ON THE SUBGROUP LATTICE OF AN ABELIAN FINITE GROUP

Marius Tărnăuceanu
Faculty of Mathematics
"Al.I. Cuza" University of Iaşi, Romania
e-mail: mtarnauceanu@yahoo.com

The aim of this paper is to give some connections between the structure of an abelian finite group and the structure of its subgroup lattice.

1 Preliminaries

Let (G, +) be an abelian group. Then the set $\mathcal{L}(G)$ of subgroups of G is a modular and complete lattice.

Moreover, we suppose that G is finite of order n. If L_n is the divisors lattice of n, then the following function is well defined:

$$\operatorname{ord}: \mathcal{L}(G) \longrightarrow L_n, \quad \operatorname{ord}(H) = |H|, \text{ for any } H \in \mathcal{L}(G),$$

where by |H| we denote the order of the subgroup H.

2 Main results

Proposition 1. The following conditions are equivalent:

- G is a cyclic group.
- (ii) ord is an one-to-one function.

- (iii) ord is a homomorphism of the semilattice (L(G), ∩) into the semilattice (L_n, (,)).
- (iv) ord is a homomorphism of the semilattice (L(G), +) into the semilattice (L_n, [,]).
- (v) ord is an isomorphism of lattices.

Proof. (i) => (ii) Obvious.

(ii) \Longrightarrow (i) For any $d \in L_n$ let M_d be the set of elements $x \in G$ having the order d. Then the family $\{M_d \mid d \in L_n\}$ is a partition of G, therefore we have:

$$(1) n = \sum_{d \in L_n} |M_d|.$$

A set M_d is nonempty if and only if there exists a cyclic subgroup H_d of G having the order d. In this situation H_d is the unique subgroup of G with the order d and we have:

$$M_d = \{x \in G \mid \langle x \rangle = H_d\}.$$

It results that $|M_d| = \varphi(d)$, where φ is the Euler function. Using the relation (1) and the identity

$$n = \sum_{d \in L_n} \varphi(d),$$

we obtain that $|M_d| = \varphi(d)$, for any $d \in L_n$. For d = n we have $|M_d| = \varphi(n) \ge 1$, so that G contains an element of order n.

- (i) \Longrightarrow (iii) Let G_1, G_2 be two subgroups of G, $d_i = |G_i|$, i = 1, 2 and $d = |G_1 \cap G_2|$. Since $G_1 \cap G_2$ is a subgroup of G_i , i = 1, 2, we obtain that d/d_i , i = 1, 2. If d' is a divisor of d_1 and d_2 , then $d' \in L_n$, so that there exists $G' \in \mathcal{L}(G)$ with |G'| = d'. We have $G' \subseteq G_i$, i = 1, 2, therefore $G' \subseteq G_1 \cap G_2$. It results that d'/d, thus $d = (d_1, d_2)$.
- (iii) \Longrightarrow (ii) Let G_1, G_2 be two subgroups of G such that $\operatorname{ord}(G_1) = \operatorname{ord}(G_2)$. From (iii) we obtain that $\operatorname{ord}(G_1 \cap G_2) = \operatorname{ord}(G_i)$, i = 1, 2, therefore we have $G_1 = G_1 \cap G_2 = G_2$.
 - (i) ⇒ (iv) Similarly with (i) ⇒ (iii).
 - (iv) ⇒ (ii) Similarly with (iii) ⇒ (ii).

(i) ⇒ (v) Obvious.

Next aim is to find necessary and sufficient conditions for $\mathcal{L}(G)$ in order to be a distributive lattice, respectively a complemented lattice in which every element has a unique complement.

Lemma 1. If $\mathcal{L}(G)$ is a distributive lattice or a complemented lattice in which every element has a unique complement, then, for any $H \in \mathcal{L}(G)$, the lattice $\mathcal{L}(H)$ has the same properties.

Proof. The first part of the assertion is obvious.

We suppose that $\mathcal{L}(G)$ is a complemented lattice in which every element has a unique complement and let H_1 be a subgroup of H. Then $H_1 \in \mathcal{L}(G)$, thus there exists a unique subgroup $\overline{H}_1 \in \mathcal{L}(G)$ such that $H_1 \oplus \overline{H}_1 = G$. It results that $H = G \cap H = H_1 \oplus (\overline{H}_1 \cap H)$. If $\widetilde{H}_1 \in \mathcal{L}(H)$ satisfies $H_1 \oplus \widetilde{H}_1 = H$ and K is the complement of H in G, then we have:

$$G = K \oplus H = (K \oplus H_1) \oplus (\overline{H}_1 \cap H)$$

and

$$G = K \oplus H = (K \oplus H_1) \oplus \widetilde{H}_1.$$

Since the subgroup $K \oplus H_1$ has a unique complement in G, it follows that $\widetilde{H}_1 = \overline{H}_1 \cap H$; hence, H_1 has a unique complement in H.

Proposition 2. The following conditions are equivalent:

- G is a cyclic group.
- L(G) is a distributive lattice.

Proof. (i) \Longrightarrow (ii) If G is a cyclic group, then, from Proposition 1, we have $\mathcal{L}(G) \simeq L_n$, thus $\mathcal{L}(G)$ is a distributive lattice.

(ii) \Longrightarrow (i) From the fundamental theorem on finitely generated abelian groups there exist (uniquely determined by G) the numbers $d_1, d_2, ..., d_k \in \mathbb{IN}\setminus\{0,1\}$ satisfying $d_1/d_2/.../d_k$ and

$$G \simeq \underset{i=1}{\overset{k}{\times}} \mathbb{Z}_{d_i}$$
.

We shall prove that k = 1. If we suppose that $k \geq 2$, then let p be a prime divisor of d_1 . Since d_1/d_2 , we obtain that G has a subgroup isomorphic to the group $\mathbb{Z}_p \times \mathbb{Z}_p$. Using Lemma 1, it is sufficiently to verify that $\mathcal{L}(\mathbb{Z}_p \times \mathbb{Z}_p)$ is not a distributive lattice.

If p = 2, then $\mathcal{L}(\mathbb{Z}_p \times \mathbb{Z}_p) = \mathcal{L}(\mathbb{Z}_2 \times \mathbb{Z}_2) \simeq M_3$, which is not a distributive lattice.

If $p \geq 3$, then let H_1, H_2, H_3 be the subgroups of $\mathbb{Z}_p \times \mathbb{Z}_p$ generated by the elements $(\hat{1}, \hat{2}), (\hat{1}, \hat{0})$, respectively $(\hat{0}, \hat{1})$. It is easy to see that we have:

$$H_1 \cap H_2 = H_1 \cap H_3 = \{(\hat{0}, \hat{0})\}\$$

 $H_1 + H_2 = H_1 + H_3 = \mathbb{Z}_p \times \mathbb{Z}_p$
 $H_2 \neq H_3$,

therefore $\mathcal{L}(\mathbb{Z}_p \times \mathbb{Z}_p)$ is not a distributive lattice. Hence k = 1, i.e. $G \simeq \mathbb{Z}_{d_1}$ is a cyclic group.

Proposition 3. The following conditions are equivalent:

- n = |G| is square-free.
- (ii) L(G) is a complemented lattice in which every element has a unique complement.
- **Proof.** (i) \Longrightarrow (ii) If n is square–free, then $\mathcal{L}(G) \simeq \mathcal{L}(\mathbb{Z}_n) \simeq L_n$. Since L_n is a complemented lattice in which every element has a unique complement (for any $d \in L_n$ there exists a unique element $\bar{d} \in L_n$, $\bar{d} = \frac{n}{d}$, such that $(d, \bar{d}) = 1$ and $[d, \bar{d}] = n$), $\mathcal{L}(G)$ has the same property.
- (ii) \Longrightarrow (i) Let G_1 be the sum of all subgroups $H \in \mathcal{L}(G)$ which are simple groups. Then there exists a unique subgroup $\overline{G}_1 \in \mathcal{L}(G)$ such that $G_1 \oplus \overline{G}_1 = G$. We shall prove that $\overline{G}_1 = \{0\}$.

If we suppose that $\overline{G}_1 \neq \{0\}$, then there exists $x \in \overline{G}_1 \setminus \{0\}$. Using the Zorn's lemma, we obtain a maximal subgroup G_2 of \overline{G}_1 with property that $x \notin G_2$. From Lemma 1, there exists a unique subgroup $\overline{G}_2 \in \mathcal{L}(\overline{G}_1)$ such that $G_2 \oplus \overline{G}_2 = \overline{G}_1$. It follows that $\overline{G}_2 \neq \{0\}$.

Let $G_3 \neq \{0\}$ be a subgroup of \overline{G}_2 . Then the inclusion $G_2 \subset G_2 \oplus G_3$ implies that $x \in G_2 \oplus G_3$. From the equality $\overline{G}_1 = G_2 \oplus G_3 = G_2 \oplus \overline{G}_2$ it results that $G_3 = \overline{G}_2$, thus \overline{G}_2 is a simple group. We obtain $\{0\} \neq \overline{G}_2 \subset G_1 \cap \overline{G}_1$, contrary to the fact that the sum $G_1 + \overline{G}_1$ is direct.

Hence $\overline{G}_1=\{0\}$, therefore $G=G_1$. Since G is finite, there exist $H_1,H_2,...,H_k\in\mathcal{L}(G)$ such that H_i is a simple group, for any $i=\overline{1,k}$ and $G=\bigoplus_{i=1}^k H_i$. For each $i\in\{1,2,...,k\}$ let p_i be a prime number with the property: $H_i\simeq\mathbb{Z}_{p_i}$. Using the fact that $p_i\neq p_j$ for $i\neq j$, we obtain

$$G \simeq \bigoplus_{i=1}^k \mathbb{Z}_{p_i} \simeq \bigotimes_{i=1}^k \mathbb{Z}_{p_i} \simeq \mathbb{Z}_{p_1 p_2 \dots p_k},$$

i.e. n = |G| is square-free.

Let Ab, Lat be the categories of abelian groups, respectively of lattices. We have a functor $\mathcal{L}: Ab \longrightarrow Lat$ given by:

- a) for an abelian group G, $\mathcal{L}(G)$ is the lattice of subgroups of G;
- (b) for a homomorphism of groups f : G₁ → G₂, L(f) : L(G₁) → L(G₂) is the homomorphism of lattices defined by L(f)(H₁) = f(H₁) for any H₁ ∈ L(G₁).

Remark. L is an exact functor.

Proposition 4. If $f: G_1 \longrightarrow G_2$ is an epimorphism of abelian groups and

$$L = \{ H_1 \in \mathcal{L}(G_1) / \ker f \subseteq H_1 \},\$$

then:

- L is a sublattice of L(G₁);
- (ii) the function $\tilde{f}: L \longrightarrow \mathcal{L}(G_2)$, $\tilde{f}(H_1) = \mathcal{L}(f)(H_1) = f(H_1)$ for any $H_1 \in L$, is an isomorphism of lattices.

Proof. (i) Obvious.

(ii) It remains to prove only that \tilde{f} is one-to-one and onto.

Let H_1 , H_1' be two elements of L such that $\tilde{f}(H_1) = \tilde{f}(H_1')$, i.e. $f(H_1) = f(H_1')$. For any $x \in H_1$, we have $f(x) \in f(H_1) = f(H_1')$, so that there exists $y \in H_1'$ with f(x) = f(y). It results that f(x - y) = 0, thus $x - y \in \ker f$. Since $\ker f \subseteq H_1'$, we obtain $x \in H_1'$; hence $H_1 \subseteq H_1'$. In the same way we can check the other inclusion; therefore \tilde{f} is one-to-one.

Let H_2 be a subgroup of G_2 . Then $H_1 = f^{-1}(H_2) \in L$ and, using the fact that f is onto, we obtain:

$$\tilde{f}(H_1) = f(H_1) = (f \circ f^{-1})(H_2) = H_2;$$

therefore \tilde{f} is onto.

Remark. The functor \mathcal{L} reflects the isomorphisms, i.e. if $f: G_1 \longrightarrow G_2$ is a homomorphism of abelian groups such that $\mathcal{L}(f): \mathcal{L}(G_1) \longrightarrow \mathcal{L}(G_2)$ is an isomorphism of lattices, then f is an isomorphism of groups.

Next aim is to study when, for two abelian groups G, G' of the same order n, the isomorphism of lattice $\mathcal{L}(G) \simeq \mathcal{L}(G')$ implies the isomorphism of groups $G \simeq G'$.

In order to solve this problem, it is necessary to minutely study the structure of the lattice $\mathcal{L}\left(\sum_{i=1}^k \mathbb{Z}_{d_i} \right)$, where $d_i \in \mathbb{N} \setminus \{0,1\}$, $i = \overline{1,k}$ and $d_1/d_2/.../d_k$. We shall treat only the case k=2, in the case $k\geq 3$ the problem remaining open.

Let $\pi: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2}$ be the function defined by $\pi(x, y) = (\bar{x}, \hat{y})$, for any $(x, y) \in \mathbb{Z} \times \mathbb{Z}$. π is an epimorphism of groups, therefore, by Proposition 4, we have the isomorphism of lattices:

$$\mathcal{L}\left(\mathbb{Z}_{d_1}\times\mathbb{Z}_{d_2}\right)\simeq L_{d_1,d_2}$$

where $L_{d_1,d_2} = \{H \in \mathcal{L}(\mathbb{Z} \times \mathbb{Z}) \mid \ker \pi = d_1\mathbb{Z} \times d_2\mathbb{Z} \subseteq H\}$. It is a simple exercise to verify that:

Lemma 2.
$$\mathcal{L}(\mathbb{Z} \times \mathbb{Z}) = \{H_{p,q,r} = (p,q)\mathbb{Z} + (0,r)\mathbb{Z} \mid p,q,r \in \mathbb{N}, q < r\}.$$

From the above results, we obtain that

$$\begin{split} \mathcal{L}(\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2}) &\simeq L_{d_1,d_2} = \\ &= \left\{ H_{p,q,r} = ((p,q)\mathbb{Z} + (0,r)\mathbb{Z} \mid p,q,r \in \mathbb{N}, \ q < r, \ p/d_1, \ r/\left(d_2,\frac{d_1q}{p}\right) \right\}. \end{split}$$

Remark.

- For two elements H_{p,q,r}, H_{p',q',r'} ∈ L_{d₁,d₂} the following conditions are equivalent:
 - (i) $H_{p,q,r} = H_{p',q',r'}$.
 - (ii) p = p', r/(q q', r'), r'/(q q', r).
 - (iii) (p, q, r) = (p', q', r').
- For two elements H_{p,q,r}, H_{p',q',r'} ∈ L_{d₁,d₂} the following conditions are equivalent:
 - (i) $H_{p,q,r} \subseteq H_{p',q',r'}$.

(ii)
$$p'/p$$
, $r'/\left(r, q - q'\frac{p}{p'}\right)$.

Let A_n be the set $\{(d_1,d_2)\in (\mathbb{N}\backslash\{0,1\})^2\mid d_1/d_2,d_1d_2=n\}$ and $g:A_n\to\mathbb{N}^*$ be the function defined by $g(d_1,d_2)=\operatorname{card}\mathcal{L}(\mathbb{Z}_{d_1}\times\mathbb{Z}_{d_2})$ for any $(d_1,d_2)\in A_n$. If $d_1=p_1^{\alpha_1}p_2^{\alpha_2}...p_s^{\alpha_s},\ d_2=p_1^{\beta_1}p_2^{\beta_2}...p_s^{\beta_s}$ are the decompositions of d_1 , respectively d_2 , as a product of prime factors (i.e. $p_1=$ prime number, $\alpha_i,\beta_i\in\mathbb{N},\ \alpha_i\leq\beta_i,\ i=\overline{1,s}$ and $p_i\neq p_j$ for $i\neq j$), then we have the following result:

Lemma 3.

$$g(d_1, d_2) = \prod_{i=1}^{s} \frac{1}{(p_i - 1)^2} [(\beta_i - \alpha_i + 1) p_i^{\alpha_i + 2} - (\beta_i - \alpha_i - 1) p_i^{\alpha_i + 1} - (\alpha_i + \beta_i + 3) p_i + (\alpha_i + \beta_i + 1)].$$

Corollary. We have:

- (i) card L(Z₂×Z₄) = 8.
- (i) card L(Z₂×Z₂) = 5.
- (i) card $\mathcal{L}(\mathbb{Z}_p \times \mathbb{Z}_p) = p + 3$, where p is a prime number.

Now we can prove the main result of this paper:

Proposition 5. Let $n \ge 2$ be a natural number, s be the number of distinct prime divisors of n and G, G' be two abelian groups of order n which have (corresponding to the fundamental theorem on finitely generated abelian groups) the decompositions:

$$G \simeq \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2}$$

respectively

$$G' \simeq \mathbb{Z}_{d'_1} \times \mathbb{Z}_{d'_2}$$
.

Then, for $s \in \{1, 2\}$, the isomorphism of lattice $\mathcal{L}(G) \simeq \mathcal{L}(G')$ implies the isomorphism of groups $G \simeq G'$.

Proof. If $p_1, p_2, ..., p_s$ are the distinct prime divisors of n and $n = p_1^{h_1} p_2^{h_2} ... p_s^{h_s}$, $d_1 = p_1^{\alpha_1} p_2^{\alpha_2} ... p_s^{\alpha_s}$, $d_2 = p_1^{\beta_1} p_2^{\beta_2} ... p_s^{\beta_s}$, $d_1' = p_1^{\alpha_1'} p_2^{\alpha_2'} ... p_s^{\alpha_s'}$, $d_2' = p_1^{\beta_1'} p_2^{\beta_2'} ... p_s^{\beta_s'}$ are the decompositions of n, d_1, d_2, d_1', d_2' as a product of prime factors (where $h_i, \alpha_i, \beta_i, \alpha_i', \beta_i' \in \mathbb{N}$, $\alpha_i \leq \beta_i$, $\alpha_i' \leq \beta_i'$, $\alpha_i + \beta_i = \alpha_i' + \beta_i' = h_i$, $i = \overline{1, s}$), then we have:

(1)
$$g(d_1, d_2) = g(d'_1, d'_2).$$

Since $\mathcal{L}(\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2}) \simeq \mathcal{L}(\mathbb{Z}_{d'_1} \times \mathbb{Z}_{d'_2})$, there exists an isomorphism of lattice $f: L_{d_1,d_2} \longrightarrow L_{d'_1,d'_2}$. If we consider:

(i)
$$p_0 = 1$$
, $q_0 = 0$, $r_0 = d_2$,

then we have $H_{1,0,d_2} \subseteq H_{1,0,d}$ for any $d \in \mathbb{N}$, d/d_2 , therefore

$$H_{p'_0,q'_0,r'_0} \underline{\stackrel{\mathrm{not}}{=}} f(H_{1,0,d_2}) \subseteq f(H_{1,0,d}) \underline{\stackrel{\mathrm{not}}{=}} H_{p'_2,q'_2,r'_d} \text{ for any } d \in \mathbb{IN}, \ d/d_2;$$

it results r'_d/r'_0 for any $d \in \mathbb{N}$, d/d_2 , thus the number of divisors of d_2 is at most the number of divisors of r'_0 , so that (because r'_0/d'_2) at most the number of divisors of d'_2 :

(ii)
$$p_0 = d_1$$
, $q_0 = 0$, $r_0 = 1$,

then we have $H_{d_1,0,1} \subseteq H_{e,0,1}$ for any $e \in \mathbb{N}$, e/d_1 , therefore

$$H_{p_0'',q_0'',r_0''} \xrightarrow{\text{not}} f(H_{d_1,0,1}) \subseteq f(H_{\epsilon,0,1}) \xrightarrow{\text{not}} H_{p_{\epsilon}',q_{\epsilon}',r_{\epsilon}'} \text{ for any } \epsilon \in \mathbb{N}, \ \epsilon/d_1;$$

it results p'_e/p''_0 for any $e \in \mathbb{N}$, e/d_1 , thus the number of divisors of d_1 is at most the number of divisors of p''_0 , so that (because p''_0/d'_1) at most the number of divisors of d'_1 .

Starting by the isomorphism of lattice $f^{-1}: L_{d'_1,d'_2} \longrightarrow L_{d_1,d_2}$ and making a similarly reasoning, we obtain the converses of the above inequalities. Thus, for $i \in \{1,2\}$, the number of divisors of d_i is equal with the number of divisors of d'_i , i.e. the following equalities hold:

(2)
$$\begin{cases} \prod_{i=1}^{s} (\alpha_i + 1) = \prod_{i=1}^{s} (\alpha'_i + 1) \\ \prod_{i=1}^{s} (\beta_i + 1) = \prod_{i=1}^{s} (\beta'_i + 1). \end{cases}$$

If s=1, then, from equalities (2), we obtain $\alpha_1=\alpha_1'$ and $\beta_1=\beta_1'$, thus:

$$G \simeq \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} = \mathbb{Z}_{d'_1} \times \mathbb{Z}_{d'_2} \simeq G'.$$

If s = 2, then, from the first of the equalities (2), we obtain:

$$\alpha'_1 + 1 = u(\alpha_1 + 1), \ \alpha'_2 + 1 = \frac{1}{u}(\alpha_2 + 1),$$

where $u \in Q^*$.

If we consider the function $F: \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$ defined by

$$\begin{split} F(x) &= \left[(h_1 + 3 - 2(\alpha_1 + 1)x) p_1^{(\alpha_1 + 1)x + 1} - (h_1 + 1 - 2(\alpha_1 + 1)x) p_1^{(\alpha_1 + 1)x} - \right. \\ &- (h_1 + 3)p_1 + (h_1 + 1) \right] \left[\left(h_2 + 3 - 2\frac{\alpha_2 + 1}{x} \right) p_2^{\frac{\alpha_2 + 1}{x}} - \right. \\ &- \left. \left(h_2 + 1 - 2\frac{\alpha_2 + 1}{x} \right) p_2^{\frac{\alpha_2 + 1}{x}} - (h_2 + 3)p_2 + (h_2 + 1) \right] \end{split}$$

for any $x \in \mathbb{R}_{+}^{*}$, then the equality (1) becomes:

(3)
$$F(u) = F(1)$$
.

We can suppose that $u \geq 1$. On the interval $[1, \infty)$ we have F' < 0, so that F is an one-to-one function. Therefore the equality (3) implies u = 1. It follows that $\alpha_1 = \alpha'_1$ and $\alpha_2 = \alpha'_2$. Since $\alpha_1 + \beta_1 = \alpha'_1 + \beta'_1 = h_1$ and

 $\alpha_2 + \beta_2 = \alpha'_2 + \beta'_2 = h_2$, it results that $\beta_1 = \beta'_1$ and $\beta_2 = \beta'_2$. Hence we have $d_1 = d'_1$ and $d_2 = d'_2$, thus:

$$G \simeq \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} = \mathbb{Z}_{d'_1} \times \mathbb{Z}_{d'_2} \simeq G'.$$

Remark. In the case when the number s of distinct prime divisors of n is arbitrary, the equalities (1) and (2) are not sufficient to obtain $d_1 = d_1'$ and $d_2 = d_2'$. However, if the following conditions are satisfied:

- (i) $h_i = 1$ for any $i \in \{1, 2, ..., s\}$ (i.e. n is square-free) or
- (ii) $h_i = 1$ for any $i \in \{1, 2, ..., s\} \setminus \{i_0\}$ (i.e. n has the form $p_1...p_{i_0-1}p_{i_0}^{h_{i_0}}p_{i_0+1}...p_s$),

then it is easy to see that the conclusion of Proposition 5 holds.

References

- Birkhoff, G., Lattice theory, Amer. Math. Soc., Providence, R.I., 1967.
- [2] Grätzer, G., General lattice theory, Academic Press, New York, 1978.
- Suzuki, M., Group theory, I, II, Springer Verlag, Berlin, 1980, 1985.
- [4] Suzuki, M., Structure of a group and the structure of its lattice of subgroups, Springer Verlag, Berlin, 1956.
- [5] Ştefănescu, M., Introduction to group theory (Romanian), Editura Universității "Al.I. Cuza", Iași, 1993.