively a complemented lattice in which
every element has a unique complement.

Lemma 1. If £(G) is a distributive lattice or a complemented lattice in
which every element has a unigue complement, then, for any H € L(G), the
lattice L(H ) has the same properties.

Proof. The first part of the assertion is obvious.

We suppose that £(G) 1s a complemented lattice in which every element
has a unique complement and let H; be a subgroup of H. Then H; € £(G),
thus there exists a unique subgroup H, € £(G) such that H, $ H, = G. It
results that H = GNH = Hi&(H.NH). If H, € L(H) satisfies 1 H, = H
and K is the complement of H in &, then we have:

G=K&H=(K$H)®HNH)

and -
G=KR$H=(K$H )T H,.

Since the subgroup A & H) has a unique complement in G, it follows that
H, = H; N H: hence, H; has a unique complement in H.
Proposition 2. The following conditions are eguivalent:

(1) G 15 a cyclic group.

(1) £(G) is a distributive lattice.
Proof. (1) = (11) If G is a cyclic group, then, from Proposition 1, we have
L{G) == Ly, thus £(G) 15 a distributive lattice.

(1) == (1) From the fundamental theorem on finitely generated abelian

groups there exdst (uniquely determined by G) the numbers d;, ds, ..., d;, €
NY 40,1} satisiving dy /dz/.../di and



We shall prove that & = 1. If we suppose that k& = 2, then let p be a prime
divisor of dy. Since d;/dz, we obtain that G has a subgroup isomorphic to
the group Z, % Z,. Using Lemma 1, it 1s sufficiently to verify that £(Z, < Z,)
1s not a distributive lattice.

Iip=2, then L(EyxZy) = L(Ey;=Ey) = M;, which 1s not a distributive
lattice,

It p = 3, then let H,, H3, H; be the subgroups of Z,xZ, generated by
the elements [i. 2, [i, ay, respectively [El. 1). It is easy to see that we have:

H]_ﬂHE =HlﬂH3 =‘{|{E|.| El]]'
H]_—l_HE =H]_+H3 =%pxzp
H, # H;,

therefore £(Z,*Z,) is not a distributive lattice. Hence k =1, 1e. G = Ey
is a cyvclic group.

Proposition 3. The following conditions are eguivalent:
(1) n = |G| is square—free.

(1) L(G) is a complemented lattice in which every element has a unique
complement.

Proof. (i) = (i1) If nn is square—iree, then £(G) ~ £(Z,) ~ L,. Since L, is
a complemented lattice in which every element has a unique complement (for
any d € L, there exists a unique element d € L, d = g, such that (d, dy=1
and [d, d] = n), £(G) has the same property.

(1) = (1) Let G| be the sum of all subgroups H € £(G) which are
simple groups. Then there exists a unique subgroup G, € L(G) such that
G, 4 G, = G. We shall prove that G, = {0}.

If we suppose that Gy # {0}, then there exists r € G {0}. Using the
Zorn’s lemma, we obtain a maximal subgroup G, of G) with property that
r & ;. From Lemma 1, there exists a umque subgroup G, € ﬁ[@l'] such
that G, & G, = G,. It follows that G, # {0}.

Let G; # {0} be a subgroup of G,. Then the inclusion G2 € G2 F Gs
implies that r € G,&G ;. From the equality G, = GoEG; = G2 G, it results
that G5 = Gs, thus G, is a simple group. We obtain 10} # G, C G NGy,
contrary to the fact that the sum G, + G, is direct.
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Hence G; = {0}, therefore G = Gi. Since G is finite, there edst
H\, Hs, ..., H; € £(G) such that H; is a simple group, for any ¢ = 1, % and

k
G = @H{. For each 1 € {1,2,...,k} let p; be a prime number with the

i=1
property: H; = Z, . Using the fact that p; = p; for i = j, we obtain

1e n= |G| is square—iree.
Let Ab, Lat be the categories of abelian groups, respectively of lattices.
We have a functor £ : Ab — Lat given by

a) for an abelian group G, £(G) is the lattice of subgroups of G

(b) for a homomorphism of groups f @ G1 — G2, L(f) : £(G1) — L£L(G2)
is the homomorphism of lattices defined by £(f)(H,) = f(H,) for any
H e f,l{G]_:l

Remark. £ is an exact functor.
Proposition 4. If f: G1 — G2 is an epimorphism of abelian groups and
L=4{H € C(G,)/ker f C H },
then:
(1) L is a sublattice of C(Gy):

(1) the function FiL — L(Gz), jE[Hl'] = L(f)H) = f(Hy) for any
H, € L, is an isomorphism of lattices.

Proof. (1) Obvious.

(11) It remains to prove only that f is one-to-one and onto.

Let Hy, H, be two elements of L such that f(H,) = f(H]), ie. f(H) =
f(H}). For any = € Hy, we have f(r) € f(H.) = f(H]), so that there exists
y € H) with f(z) = f(y). It results that f(r —y) =0, thus r — y € ker f.
Since ker f € Hj, we obtain r € H: hence H, € H]. In the same way we
can check the other inclusion: therefore f is one—to—one,
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Let Ha be a subgroup of G;. Then Hy = f~}(H:) € L and, using the
fact that f is onto, we obtain:

flH) = f(H) = (fo f)(Hy) = Hy:
therefore _]E is onto.

Remark. The functor £ reflects the isomorphisms, ie if f: &) — Gy 1s
a homomorphism of abelian groups such that £(f) : £(G1) — £(G2) is an
isomorphism of lattices, then f is an isomorphism of groups.

Next alm 1s to study when, for two abelian groups G, G’ of the same
order n, the isomorphism of lattice £(G) =~ £(G’) implies the isomorphism
of groups G ~ G,

In order to solve this problem, it is necessarv to minutelv study the

e
structure of the lattice £ | X Zg, |, where d; € IN\{0,1}, i = 1,k and
i=1

dy/dsy/.../d;,. We shall treat only the case & = 2, in the case k£ = 3 the
problem remaining open.

Let m : ZXE — Zy %Ly, be the function defined by #(z,y) = (T, 7),
for any (r,y) € ExZ. 7 is an epimorphism of groups, therefore, by Propo-
sition 4, we have the isomorphism of lattices:

.IC (ﬁdl X%d! :l ~ Ldl.dy

where Ly 4, = 1H € C(E x E) | kerm = d\Exd,Z C H}. It is a simple
exercise to verify that:

Lemma 2. C(ExE) =4Hpzr=(p,¢)Z+(0,7)E | p,g,r €N, g < r}.
From the above results, we obtain that

ﬁ(zdlxzd!j -t Ld1.d: =

" . ) ) d
- {Hpq'r =(p)Z+ (0,")E |pgre€N, g <, p/d, 7/ (dm ;q)}.
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Remark.

1) For two elements Hpgpr, Hy g € Lg, 4, the following conditions are
equivalent:

(1) Hopgr
(1) p=p¢, r/lg—q,7")7/(g— ¢, 7).
(i) (p,q,7)=1(F,q" 7).

2) For two elements Hpgr, Hygw € Lg, 4, the following conditions are
equivalent:

== Hp'.q'.r"

(i :| Hp_q_r. (; Hp'.q'.r'-
4 . P
1) p'/p, 7/ (r,q— q' ) ;
( r

Let 4, be the set {(dy,d2) € (IN'40,1})* | di/ds, dids = n} and
g : A, — IN* be the function defined by g(d,,d;) = card £(Zy = Ey,) for
any (dy,dy) € An. If dy = pP p3..p0, dy = pi*p5°...p% are the decomposi-
tions of d;, respectively d,, as a product of prime factors (1.e. p; = prime
number, a;, 5 € N, a; < 3, i = 1,5 and p; # p; for i # j), then we have the
following result:

Lemma 3.
. g 1 R o
Q’[dhdzJ:H .,_.[lijf—ﬂf-l'll ?‘+__|{3i_'-"-'z'_1:| ?‘H—
i=1 sz'_l]'

—(oi + 5+ 3)ps + (0w + 5 + 1))

Corollary. We have:
(1) card C(E,xZ,) = 8.
(1) card £(E,xZ,) = 5.

(1) card C(EpxEp) = p + 3, where p is a prime number.
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Now we can prove the main result of this paper:

Proposition 5. Let n = 2 be a natural number, s be the number of dis-
tinct prime divisors of n and &, G be two abelian groups of order n which
have (corresponding to the fundamental theorem on finitely generated abelian
groups) the decompositions:

i~ Edlxzd!,
respectively

Gr ~ Ed;xzd;.
Then, for s € {1,2}, the isomorphism of lattice L(G) = L(G") implies the
isomorphism of groups G = G'.
Proof. Ifp,, p, ..., ps arethe distinct prime divisors of nand n = pl p, .l
dy = P03, do = BB 3, d) = pps i, & = prpht.pl are

the decompositions of n, d;, du. di,d, as a product of prime fa.ctu:urs (where

hho—i!jiai'l iEm aii:jia{jlr!ai—l_ji_a—l_j!_hi‘z_lsl t}lm
we have:
(1) gldy, d2) = g(dy, dy).

Since C(Zy =xZg ) = ﬁ[ﬁd; X L ), there exists an isomorphism of lattice
f i Laya, — Lg gy 1f we consider:

(il‘] Ia =11 Ja =|::Iw Ta =d21
then we have Hy g4, € Higg for any d € IN, d/d,, therefore

H

Bl Tl 2 f(Higa)C f[Hm,dJ—pr‘qr v for any d € IN, d/d>:

1t results r;/r) for any d € IN, d/d,, thus the number of divisors of d, is
at most the number of divisors of 7f, so that (because r(/d;) at most the
number of divisors of d7:

|{Il] La =dl! do = 0, Ta = 1,
then we have Hy g, € H,q, for any e € IN, e/d,;, therefore

Hrr " ”_f(Hdhﬂl] C fl{ E,ﬂl]_Hp'.q"i'" for anwv EE]}I E.l'lld]_

72



1t results p./pj for any e € IN, e/d;, thus the number of divisors of d; is
at most the number of divisors of p, so that (because p{j/d}) at most the
number of divisors of d).

Starting by the isomerphism of lattice 71 : Ly gt — La, 4, and maldng
a similarly reasoning, we obtain the converses of the above inequalities. Thus,
fori € 41,2}, the number of divisors of d; is equal with the number of divisors
of df, 1.e. the following equalities hold:

[Tl +1) =]]lei+1)
(2] i=1 i=1

[T +1) = T3+ 1)

i=1 i=1

If s =1, then, from equalities (2), we obtain a; = o] and 3, = 3], thus:
G2 Ty, X hg, = Lg xLg =~ G

If s =2, then, from the first of the equalities (2), we obtain:

1
l_’L';_-l'l :H(ﬂl-l-l.:l, l_’L{3+1= El{ﬂgﬂ'l.:l,

where u € @*.
If we consider the function F @ R} — IR} defined by

Flr) =[(lh1+3—2(a1 + 1'JI'JPFI+UI+1 —{h+1—2(ay + 1'JI'3PF1+”I_

a aatl
— (hy + 3)p1 + (A +1)] [(hg 43 zﬂ-j 1) Pt
o 1 =atl
a (hz +1- Ea_:_ )Pz * —(ha+3)pz + (ha + 1'3]

h

for any r € IR, then the equality (1) becomes:
(3) Flu) = F(1).

We can suppose that v = 1. On the interval [1,co0) we have F' < 0, so
that F is an one-to—one function. Therefore the equality (3) implies u = 1.
It follows that o, = o] and a; = al. Since oy + 3 = o] + 3] = h; and

73



a2+ 82 = abf + 3 = hg, 1t results that 5 = 3] and 3; = 3;. Hence we have
dy = d} and d; = d5, thus:

G By, x By, = By xEyy = G

Remark. In the case when the number s of distinct prime divisors of n is
arbitrary, the equalities (1) and (2) are not sufficient to obtain d; = d] and
dy = dy. However, 1f the following conditions are satisfied:

(1) hy =1forany i € {1,2,...,5} (1.e. n is square—ree)
or

(1) hy =1foranyv i €41,2,...,5}\{ig}
. h, :
(i.e. n has the form D1--Pig—1Pi, Pig1--DPa )y

then it is easy to see that the conclusion of Proposition 5 holds.
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